Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Plasma Separation, DNA Extraction, cfDNA Quantification, and Molecular Analysis
2.3. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics
3.2. Molecular Diagnostics
3.3. Clinical Outcomes
3.4. Prognostic Value of the Baseline cfDNA Levels
3.5. Dynamic Plasma cfDNA Values Are Associated with Radiologic Response and Survival
3.6. Survival Outcomes and Multivariate Analysis
3.7. The Predictive Role of ECOG-PS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Incorvaia, L.; Del Re, M.; Malapelle, U.; Capoluongo, E.; Gristina, V.; Castiglia, M.; Danesi, R.; Fassan, M.; Giuffrè, G.; et al. The molecular profiling of solid tumors by liquid biopsy: A position paper of the AIOM–SIAPEC-IAP–SIBioC–SIC–SIF Italian Scientific Societies. ESMO Open 2021, 6, 100164. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Fernandes, M.G.O.; Sousa, C.; Reis, J.P.; Cruz-Martins, N.; Moura, C.S.; Guimarães, S.; Justino, A.; Pina, M.J.; Magalhães, A.; Queiroga, H.; et al. Liquid biopsy for disease monitoring in non-small cell lung cancer: The link between biology and the clinic. Cells 2021, 10, 1912. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, C.; Zhang, Z.; Li, D.Y.; Du, J.; Ding, P.; Meng, H.; Xu, H.; Li, R.; Ho, E.; et al. Kinetics of plasma cfDNA predicts clinical response in non-small cell lung cancer patients. Sci. Rep. 2021, 11, 7633. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Pisapia, P.; Pepe, F.; Gristina, V.; La Mantia, M.; Francomano, V.; Russo, G.; Iaccarino, A.; Galvano, A. A narrative review on the implementation of liquid biopsy as a diagnostic tool in thoracic tumors during the COVID-19 pandemic. Mediastinum 2021, 5, 27. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.B.; Siu, L.L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Zhai, C.; Su, C.; Ren, S.; Zhou, C. The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer: A systematic review with meta-analysis. Lung Cancer 2016, 100, 63–70. [Google Scholar] [CrossRef]
- Zhang, R.; Shao, F.; Wu, X.; Ying, K. Value of quantitative analysis of circulating cell free DNA as a screening tool for lung cancer: A meta-analysis. Lung Cancer 2010, 69, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Pircher, A.; Augustin, F.; Kocher, F. Evidence-based follow-up in lung cancer? Memo Mag. Eur. Med. Oncol. 2020, 13, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viller Tuxen, I.; Barlebo Ahlborn, L.; Mau-Soerensen, M.; Staal Rohrberg, K.; Cilius Nielsen, F.; Oestrup, O.; Westmose Yde, C.; Richter Vogelius, I.; Lassen, U. Plasma total cell-free DNA is a prognostic biomarker of overall survival in metastatic solid tumour patients. Br. J. Cancer 2019, 121, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Coco, S.; Alama, A.; Vanni, I.; Fontana, V.; Genova, C.; Bello, M.G.D.; Truini, A.; Rijavec, E.; Biello, F.; Sini, C.; et al. Circulating cell-free DNA and circulating tumor cells as prognostic and predictive biomarkers in advanced non-small cell lung cancer patients treated with first-line chemotherapy. Int. J. Mol. Sci. 2017, 18, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijavec, E.; Coco, S.; Genova, C.; Rossi, G.; Longo, L.; Grossi, F. Liquid biopsy in non-small cell lung cancer: Highlights and challenges. Cancers 2020, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Tissot, C.; Toffart, A.C.; Villar, S.; Souquet, P.J.; Merle, P.; Moro-Sibilot, D.; Pérol, M.; Zavadil, J.; Brambilla, C.; Olivier, M.; et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur. Respir. J. 2015, 46, 1773–1780. [Google Scholar] [CrossRef]
