Strategies for Radioiodine Treatment: What’s New
Abstract
:Simple Summary
Abstract
1. Differentiated Thyroid Cancer: Mortality and Recurrence Risks
2. Radioiodine Treatment Goals
2.1. Remnant Ablation
Follow-Up Tools for DTC Patients Treated with Surgery Alone
2.2. Adjuvant Treatment
2.2.1. Low-Risk Patients
2.2.2. Lower-Intermediate Risk Patients
2.2.3. Selective Use of Adjuvant RAI in Low and Lower-Intermediate Risk, According to Ongoing Risk Classification
2.2.4. Higher-Intermediate and High Risk
2.3. Therapeutic RAI
3. Pediatric DTC
4. Side Effects of RAI
5. RAI Refractoriness
5.1. Definition and Prognostic Factors
5.2. Strategies to Overcome RAI-Refractoriness
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Thyroid Cancer—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 11 May 2022).
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Vaccarella, S.; Dal Maso, L.; Laversanne, M.; Bray, F.; Plummer, M.; Franceschi, S. The Impact of Diagnostic Changes on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Selected High-Resource Countries. Thyroid 2015, 25, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Megwalu, U.C.; Moon, P.K. Thyroid Cancer Incidence and Mortality Trends in the United States: 2000–2018. Thyroid 2022, 32, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.; Borson-Chazot, F.; Delafosse, P.; Schvartz, C.; Guizard, A.-V. FRANCIM network Progression of Incidence and Estimate of Net Survival from Papillary Thyroid Cancers Diagnosed between 2008 and 2016 in France. Ann. Endocrinol. 2020, 81, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferri, E.L.; Young, R.L.; Oertel, J.E.; Kemmerer, W.T.; Page, C.P. Papillary Thyroid Carcinoma: The Impact of Therapy in 576 Patients. Medicine 1977, 56, 171–196. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Catargi, B.; Borget, I.; Deandreis, D.; Zerdoud, S.; Bridji, B.; Bardet, S.; Leenhardt, L.; Bastie, D.; Schvartz, C.; et al. Strategies of Radioiodine Ablation in Patients with Low-Risk Thyroid Cancer. N. Engl. J. Med. 2012, 366, 1663–1673. [Google Scholar] [CrossRef] [Green Version]
- Mallick, U.; Harmer, C.; Yap, B.; Wadsley, J.; Clarke, S.; Moss, L.; Nicol, A.; Clark, P.M.; Farnell, K.; McCready, R.; et al. Ablation with Low-Dose Radioiodine and Thyrotropin Alfa in Thyroid Cancer. N. Engl. J. Med. 2012, 366, 1674–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonklaas, J.; Sarlis, N.J.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; Magner, J.; et al. Outcomes of Patients with Differentiated Thyroid Carcinoma Following Initial Therapy. Thyroid 2006, 16, 1229–1242. [Google Scholar] [CrossRef]
- Klain, M.; Ricard, M.; Leboulleux, S.; Baudin, E.; Schlumberger, M. Radioiodine Therapy for Papillary and Follicular Thyroid Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2002, 29 (Suppl. 2), S479–S485. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-40617-6. [Google Scholar]
- Lamartina, L.; Grani, G.; Arvat, E.; Nervo, A.; Zatelli, M.C.; Rossi, R.; Puxeddu, E.; Morelli, S.; Torlontano, M.; Massa, M.; et al. 8th Edition of the AJCC/TNM Staging System of Thyroid Cancer: What to Expect (ITCO#2). Endocr. Relat. Cancer 2018, 25, L7–L11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamartina, L.; Durante, C.; Filetti, S.; Cooper, D.S. Low-Risk Differentiated Thyroid Cancer and Radioiodine Remnant Ablation: A Systematic Review of the Literature. J. Clin. Endocrinol. Metab. 2015, 100, 1748–1761. [Google Scholar] [CrossRef]
