Survival Prediction after Curative Resection of Pancreatic Ductal Adenocarcinoma by Imaging-Based Intratumoral Necrosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Imaging Techniques
2.3. Imaging Analysis
2.4. Clinical, Histopathological, and Follow-Up Data Collection
2.5. Statistical Analysis
3. Results
3.1. Summary of Patient Characteristics
3.2. Comparison of Histopathological Findings According to Imaging Necrosis
3.3. Postoperative Outcomes According to Imaging Necrosis
3.4. Univariable and Multivariable Analyses to Identify Predictors of Postoperative Outcomes
3.5. Interreader Agreement for Imaging Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Mangu, P.B.; Berlin, J.; Engebretson, A.; Hong, T.S.; Maitra, A.; Mohile, S.G.; Mumber, M.; Schulick, R.; Shapiro, M.; et al. Potentially Curable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016, 34, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, A.; Andersson, R.; Ansari, D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci. Rep. 2020, 10, 16425. [Google Scholar] [CrossRef] [PubMed]
- Neoptolemos, J.P.; Stocken, D.D.; Dunn, J.A.; Almond, J.; Beger, H.G.; Pederzoli, P.; Bassi, C.; Dervenis, C.; Fernandez-Cruz, L.; Lacaine, F.; et al. Influence of resection margins on survival for patients with pancreatic cancer treated by adjuvant chemoradiation and/or chemotherapy in the ESPAC-1 randomized controlled trial. Ann. Surg. 2001, 234, 758–768. [Google Scholar] [CrossRef]
- Katz, M.H.; Wang, H.; Fleming, J.B.; Sun, C.C.; Hwang, R.F.; Wolff, R.A.; Varadhachary, G.; Abbruzzese, J.L.; Crane, C.H.; Krishnan, S.; et al. Long-term survival after multidisciplinary management of resected pancreatic adenocarcinoma. Ann. Surg. Oncol. 2009, 16, 836–847. [Google Scholar] [CrossRef] [Green Version]
- National Comprehensive Cancer Network. Pancreatic Adenocarcinoma, Version 1. NCCN Clinical Practice Guidelines in Oncology Web Site. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. (accessed on 1 April 2022).
- Khorana, A.A.; Mangu, P.B.; Berlin, J.; Engebretson, A.; Hong, T.S.; Maitra, A.; Mohile, S.G.; Mumber, M.; Schulick, R.; Shapiro, M.; et al. Potentially Curable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2017, 35, 2324–2328. [Google Scholar] [CrossRef]
- Nakatsura, T.; Hasebe, T.; Tsubono, Y.; Ryu, M.; Kinoshita, T.; Kawano, N.; Konishi, M.; Kosuge, T.; Kanai, Y.; Mukai, K. Histological prognostic parameters for adenocarcinoma of the pancreatic head. Proposal for a scoring system for prediction of outcome. J. Hepato-Biliary Pancreat. Surg. 1997, 4, 441–448. [Google Scholar] [CrossRef]
- Hiraoka, N.; Ino, Y.; Sekine, S.; Tsuda, H.; Shimada, K.; Kosuge, T.; Zavada, J.; Yoshida, M.; Yamada, K.; Koyama, T.; et al. Tumour necrosis is a postoperative prognostic marker for pancreatic cancer patients with a high interobserver reproducibility in histological evaluation. Br. J. Cancer 2010, 103, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, S.; Hasebe, T.; Iwasaki, M.; Kinoshita, T.; Ochiai, A.; Shimizu, N. Important prognostic histological parameters for patients with invasive ductal carcinoma of the pancreas. Cancer Sci. 2005, 96, 858–865. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, S.S.; Kim, S.O.; Kim, J.H.; Kim, H.J.; Byun, J.H.; Yoo, C.; Kim, K.P.; Song, K.B.; Kim, S.C. Estimating Recurrence after Upfront Surgery in Patients with Resectable Pancreatic Ductal Adenocarcinoma by Using Pancreatic CT: Development and Validation of a Risk Score. Radiology 2020, 296, 541–551. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.H.; Song, I.H.; Youn, S.Y.; Kim, B.; Oh, S.N.; Choi, J.I.; Rha, S.E. Identification of intratumoral fluid–containing area by magnetic resonance imaging to predict prognosis in patients with pancreatic ductal adenocarcinoma after curative resection. Eur. Radiol. 2022, 32, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Gabata, T.; Zen, Y.; Mochizuki, K.; Kitagawa, H.; Matsui, O. Poorly enhanced areas of pancreatic adenocarcinomas on late-phase dynamic computed tomography: Comparison with pathological findings. Pancreas 2010, 39, 1263–1270. [Google Scholar] [CrossRef]
- Yoon, S.E.; Byun, J.H.; Kim, K.A.; Kim, H.J.; Lee, S.S.; Jang, S.J.; Jang, Y.J.; Lee, M.G. Pancreatic ductal adenocarcinoma with intratumoral cystic lesions on MRI: Correlation with histopathological findings. Br. J. Radiol. 2010, 83, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, S.Y.; Rha, S.E.; Jung, E.S.; Lee, I.S. Pancreas ductal adenocarcinoma with cystic features on cross-sectional imaging: Radiologic-pathologic correlation. Diagn. Interv. Radiol. 2018, 24, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, S.H.; Yu, E.S.; Kim, M.H.; Kim, J.; Byun, J.H.; Lee, S.S.; Hwang, H.J.; Hwang, J.Y.; Lee, S.S.; et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: Frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology 2010, 257, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.H.; Park, H.K.; Jang, K.T.; Hwang, J.A.; Kim, S. Pancreatic Ductal Adenocarcinoma: Rim Enhancement at MR Imaging Predicts Prognosis after Curative Resection. Radiology 2018, 288, 456–466. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, J.M.; Cho, J.Y.; Lee, K.B.; Kim, J.E.; Moon, S.K.; Kim, S.J.; Baek, J.H.; Kim, S.H.; Kim, S.H.; et al. Small (</= 20 mm) pancreatic adenocarcinomas: Analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology 2011, 259, 442–452. [Google Scholar]
- Punt, C.J.; Buyse, M.; Köhne, C.H.; Hohenberger, P.; Labianca, R.; Schmoll, H.J.; Påhlman, L.; Sobrero, A.; Douillard, J.Y. Endpoints in adjuvant treatment trials: A systematic review of the literature in colon cancer and proposed definitions for future trials. J. Natl. Cancer Inst. 2007, 99, 998–1003. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, J.M.; Choi, H.K.; Hong, S.H.; Han, J.K.; Choi, B.I. Preoperative evaluation of pancreatic cancer: Comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging 2009, 30, 586–595. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, A.Y.; Kim, P.N.; Lee, M.G.; Ha, H.K. Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur. J. Radiol. 