- Hyun, M.H.; Sung, J.S.; Kang, E.J.; Choi, Y.J.; Park, K.H.; Shin, S.W.; Lee, S.Y.; Kim, Y.H. Quantification of circulating cell-free DNA to predict patient survival in non-small-cell lung cancer. Oncotarget 2017, 8, 94417. [Google Scholar] [CrossRef] [Green Version]
- Passiglia, F.; Galvano, A.; Castiglia, M.; Incorvaia, L.; Calò, V.; Listì, A.; Mazzarisi, S.; Perez, A.; Gallina, G.; Rizzo, S.; et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Ther. Adv. Med. Oncol. 2019, 11, 1758835919839928. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Yoon, K.A.; Han, J.Y.; Kim, H.T.; Yun, T.; Lee, G.K.; Kim, H.Y.; Lee, J.S. Circulating cell-free DNA in plasma of never smokers with advanced lung adenocarcinoma receiving gefitinib or standard chemotherapy as first-line therapy. Clin. Cancer Res. 2011, 17, 5179–5187. [Google Scholar] [CrossRef]
- Gautschi, O.; Bigosch, C.; Huegli, B.; Jermann, M.; Marx, A.; Chassé, E.; Ratschiller, D.; Weder, W.; Joerger, M.; Betticher, D.C.; et al. Circulating deoxyribonucleic acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. J. Clin. Oncol. 2004, 22, 4157–4164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Guleria, R.; Singh, V.; Bharti, A.C.; Mohan, A.; Das, B.C. Plasma DNA level in predicting therapeutic efficacy in advanced nonsmall cell lung cancer. Eur. Respir. J. 2010, 36, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, C.; Thompson, J.C.; Chien, A.L.; Quinn, K.J.; Hwang, W.T.; Black, T.A.; Yee, S.S.; Christensen, T.E.; LaRiviere, M.J.; Silva, B.A.; et al. Baseline Plasma Tumor Mutation Burden Predicts Response to Pembrolizumab-based Therapy in Patients with Metastatic Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 2354–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garassino, M.C.; Gadgeel, S.M.; Rodriguez-Abreu, D.; Felip, E.; Esteban, E.; Speranza, G.; Hochmair, M.; Powell, S.F.; Garon, E.B.; Hui, R.; et al. Evaluation of blood TMB (bTMB) in KEYNOTE-189: Pembrolizumab (pembro) plus chemotherapy (chemo) with pemetrexed and platinum versus placebo plus chemo as first-line therapy for metastatic nonsquamous NSCLC. J. Clin. Oncol. 2020, 38, 9521. [Google Scholar] [CrossRef]
- Passiglia, F.; Galvano, A.; Gristina, V.; Barraco, N.; Castiglia, M.; Perez, A.; La Mantia, M.; Russo, A.; Bazan, V. Is there any place for PD-1/CTLA-4 inhibitors combination in the first-line treatment of advanced NSCLC?—A trial-level meta-analysis in PD-L1 selected subgroups. Transl. Lung Cancer Res. 2021, 10, 3106. [Google Scholar] [CrossRef] [PubMed]