- Durante, C.; Attard, M.; Torlontano, M.; Ronga, G.; Monzani, F.; Costante, G.; Ferdeghini, M.; Tumino, S.; Meringolo, D.; Bruno, R.; et al. Identification and Optimal Postsurgical Follow-Up of Patients with Very Low-Risk Papillary Thyroid Microcarcinomas. J. Clin. Endocrinol. Metab. 2010, 95, 4882–4888. [Google Scholar] [CrossRef] [Green Version]
- Pacini, F.; Fuhrer, D.; Elisei, R.; Handkiewicz-Junak, D.; Leboulleux, S.; Luster, M.; Schlumberger, M.; Smit, J.W. 2022 ETA Consensus Statement: What Are the Indications for Post-Surgical Radioiodine Therapy in Differentiated Thyroid Cancer? Eur. Thyroid J. 2022, 11, e210046. [Google Scholar] [CrossRef]
- Borget, I.; Bonastre, J.; Catargi, B.; Déandréis, D.; Zerdoud, S.; Rusu, D.; Bardet, S.; Leenhardt, L.; Bastie, D.; Schvartz, C.; et al. Quality of Life and Cost-Effectiveness Assessment of Radioiodine Ablation Strategies in Patients with Thyroid Cancer: Results From the Randomized Phase III ESTIMABL Trial. J. Clin. Oncol. 2015, 33, 2885–2892. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Croce, L.; Sparano, C.; Petrone, L.; Sforza, A.; Maggi, M.; Chiovato, L.; Rotondi, M. Thyroid and heart, a clinically relevant relationship. J. Endocrinol. Investig. 2021, 44, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Niri, T.; Horie, I.; Ando, T.; Kawahara, H.; Ueda, M.; Eto, M.; Sako, A.; Ikeuchi, Y.; Nakao, T.; Nakashima, Y.; et al. Renal function and plasma renin activity as potential factors causing hyperkalemia in patients with thyroid carcinoma undergoing thyroid hormone withdrawal for radioactive iodine therapy. Endocr. Pract. 2020, 26, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yun, M.J.; Nam, K.H.; Chung, W.Y.; Soh, E.-Y.; Park, C.S. Quality of Life and Effectiveness Comparisons of Thyroxine Withdrawal, Triiodothyronine Withdrawal, and Recombinant Thyroid-Stimulating Hormone Administration for Low-Dose Radioiodine Remnant Ablation of Differentiated Thyroid Carcinoma. Thyroid 2010, 20, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Pacini, F.; Ladenson, P.W.; Schlumberger, M.; Driedger, A.; Luster, M.; Kloos, R.T.; Sherman, S.; Haugen, B.; Corone, C.; Molinaro, E.; et al. Radioiodine Ablation of Thyroid Remnants after Preparation with Recombinant Human Thyrotropin in Differentiated Thyroid Carcinoma: Results of an International, Randomized, Controlled Study. J. Clin. Endocrinol. Metab. 2006, 91, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chianelli, M.; Todino, V.; Graziano, F.M.; Panunzi, C.; Pace, D.; Guglielmi, R.; Signore, A.; Papini, E. Low-Activity (2.0 GBq; 54 MCi) Radioiodine Post-Surgical Remnant Ablation in Thyroid Cancer: Comparison between Hormone Withdrawal and Use of RhTSH in Low-Risk Patients. Eur. J. Endocrinol. 2009, 160, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taïeb, D.; Sebag, F.; Cherenko, M.; Baumstarck-Barrau, K.; Fortanier, C.; Farman-Ara, B.; De Micco, C.; Vaillant, J.; Thomas, S.; Conte-Devolx, B.; et al. Quality of Life Changes and Clinical Outcomes in Thyroid Cancer Patients Undergoing Radioiodine Remnant Ablation (RRA) with Recombinant Human TSH (RhTSH): A Randomized Controlled Study. Clin. Endocrinol. 2009, 71, 115–123. [Google Scholar] [CrossRef]
- Campennì, A.; Amato, E.; Laudicella, R.; Alibrandi, A.; Cardile, D.; Pignata, S.A.; Trimarchi, F.; Ruggeri, R.M.; Auditore, L.; Baldari, S. Recombinant Human Thyrotropin (RhTSH) versus Levo-Thyroxine Withdrawal in Radioiodine Therapy of Differentiated Thyroid Cancer Patients: Differences in Abdominal Absorbed Dose. Endocrine 2019, 65, 132–137. [Google Scholar] [CrossRef]