2010, 73, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, B.; Zhou, Y.; Wan, T.; Si, X. Impact of tumor size on survival of patients with resected pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. BMC Cancer 2018, 18, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, M.K.; Davila, J.A.; Shaib, Y.H. Incidence and survival of pancreatic head and body and tail cancers: A population-based study in the United States. Pancreas 2010, 39, 458–462. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, M.; Tan, C.; Chen, Y.; Ping, J.; Wang, R.; Liu, X. Disparities in survival by stage after surgery between pancreatic head and body/tail in patients with nonmetastatic pancreatic cancer. PLoS ONE 2019, 14, e0226726. [Google Scholar] [CrossRef]
- Winer, L.K.; Dhar, V.K.; Wima, K.; Morris, M.C.; Lee, T.C.; Shah, S.A.; Ahmad, S.A.; Patel, S.H. The Impact of Tumor Location on Resection and Survival for Pancreatic Ductal Adenocarcinoma. J. Surg. Res. 2019, 239, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Ghaneh, P.; Kleeff, J.; Halloran, C.M.; Raraty, M.; Jackson, R.; Melling, J.; Jones, O.; Palmer, D.H.; Cox, T.F.; Smith, C.J.; et al. The Impact of Positive Resection Margins on Survival and Recurrence Following Resection and Adjuvant Chemotherapy for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2019, 269, 520–529. [Google Scholar] [CrossRef]
- Konstantinidis, I.T.; Warshaw, A.L.; Allen, J.N.; Blaszkowsky, L.S.; Castillo, C.F.; Deshpande, V.; Hong, T.S.; Kwak, E.L.; Lauwers, G.Y.; Ryan, D.P.; et al. Pancreatic ductal adenocarcinoma: Is there a survival difference for R1 resections versus locally advanced unresectable tumors? What is a “true” R0 resection? Ann. Surg. 2013, 257, 731–736. [Google Scholar] [CrossRef]
Variable | Total (n = 102) | PDAC with CT-Detected Necrosis | PDAC with MRI-Detected Necrosis | ||||
---|---|---|---|---|---|---|---|
Yes (n = 14) | No (n = 88) | p | Yes (n = 16) | No (n = 86) | p | ||
Age, years * | 64.9 ± 10.2 | 61.5 ± 10.9 | 65.4 ± 10.1 | 0.183 | 62.8 ± 12.6 | 65.3 ± 9.7 | 0.378 |
Sex (male:female) | 51:51 | 8:6 | 43:45 | 0.774 | 9:7 | 42:44 | 0.785 |
Serum CA 19-9, U/mL * | 638 ± 1284 | 903 ± 1615 | 594 ± 1226 | 0.408 | 1125 ± 2219 | 543 ± 1003 | 0.319 |
Tumor size, cm * | 3.3 ± 1.2 | 4.3 ± 0.9 | 3.1 ± 1.2 | 0.001 | 3.9 ± 1.1 | 3.2 ± 1.2 | 0.031 |
Location | 0.887 | 0.524 | |||||
Head/uncinate process | 78 (76.5) | 11 (78.6) | 67 (76.1) | 14 (87.4) | 64 (74.4) | ||
Body | 11 (10.9) | 1 (7.1) | 10 (11.4) | 1 (6.3) | 10 (11.6) | ||
Tail | 13 (12.7) | 2 (14.3) | 11 (12.5) | 1 (6.3) | 12 (14.0) | ||
T stage | 0.538 | 0.382 | |||||
T1 | 27 (26.5) | 2 (14.3) | 25 (28.4) | 2 (12.5) | 25 (29.1) | ||
T2 | 69 (67.6) | 11 (78.6) | 58 (65.9) | 13 (81.2) | 56 (65.1) | ||
T3 | 6 (5.9) | 1 (7.1) | 5 (5.7) | 1 (6.3) | 5 (5.8) | ||
N stage | 0.784 | 0.213 | |||||
N0 | 37 (36.3) | 4 (28.6) | 33 (37.5) | 4 (25.0) | 33 (38.4) | ||
N1 | 50 (49.0) | 8 (57.1) | 42 (47.7) | 11 (68.7) | 39 (45.3) | ||
N2 | 15 (14.7) | 2 (14.3) | 13 (14.8) | 1 (6.3) | 14 (16.3) | ||
Contact with SMV or PV | 44 (43.1) | 10 (71.4) | 34 (38.6) | 0.021 | 10 (62.5) | 34 (39.5) | 0.089 |