- Listì, A.; Barraco, N.; Bono, M.; Insalaco, L.; Castellana, L.; Cutaia, S.; Ricciardi, M.R.; Gristina, V.; Bronte, E.; Pantuso, G.; et al. Immuno-targeted combinations in oncogene-addicted non-small cell lung cancer. Transl. Cancer Res. 2019, 8, S55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luo, J.; Wu, S.; Si, H.; Gao, C.; Xu, W.; Abdullah, S.E.; Higgs, B.W.; Dennis, P.A.; van der Heijden, M.S.; et al. Prognostic and predictive impact of circulating tumor dna in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. 2020, 10, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, V.; Forde, P.M.; White, J.R.; Niknafs, N.; Hruban, C.; Naidoo, J.; Marrone, K.; Ashok Sivakumar, I.K.; Bruhm, D.C.; Rosner, S.; et al. Dynamics of tumor and immune responses during immune checkpoint blockade in non–small cell lung cancer. Cancer Res. 2019, 79, 1214–1225. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, Q.; Dong, Q.; Zhan, L.; Zhang, J. How to differentiate pseudoprogression from true progression in cancer patients treated with immunotherapy. Am. J. Cancer Res. 2019, 9, 1546. [Google Scholar]
- Galvano, A.; Gristina, V.; Malapelle, U.; Pisapia, P.; Pepe, F.; Barraco, N.; Castiglia, M.; Perez, A.; Rolfo, C.; Troncone, G.; et al. The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): A systematic review and meta-analysis of randomized controlled trials. ESMO Open 2021, 6, 100124. [Google Scholar] [CrossRef]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR -Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. KEYNOTE 189 (adeno): Pembrolizumab plus Chemotherapy (carbo/pemetrexed) in Metastatic Non–Small-Cell Lung Cancer (adeno). N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Gridelli, C.; Peters, S.; Mok, T.; Forde, P.M.; Reck, M.; Attili, I.; de Marinis, F. First-line immunotherapy in advanced non-small-cell lung cancer patients with ECOG performance status 2: Results of an International Expert Panel Meeting by the Italian Association of Thoracic Oncology. ESMO Open 2022, 7, 100355. [Google Scholar] [CrossRef]
- Waterhouse, D.; Lam, J.; Betts, K.A.; Yin, L.; Gao, S.; Yuan, Y.; Hartman, J.; Rao, S.; Lubinga, S.; Stenehjem, D. Real-world outcomes of immunotherapy–based regimens in first-line advanced non-small cell lung cancer. Lung Cancer 2021, 156, 41–49. [Google Scholar] [CrossRef]
- Dall’Olio, F.G.; Maggio, I.; Massucci, M.; Mollica, V.; Fragomeno, B.; Ardizzoni, A. ECOG performance status ≥2 as a prognostic factor in patients with advanced non small cell lung cancer treated with immune checkpoint inhibitors—A systematic review and meta-analysis of real world data. Lung Cancer 2020, 145, 95–104. [Google Scholar] [CrossRef]
- Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef]
Characteristics | Patients, N (%) |
---|---|
Number of patients | 73 (100.0%) |
Age, N (%) | |
Mean (SD) | 67.5 (9.5) |
Male | 67.3 (10.0) |
Female | 68 (8.5) |
<65 years old (%) | 33 (45.2%) |
>65 years old (%) | 40 (54.8%) |
Sex, N (%) | |
Male | 52 (71.2%) |
Female | 21 (28.8%) |
ECOG-PS, N (%) | |
0–1 | 42 (57.5%) |
≥2 | 31 (42.5%) |
Histology, N (%) | |
Adenocarcinoma | 56 (76.7%) |
Squamous cell carcinoma | 13 (17.8%) |
Others | 4 (5.5%) |
Smoking history, N (%) | |
Never | 12 (16.4%) |
Former/current | 56 (76.7%) |
NA | 5 (6.9%) |
Tumor site, N (%) | |
Left | 35 (48.0%) |
Right | 30 (41.0%) |
Bilateral | 5 (6.9%) |
NA | 3 (4.1%) |
Metastases distribution, N (%) | |
Bone | 24 (32.8%) |
Nodes | 62 (84.9%) |
CNS | 14 (19.2%) |