- Giovanella, L.; Duntas, L.H. Management of Endocrine Disease: The Role of RhTSH in the Management of Differentiated Thyroid Cancer: Pros and Cons. Eur. J. Endocrinol. 2019, 181, R133–R145. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, R.M.; Tala, H.; Shah, J.; Leboeuf, R.; Ghossein, R.; Gonen, M.; Brokhin, M.; Omry, G.; Fagin, J.A.; Shaha, A. Estimating Risk of Recurrence in Differentiated Thyroid Cancer after Total Thyroidectomy and Radioactive Iodine Remnant Ablation: Using Response to Therapy Variables to Modify the Initial Risk Estimates Predicted by the New American Thyroid Association Staging System. Thyroid 2010, 20, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Sawka, A.M.; Brierley, J.D.; Tsang, R.W.; Thabane, L.; Rotstein, L.; Gafni, A.; Straus, S.; Goldstein, D.P. An Updated Systematic Review and Commentary Examining the Effectiveness of Radioactive Iodine Remnant Ablation in Well-Differentiated Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2008, 37, 457–480. [Google Scholar] [CrossRef]
- Sacks, W.; Fung, C.H.; Chang, J.T.; Waxman, A.; Braunstein, G.D. The Effectiveness of Radioactive Iodine for Treatment of Low-Risk Thyroid Cancer: A Systematic Analysis of the Peer-Reviewed Literature from 1966 to April 2008. Thyroid 2010, 20, 1235–1245. [Google Scholar] [CrossRef]
- Vardarli, I.; Weidemann, F.; Aboukoura, M.; Herrmann, K.; Binse, I.; Görges, R. Longer-Term Recurrence Rate after Low versus High Dose Radioiodine Ablation for Differentiated Thyroid Cancer in Low and Intermediate Risk Patients: A Meta-Analysis. BMC Cancer 2020, 20, 550. [Google Scholar] [CrossRef] [PubMed]
- James, D.L.; Ryan, E.J.; Davey, M.G.; Quinn, A.J.; Heath, D.P.; Garry, S.J.; Boland, M.R.; Young, O.; Lowery, A.J.; Kerin, M.J. Radioiodine Remnant Ablation for Differentiated Thyroid Cancer. JAMA Otolaryngol. Neck Surg. 2021, 147, 544. [Google Scholar] [CrossRef]
- Jin, Y.; Ruan, M.; Cheng, L.; Fu, H.; Liu, M.; Sheng, S.; Chen, L. Radioiodine Uptake and Thyroglobulin-Guided Radioiodine Remnant Ablation in Patients with Differentiated Thyroid Cancer: A Prospective, Randomized, Open-Label, Controlled Trial. Thyroid 2019, 29, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.; Borget, I.; Troalen, F.; Al Ghuzlan, A.; Deandreis, D.; Hartl, D.; Lumbroso, J.; Chougnet, C.N.; Baudin, E.; Schlumberger, M.; et al. Ultrasensitive Serum Thyroglobulin Measurement Is Useful for the Follow-Up of Patients Treated with Total Thyroidectomy without Radioactive Iodine Ablation. Eur. J. Endocrinol. 2013, 169, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Nakabashi, C.C.D.; Kasamatsu, T.S.; Crispim, F.; Yamazaki, C.A.; Camacho, C.P.; Andreoni, D.M.; Padovani, R.P.; Ikejiri, E.S.; Mamone, M.C.O.M.; Aldighieri, F.C.; et al. Basal Serum Thyroglobulin Measured by a Second-Generation Assay Is Equivalent to Stimulated Thyroglobulin in Identifying Metastases in Patients with Differentiated Thyroid Cancer with Low or Intermediate Risk of Recurrence. Eur. Thyroid J. 2014, 3, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashat, L.; Orlov, S.; Orlov, D.; Assi, J.; Salari, F.; Walfish, P.G. Serial post-surgical stimulated and unstimulated highly sensitive thyroglobulin measurements in low- and intermediate-risk papillary thyroid carcinoma patients not receiving radioactive iodine. Endocrine 2016, 54, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Rosario, P.W.; Mourão, G.F.; Calsolari, M.R. Can the Follow-up of Patients with Papillary Thyroid Carcinoma of Low and Intermediate Risk and Excellent Response to Initial Therapy Be Simplified Using Second-Generation Thyroglobulin Assays? Clin. Endocrinol. 