Unenhanced T1WI hypointensity | 95 (93.1) | 14 (100.0) | 81 (92.0) | 0.589 | 16 (100.0) | 79 (91.9) | 0.593 |
Pancreatic phase hypointensity | 94 (92.2) | 14 (100.0) | 80 (90.9) | 0.522 | 16 (100.0) | 78 (90.7) | 0.445 |
Portal venous phase hypointensity | 85 (83.3) | 14 (100.0) | 71 (80.7) | 0.157 | 16 (100.0) | 69 (80.2) | 0.113 |
Delayed phase (3 min) hypointensity | 70 (68.6) | 14 (100.0) | 56 (63.6) | 0.004 | 16 (100.0) | 54 (62.8) | 0.003 |
Diffusion restriction † | 0.295 | 0.724 | |||||
Absence | 12 (11.8) | 0 (0.0) | 12 (14.0) | 1 (6.3) | 11 (13.1) | ||
Presence | 88 (88.2) | 14 (100.0) | 74 (86.0) | 15 (93.7) | 73 (86.9) | ||
ADC (×10−3 mm2/s) * | 1.37 ± 0.38 | 1.19 ± 0.21 | 1.40 ± 0.39 | 0.062 | 1.28 ± 0.51 | 1.38 ± 0.34 | 0.323 |
Rim enhancement on MRI | 41 (40.2) | 13 (92.9) | 28 (31.8) | <0.001 | 16 (100.0) | 25 (29.1) | <0.001 |
Variable | Total (n = 102) | PDAC with CT-Detected Necrosis | PDAC with MRI-Detected Necrosis | ||||
---|---|---|---|---|---|---|---|
Yes (n = 14) | No (n = 88) | p | Yes (n = 16) | No (n = 86) | p | ||
Histopathologic necrosis, % * | 7.5 ± 9.7 | 18.6 ± 11.7 | 5.9 ± 8.1 | <0.001 | 20.0 ± 10.3 | 5.3 ± 7.6 | <0.001 |
Absence | 54 (52.9) | 2 (14.3) | 51 (58.0) | 0.002 | 1 (6.3) | 52 (60.5) | <0.001 |
Presence | 48 (47.1) | 12 (85.7) | 37 (42.0) | 15 (93.7) | 34 (39.5) | ||
Tumor differentiation | 0.007 | <0.001 | |||||
Well | 20 (19.6) | 0 (0) | 20 (22.7) | 1 (6.3) | 19 (22.1) | ||
Moderate | 76 (74.5) | 11 (78.6) | 65 (73.9) | 10 (62.4) | 66 (76.7) | ||
Poor | 6 (5.9) | 3 (21.4) | 3 (3.4) | 5 (31.3) | 1 (1.2) | ||
Lymphovascular invasion | 0.368 | 0.348 | |||||
Absence | 36 (35.3) | 3 (21.4) | 33 (37.5) | 4 (25.0) | 32 (37.2) | ||
Presence | 66 (64.7) | 11 (78.6) | 55 (62.5) | 12 (75.0) | 54 (62.8) | ||
Perineural invasion | 0.122 | >0.999 | |||||
Absence | 15 (14.7) | 0 (0) | 15 (17.0) | 2 (12.5) | 13 (15.1) | ||
Presence | 87 (85.3) | 14 (100) | 73 (83.0) | 14 (87.5) | 73 (84.9) | ||
Tumor cellularity | 0.019 | 0.017 | |||||
< 50% | 65 (63.7) | 5 (35.7) | 60 (68.2) | 6 (37.5) | 59 (68.6) | ||
≥ 50% | 37 (36.3) | 9 (64.3) | 28 (31.8) | 10 (62.5) | 27 (31.4) | ||
Remaining acini | 0.002 | 0.041 | |||||
Absence | 22 (21.6) | 8 (57.1) | 14 (15.9) | 7 (43.8) | 15 (17.4) | ||
Presence | 80 (78.4) | 6 (42.9) | 74 (84.1) | 9 (56.2) | 71 (82.6) | ||
Lymph node metastasis | 0.519 | 0.307 | |||||
Absence | 37 (36.3) | 4 (28.6) | 33 (37.5) | 4 (25.0) | 33 (38.4) | ||
Presence | 65 (63.7) | 10 (71.4) | 55 (62.5) | 12 (75.0) | 53 (61.6) |
Variable | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥65 years) | 1.07 (0.70–1.64) | 0.759 | ||
Sex (male) | 0.95 (0.62–1.46) | 0.806 | ||
CA 19-9 concentration (≥37 U/mL) | 1.43 (0.87–2.33) | 0.158 | ||
Tumor size, cm | 1.24 (1.06–1.44) | 0.006 | 1.19 (1.01–1.41) | 0.040 |
Tumor location | ||||
Head/uncinate process | 1 (reference) | 1 (reference) | ||
Body or tail | 0.49 (0.28–0.86) | 0.013 | 0.46 (0.25–0.82) | 0.009 |
T stage | ||||
T1 | 1 (reference) | |||
T2 or T3 | 1.14 (0.69–1.89) | 0.599 | ||
Lymph node metastasis | 1.62 (1.03–2.56) | 0.038 | 1.27 (0.79–2.03) | 0.325 |
Histopathologic necrosis, % | 1.02 (0.99–1.04) | 0.142 | ||