Liver | 9 (12.3%) |
Adrenal gland | 13 (17.8%) |
Other | 14 (19.2%) |
Therapy, N (%) | |
TKIs, 19 (26.0%) | EGFR TKIs, 9 (12.3%) ALK TKIs, 5 (6.9%) ROS-1 TKIs, 2 (2.7%) BRAF + MEK TKIs, 3 (4.1%) |
IO-based, 28 (38.3%) | Single-agent IO-based treatment, 13 (17.8%) IO-based treatment plus CT, 15 (20.5%) |
CT, 26 (35.6%) | Cisplatin–gemcitabine, 2 (2.7%) Carboplatin–gemcitabine, 11 (15.1%) Cisplatin–pemetrexed, 5 (6.8%) Carboplatin–pemetrexed, 8 (11.0%) |
Characteristics | Patients, N (%) | |||
---|---|---|---|---|
Number of Patients | 73 (100.0%) | |||
Diagnostic techniques, N (%) | ||||
Tissue, 73 (100.0%) | Real-time PCR, | 55 (75.3%) | WT, 44 (80.0%) | |
Mutated, 11 (20.0%) | EGFR—8, BRAF—3 | |||
NGS | 9 (12.3%) | WT, 3 (33.3%) | ||
Altered, 6 (66.6%) | EGFR—2, KRAS—2, ALK—1, MET—1, RET—1, ROS1—1 | |||
NA | 13 (17.8%) | – | – | |
Plasma, 10 (13.6%) | Droplet digital PCR | 5 (50.0%) | WT, 3 (60.0%) | |
Mutated, 2 (40.0%) | EGFR—2 | |||
NGS | 5 (50.0%) | WT, 0 (0.0%) | ||
Altered, 5 (100.0%) | EGFR—2, BRAF—1, KRAS—1, EGFR + TP53—1 | |||
Tissue predictive biomarker testing, N (%) | ||||
IHC | PD-L1, 67 (91.7%) | ≥50% 1–49% <1% N/A | 16 (21.9%) 27 (36.9%) 24 (32.8%) 6 (8.2%) | |
ALK, 56 (76.7%) | Positive Negative N/A | 4 (5.4%) 52 (71.2%) 17 (23.2%) | ||
ROS1, 46 (63.0%) | Positive Negative N/A | 3 (4.1%)—1 confirmed by FISH (1.3%) 43 (58.9%) 27 (37.0%) | ||
Molecular diagnostics | EGFR, 9 | p.E746_A750del, 3 p.E746_A750del + p.T790M + p.R175H, TP53, 1 p.E746_A750del + p.C797S, 1 p.L858R, 3 p.L861Q,1 | ||
KRAS, 2 | p.G12V, 1 p.G12D, 1 | |||
BRAF, 3 | p.V600E, 3 | |||
ROS1, 1 | ROS1-CD74, 1 | |||
ALK, 1 | EML4-ALK, 1 | |||
RET, 1 | KIF5B-RET, 1 | |||
MET, 1 | Amplification, 1 | |||
NTRK1/2/3, 0 | – | |||
HER-2, 0 | – | |||
Plasma predictive biomarker testing, N | ||||
Molecular diagnostics | EGFR, 2 | p.E746_A750del, 1 p.E746_A750del + p.T790M + p.R175H, TP53; 1 | ||
BRAF, 1 | p.V600E, 1 | |||
KRAS, 1 | p.G12V, 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gristina, V.; Barraco, N.; La Mantia, M.; Castellana, L.; Insalaco, L.; Bono, M.; Perez, A.; Sardo, D.; Inguglia, S.; Iacono, F.; et al. Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study. Cancers 2022, 14, 6013. https://doi.org/10.3390/cancers14236013
Gristina V, Barraco N, La Mantia M, Castellana L, Insalaco L, Bono M, Perez A, Sardo D, Inguglia S, Iacono F, et al. Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study. Cancers. 2022; 14(23):6013. https://doi.org/10.3390/cancers14236013
Chicago/Turabian StyleGristina, Valerio, Nadia Barraco, Maria La Mantia, Luisa Castellana, Lavinia Insalaco, Marco Bono, Alessandro Perez, Delia Sardo, Sara Inguglia, Federica Iacono, and et al. 2022. "Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study" Cancers 14, no. 23: 6013. https://doi.org/10.3390/cancers14236013
APA StyleGristina, V., Barraco, N., La Mantia, M., Castellana, L., Insalaco, L., Bono, M., Perez, A., Sardo, D., Inguglia, S., Iacono, F., Cutaia, S., Bazan Russo, T. D., Francini, E., Incorvaia, L., Badalamenti, G., Russo, A., Galvano, A., & Bazan, V. (2022). Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study. Cancers, 14(23), 6013. https://doi.org/10.3390/cancers14236013