2016, 85, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Montesano, T.; Torlontano, M.; Attard, M.; Monzani, F.; Tumino, D.; Costante, G.; Meringolo, D.; Bruno, R.; Trulli, F.; et al. Papillary Thyroid Cancer: Time Course of Recurrences During Postsurgery Surveillance. J. Clin. Endocrinol. Metab. 2013, 98, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angell, T.E.; Spencer, C.A.; Rubino, B.D.; Nicoloff, J.T.; LoPresti, J.S. In Search of an Unstimulated Thyroglobulin Baseline Value in Low-Risk Papillary Thyroid Carcinoma Patients Not Receiving Radioactive Iodine Ablation. Thyroid 2014, 24, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Mayson, S.E.; Chan, C.M.; Haugen, B.R. Tailoring the Approach to Radioactive Iodine Treatment in Thyroid Cancer. Endocr. Relat. Cancer 2021, 28, T125–T140. [Google Scholar] [CrossRef]
- Matrone, A.; Latrofa, F.; Torregrossa, L.; Piaggi, P.; Gambale, C.; Faranda, A.; Ricci, D.; Agate, L.; Molinaro, E.; Basolo, F.; et al. Changing Trend of Thyroglobulin Antibodies in Patients with Differentiated Thyroid Cancer Treated with Total Thyroidectomy without 131I Ablation. Thyroid 2018, 28, 871–879. [Google Scholar] [CrossRef]
- Lamartina, L.; Grani, G.; Durante, C.; Filetti, S. Recent Advances in Managing Differentiated Thyroid Cancer. F1000Research 2018, 7, 86. [Google Scholar] [CrossRef] [Green Version]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.; Newbold, K.; Papotti, M.; Berruti, A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [Green Version]
- Verburg, F.A.; Flux, G.; Giovanella, L.; van Nostrand, D.; Muylle, K.; Luster, M. Differentiated Thyroid Cancer Patients Potentially Benefitting from Postoperative I-131 Therapy: A Review of the Literature of the Past Decade. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Schvartz, C.; Bonnetain, F.; Dabakuyo, S.; Gauthier, M.; Cueff, A.; Fieffé, S.; Pochart, J.-M.; Cochet, I.; Crevisy, E.; Dalac, A.; et al. Impact on Overall Survival of Radioactive Iodine in Low-Risk Differentiated Thyroid Cancer Patients. J. Clin. Endocrinol. Metab. 2012, 97, 1526–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlumberger, M.; Leboulleux, S.; Catargi, B.; Deandreis, D.; Zerdoud, S.; Bardet, S.; Rusu, D.; Godbert, Y.; Buffet, C.; Schvartz, C.; et al. Outcome after Ablation in Patients with Low-Risk Thyroid Cancer (ESTIMABL1): 5-Year Follow-up Results of a Randomised, Phase 3, Equivalence Trial. Lancet Diabetes Endocrinol. 2018, 6, 618–626. [Google Scholar] [CrossRef]
- Dehbi, H.-M.; Mallick, U.; Wadsley, J.; Newbold, K.; Harmer, C.; Hackshaw, A. Recurrence after Low-Dose Radioiodine Ablation and Recombinant Human Thyroid-Stimulating Hormone for Differentiated Thyroid Cancer (HiLo): Long-Term Results of an Open-Label, Non-Inferiority Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2019, 7, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, E.; Giani, C.; Agate, L.; Biagini, A.; Pieruzzi, L.; Bianchi, F.; Brozzi, F.; Ceccarelli, C.; Viola, D.; Piaggi, P.; et al. Patients with Differentiated Thyroid Cancer Who Underwent Radioiodine Thyroid Remnant Ablation with Low-Activity 131I after Either Recombinant Human TSH or Thyroid Hormone Therapy Withdrawal Showed the Same Outcome after a 10-Year Follow-Up. J. Clin. Endocrinol. Metab. 2013, 98, 2693–2700. [Google Scholar] [CrossRef] [Green Version]