Presence of imaging necrosis | ||||
CT-detected necrosis | 1.71 (0.93–3.16) | 0.086 | ||
MRI-detected necrosis | 3.16 (1.77–5.65) | <0.001 | 2.64 (1.43–4.89) | 0.002 |
Contact with SMV or PV | 1.37 (0.89–2.12) | 0.149 | ||
Unenhanced T1WI hypointensity | 1.07 (0.43–2.67) | 0.877 | ||
Pancreatic phase hypointensity | 0.73 (0.35–1.53) | 0.406 | ||
Portal-venous phase hypointensity | 1.02 (0.57–1.81) | 0.955 | ||
Delayed phase hypointensity | 1.95 (1.18–3.20) | 0.009 | 1.29 (0.75–2.23) | 0.353 |
Diffusion restriction | 2.20 (1.06–4.57) | 0.035 | 2.10 (0.99–4.44) | 0.053 |
Apparent diffusion coefficient (×10−3 mm2/s) | 1.14 (0.72–1.81) | 0.584 | ||
Rim enhancement on MRI | 1.03 (0.67–1.60) | 0.885 |
Variable | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (≥ 65 years) | 1.24 (0.74–2.07) | 0.420 | ||
Sex (male) | 1.13 (0.68–1.88) | 0.639 | ||
CA 19-9 concentration (≥ 37 U/mL) | 1.32 (0.74–2.35) | 0.353 | ||
Tumor size, cm | 1.23 (1.02–1.48) | 0.029 | 1.18 (0.97–1.44) | 0.093 |
Tumor location | ||||
Head/uncinate process | 1 (reference) | |||
Body or tail | 0.54 (0.28–1.04) | 0.064 | ||
T stage | ||||
T1 | 1 (reference) | |||
T2 or T3 | 1.39 (0.76–2.53) | 0.272 | ||
Lymph node metastasis | 1.75 (1.02–3.03) | 0.044 | 1.64 (0.94–2.86) | 0.084 |
Histopathologic necrosis, % | 1.03 (1.00–1.05) | 0.061 | ||
Presence of imaging necrosis | ||||
CT-detected necrosis | 1.79 (0.90–3.56) | 0.100 | ||
MRI-detected necrosis | 2.66 (1.40–5.06) | 0.003 | 2.59 (1.35–4.97) | 0.004 |
Contact with SMV or PV | 1.61 (0.97–2.68) | 0.067 | ||
Unenhanced T1WI hypointensity | 1.43 (0.315–5.92) | 0.618 | ||
Pancreatic phase hypointensity | 1.29 (0.51–3.28) | 0.587 | ||
Portal-venous phase hypointensity | 1.07 (0.55–2.06) | 0.843 | ||
Delayed phase hypointensity | 1.77 (0.98–3.18) | 0.058 | ||
Diffusion restriction | 1.94 (0.77–4.87) | 0.157 | ||
Apparent diffusion coefficient (× 10−3 mm2/s) | 1.16 (0.68–1.99) | 0.585 | ||
Rim enhancement on MRI | 0.89 (0.53–1.51) | 0.676 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, D.H.; Song, I.H.; Kim, B.; Oh, S.N.; Choi, J.-I.; Rha, S.E. Survival Prediction after Curative Resection of Pancreatic Ductal Adenocarcinoma by Imaging-Based Intratumoral Necrosis. Cancers 2022, 14, 5671. https://doi.org/10.3390/cancers14225671
Kim H, Kim DH, Song IH, Kim B, Oh SN, Choi J-I, Rha SE. Survival Prediction after Curative Resection of Pancreatic Ductal Adenocarcinoma by Imaging-Based Intratumoral Necrosis. Cancers. 2022; 14(22):5671. https://doi.org/10.3390/cancers14225671
Chicago/Turabian StyleKim, Hokun, Dong Hwan Kim, In Hye Song, Bohyun Kim, Soon Nam Oh, Joon-Il Choi, and Sung Eun Rha. 2022. "Survival Prediction after Curative Resection of Pancreatic Ductal Adenocarcinoma by Imaging-Based Intratumoral Necrosis" Cancers 14, no. 22: 5671. https://doi.org/10.3390/cancers14225671
APA StyleKim, H., Kim, D. H., Song, I. H., Kim, B., Oh, S. N., Choi, J. -I., & Rha, S. E. (2022). Survival Prediction after Curative Resection of Pancreatic Ductal Adenocarcinoma by Imaging-Based Intratumoral Necrosis. Cancers, 14(22), 5671. https://doi.org/10.3390/cancers14225671