- Leboulleux, S.; Bournaud, C.; Chougnet, C.N.; Zerdoud, S.; Al Ghuzlan, A.; Catargi, B.; Cao, C.D.; Kelly, A.; Barge, M.-L.; Lacroix, L.; et al. Thyroidectomy without Radioiodine in Patients with Low-Risk Thyroid Cancer. N. Engl. J. Med. 2022, 386, 923–932. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-Term Impact of Initial Surgical and Medical Therapy on Papillary and Follicular Thyroid Cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Lamartina, L.; Handkiewicz-Junak, D. Follow-up of Low Risk Thyroid Cancer Patients: Can We Stop Follow-up after 5 Years of Complete Remission? Eur. J. Endocrinol. 2020, 182, D1–D16. [Google Scholar] [CrossRef] [Green Version]
- Nixon, I.J.; Ganly, I.; Patel, S.G.; Palmer, F.L.; Di Lorenzo, M.M.; Grewal, R.K.; Larson, S.M.; Tuttle, R.M.; Shaha, A.; Shah, J.P. The Results of Selective Use of Radioactive Iodine on Survival and on Recurrence in the Management of Papillary Thyroid Cancer, Based on Memorial Sloan-Kettering Cancer Center Risk Group Stratification. Thyroid 2013, 23, 683–694. [Google Scholar] [CrossRef]
- Grani, G.; Lamartina, L.; Alfò, M.; Ramundo, V.; Falcone, R.; Giacomelli, L.; Biffoni, M.; Filetti, S.; Durante, C. Selective Use of Radioactive Iodine Therapy for Papillary Thyroid Cancers with Low or Lower-Intermediate Recurrence Risk. J. Clin. Endocrinol. Metab. 2020, 106, 1717–1727. [Google Scholar] [CrossRef]
- Llamas-Olier, A.E.; Cuéllar, D.I.; Buitrago, G. Intermediate-Risk Papillary Thyroid Cancer: Risk Factors for Early Recurrence in Patients with Excellent Response to Initial Therapy. Thyroid 2018, 28, 1311–1317. [Google Scholar] [CrossRef]
- Rosario, P.W.; Furtado, M.D.S.; Mourão, G.F.; Calsolari, M.R. Patients with Papillary Thyroid Carcinoma at Intermediate Risk of Recurrence According to American Thyroid Association Criteria Can Be Reclassified as Low Risk When the Postoperative Thyroglobulin Is Low. Thyroid 2015, 25, 1243–1248. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y.; Zheng, L.; Zhang, Z.; Jiang, N. Postoperative Radioactive Iodine-131 Ablation Is Not Necessary among Patients with Intermediate-Risk Differentiated Thyroid Carcinoma: A Population-Based Study. Hell. J. Nucl. Med. 2017, 20, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Hay, I.D.; McConahey, W.M.; Goellner, J.R. Managing Patients with Papillary Thyroid Carcinoma: Insights Gained from the Mayo Clinic’s Experience of Treating 2512 Consecutive Patients during 1940 through 2000. Trans. Am. Clin. Climatol. Assoc. 2002, 113, 241. [Google Scholar] [PubMed]
- Lundgren, C.I.; Hall, P.; Dickman, P.W.; Zedenius, J. Influence of Surgical and Postoperative Treatment on Survival in Differentiated Thyroid Cancer. Br. J. Surg. 2007, 94, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Podnos, Y.D.; Smith, D.D.; Wagman, L.D.; Ellenhorn, J.D.I. Survival in Patients with Papillary Thyroid Cancer Is Not Affected by the Use of Radioactive Isotope. J. Surg. Oncol. 2007, 96, 3–7. [Google Scholar] [CrossRef]
- Hay, I.D.; Kaggal, S.; Iniguez-Ariza, N.M.; Reinalda, M.S.; Wiseman, G.A.; Thompson, G.B. Inability of Radioiodine Remnant Ablation to Improve Postoperative Outcome in Adult Patients with Low-Risk Papillary Thyroid Carcinoma. Mayo Clin. Proc. 2021, 96, 1727–1745. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Woo, J.-W.; Lee, J.H.; Park, I.; Choe, J.-H.; Kim, J.-H.; Kim, J.S. Radioactive Iodine Ablation May Not Decrease the Risk of Recurrence in Intermediate-Risk Papillary Thyroid Carcinoma. Endocr. Relat. Cancer 2016, 23, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Forleo, R.; Grani, G.; Alfò, M.; Zilioli, V.; Giubbini, R.; Zatelli, M.C.; Gagliardi, I.; Piovesan, A.; Ragni, A.; Morelli, S.; et al. Minimal Extrathyroidal Extension in Predicting 1-Year Outcomes: A Longitudinal Multicenter Study of Low-to-Intermediate-Risk Papillary Thyroid Carcinoma (ITCO#4). Thyroid 2021, 31, 1814–1821. [Google Scholar] [CrossRef]
- Jeon, Y.-W.; Ahn, Y.-E.; Chung, W.-S.; Choi, H.-J.; Suh, Y.J. Radioactive Iodine Treatment for Node Negative Papillary Thyroid Cancer with Capsular Invasion Only: Results of a Large Retrospective Study. Asia Pac. J. Clin. Oncol. 2016, 12, e167–e173. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Li, Z.; Wei, T. The Benefits of Radioactive Iodine Ablation for Patients with Intermediate-Risk Papillary Thyroid Cancer. PLoS ONE 2020, 15, e0234843. [Google Scholar] [CrossRef]
- Ruel, E.; Thomas, S.; Dinan, M.; Perkins, J.M.; Roman, S.A.; Sosa, J.A. Adjuvant Radioactive Iodine Therapy Is Associated with Improved Survival for Patients with Intermediate-Risk Papillary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2015, 100, 1529–1536. [Google Scholar] [CrossRef] [Green Version]
- Welsh, L.; Powell, C.; Pratt, B.; Harrington, K.; Nutting, C.; Harmer, C.; Newbold, K. Long-Term Outcomes Following Low-Dose Radioiodide Ablation for Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2013, 98, 1819–1825. [Google Scholar] [CrossRef] [Green Version]
- Han, J.M.; Kim, W.G.; Kim, T.Y.; Jeon, M.J.; Ryu, J.-S.; Song, D.E.; Hong, S.J.; Shong, Y.K.; Kim, W.B. Effects of Low-Dose and High-Dose Postoperative Radioiodine Therapy on the Clinical Outcome in Patients with Small Differentiated Thyroid Cancer Having Microscopic Extrathyroidal Extension. Thyroid 2014, 24, 820–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.H.; Kong, E.J.; Jeong, S.Y.; Lee, S.-W.; Cho, I.H.; Chun, K.A.; Lee, J.; Ahn, B.-C. Clinical outcomes of low-dose and high-dose postoperative radioiodine therapy in patients with intermediate-risk differentiated thyroid cancer. Nucl. Med. Commun. 2017, 38, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pérez, A.M.; García-Alemán, J.; Molina-Vega, M.; Sebastián Ochoa, A.; Pérez García, P.; Mancha Doblas, I.; Tinahones, F.J. Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis. J. Clin. Med. 2020, 9, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matrone, A.; Gambale, C.; Torregrossa, L.; Piaggi, P.; Bianchi, F.; Valerio, L.; Viola, D.; Agate, L.; Molinaro, E.; Materazzi, G.; et al. Delayed 131-i first treatment after surgery has no impact on the median term outcome of patients with intermediate risk differentiated thyroid cancer. Endocr. Pract. 2020, 26, 58–71. [Google Scholar] [CrossRef]
- Ibrahimpasic, T.; Nixon, I.J.; Palmer, F.L.; Whitcher, M.M.; Tuttle, R.M.; Shaha, A.; Patel, S.G.; Shah, J.P.; Ganly, I. Undetectable Thyroglobulin after Total Thyroidectomy in Patients with Low- and Intermediate-Risk Papillary Thyroid Cancer—Is There a Need for Radioactive Iodine Therapy? Surgery 2012, 152, 1096–1105. [Google Scholar] [CrossRef]
- Ballal, S.; Soundararajan, R.; Garg, A.; Chopra, S.; Bal, C. Intermediate-Risk Differentiated Thyroid Carcinoma Patients Who Were Surgically Ablated do Not Need Adjuvant Radioiodine Therapy: Long-Term Outcome Study. Clin. Endocrinol. 2016, 84, 408–416. [Google Scholar] [CrossRef]
- Abelleira, E.; Peñaloza, M.A.; Jerkovich, F.; Bueno, F.; Pitoia, F. Dynamic risk allows us to adequately select patients with differentiated thyroid cancer who do not require radioiodine treatment. Arch. Endocrinol. Metab. 2021, 65, 315–321. [Google Scholar] [CrossRef]
- Kazaure, H.S.; Roman, S.A.; Sosa, J.A. Aggressive Variants of Papillary Thyroid Cancer: Incidence, Characteristics and Predictors of Survival among 43,738 Patients. Ann. Surg. Oncol. 2012, 19, 1874–1880. [Google Scholar] [CrossRef]
- Ho, A.S.; Luu, M.; Barrios, L.; Chen, I.; Melany, M.; Ali, N.; Patio, C.; Chen, Y.; Bose, S.; Fan, X.; et al. Incidence and Mortality Risk Spectrum across Aggressive Variants of Papillary Thyroid Carcinoma. JAMA Oncol. 2020, 6, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-W.; Lee, C.-H.; Chen, J.-Y.; Tseng, L.-M.; Yang, A.-H. Insular Thyroid Carcinoma: Collective Analysis of Clinicohistologic Prognostic Factors and Treatment Effect with Radioiodine or Radiation Therapy. J. Am. Coll. Surg. 2006, 203, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Sanders, E.M.; LiVolsi, V.A.; Brierley, J.; Shin, J.; Randolph, G.W. An Evidence-Based Review of Poorly Differentiated Thyroid Cancer. World J. Surg. 2007, 31, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, S.; Yousuf, A.; Shetty, R.; Dhar, H.; Mathur, Y.; Nair, D.; Basu, S.; Patil, A.; Kane, S.; Ghosh-Laskar, S.; et al. Poorly differentiated thyroid carcinoma (PDTC) characteristics and the efficacy of radioactive iodine (RAI) therapy as an adjuvant treatment in a tertiary cancer care center. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zou, Q.; Jiao, J.; Zhang, Y. Postoperative Radioiodine Therapy Impact on Survival in Poorly Differentiated Thyroid Carcinoma: A Population-Based Study. Nucl. Med. Commun. 2022, 43, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, X.; Ji, Y.; Tan, J.; Zhang, G.; Wang, P.; He, Y.; Wang, R. Delayed Initial Radioiodine Adjuvant Therapy Does Affect Biochemical Response in Intermediate- to High-Risk Differentiated Thyroid Cancer. Front. Endocrinol. 2021, 12, 743310. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Han, M.; Jeon, M.J.; Kim, W.G.; Kim, I.J.; Ryu, J.-S.; Kim, W.B.; Shong, Y.K.; Kim, T.Y.; Kim, B.H. Impact of Delayed Radioiodine Therapy in Intermediate-/High-Risk Papillary Thyroid Carcinoma. Clin. Endocrinol. 2019, 91, 449–455. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Simões-Pereira, J.; Mourinho, N.; Ferreira, T.C.; Limbert, E.; Cavaco, B.M.; Leite, V. Avidity and Outcomes of Radioiodine Therapy for Distant Metastasis of Distinct Types of Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, e3911–e3922. [Google Scholar] [CrossRef]
- Brown, A.P.; Greening, W.P.; McCready, V.R.; Shaw, H.J.; Harmer, C.L. Radioiodine Treatment of Metastatic Thyroid Carcinoma: The Royal Marsden Hospital Experience. Br. J. Radiol. 1984, 57, 323–327. [Google Scholar] [CrossRef]
- Pacini, F.; Cetani, F.; Miccoli, P.; Mancusi, F.; Ceccarelli, C.; Lippi, F.; Martino, E.; Pinchera, A. Outcome of 309 Patients with Metastatic Differentiated Thyroid Carcinoma Treated with Radioiodine. World J. Surg. 1994, 18, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; et al. Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.I.; Kim, N.K.; Min, Y.-K.; Kim, S.W.; Chung, J.H. Prognostic Implications of Radioiodine Avidity and Serum Thyroglobulin in Differentiated Thyroid Carcinoma with Distant Metastasis. World J. Surg. 2013, 37, 2845–2852. [Google Scholar] [CrossRef]
- Lang, B.H.-H.; Wong, K.P.; Cheung, C.Y.; Wan, K.Y.; Lo, C.-Y. Evaluating the Prognostic Factors Associated with Cancer-Specific Survival of Differentiated Thyroid Carcinoma Presenting with Distant Metastasis. Ann. Surg. Oncol. 2013, 20, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Kammori, M.; Fukumori, T.; Sugishita, Y.; Hoshi, M.; Shimizu, K.; Yamada, T. Radioactive Iodine (RAI) Therapy for Distantly Metastatic Differentiated Thyroid Cancer (DTC) in Juvenile versus Adult Patients. Endocr. J. 2015, 62, 1067–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, D.; Levy, S.; Tsvetov, G.; Gorshtein, A.; Slutzky-Shraga, I.; Akirov, A.; Robenshtok, E.; Shimon, I.; Benbassat, C.A. Long-Term Outcomes and Prognostic Factors in Patients with Differentiated Thyroid Cancer and Distant Metastases. Endocr. Pract. 2017, 23, 1193–1200. [Google Scholar] [CrossRef]
- Kreissl, M.C.; Janssen, M.J.R.; Nagarajah, J. Current Treatment Strategies in Metastasized Differentiated Thyroid Cancer. J. Nucl. Med. 2019, 60, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Sabra, M.M.; Ghossein, R.; Tuttle, R.M. Time Course and Predictors of Structural Disease Progression in Pulmonary Metastases Arising from Follicular Cell–Derived Thyroid Cancer. Thyroid 2016, 26, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, W.G.; Park, S.; Kwon, H.; Jeon, M.J.; Lee, S.M.; Lee, J.H.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Growth Kinetics of Macronodular Lung Metastases and Survival in Differentiated Thyroid Carcinoma. Thyroid 2017, 27, 915–922. [Google Scholar] [CrossRef]
- Sabra, M.M.; Dominguez, J.M.; Grewal, R.K.; Larson, S.M.; Ghossein, R.A.; Tuttle, R.M.; Fagin, J.A. Clinical Outcomes and Molecular Profile of Differentiated Thyroid Cancers with Radioiodine-Avid Distant Metastases. J. Clin. Endocrinol. Metab. 2013, 98, E829–E836. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-J.; Qiu, Z.-L.; Shen, C.-T.; Wei, W.-J.; Luo, Q.-Y. Pulmonary Metastases in Differentiated Thyroid Cancer: Efficacy of Radioiodine Therapy and Prognostic Factors. Eur. J. Endocrinol. 2015, 173, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muresan, M.M.; Olivier, P.; Leclère, J.; Sirveaux, F.; Brunaud, L.; Klein, M.; Zarnegar, R.; Weryha, G. Bone Metastases from Differentiated Thyroid Carcinoma. Endocr. Relat. Cancer 2008, 15, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Demura, S.; Shinmura, K.; Yokogawa, N.; Shimizu, T.; Tsuchiya, H. Current Management of Bone Metastases from Differentiated Thyroid Cancer. Cancers 2021, 13, 4429. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gomes Lima, C.J.; Moreau, S.L.; Kulkarni, K.; Zeymo, A.; Burman, K.D.; Wartofsky, L.; Van Nostrand, D. Improved Survival After Multimodal Approach with 131I Treatment in Patients with Bone Metastases Secondary to Differentiated Thyroid Cancer. Thyroid 2019, 29, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Jannin, A.; Lamartina, L.; Moutarde, C.; Djennaoui, M.; Lion, G.; Chevalier, B.; Vantyghem, M.C.; Deschamps, F.; Hadoux, J.; Baudin, E.; et al. Bone Metastases from Differentiated Thyroid Carcinoma: Heterogenous Tumor Response to Radioactive Iodine Therapy and Overall Survival. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2401–2413. [Google Scholar] [CrossRef]
- Mazziotti, G.; Formenti, A.M.; Panarotto, M.B.; Arvat, E.; Chiti, A.; Cuocolo, A.; Dottorini, M.E.; Durante, C.; Agate, L.; Filetti, S.; et al. Real-Life Management and Outcome of Thyroid Carcinoma-Related Bone Metastases: Results from a Nationwide Multicenter Experience. Endocrine 2018, 59, 90–101. [Google Scholar] [CrossRef]
- Robenshtok, E.; Farooki, A.; Grewal, R.K.; Tuttle, R.M. Natural History of Small Radioiodine-Avid Bone Metastases That Have No Structural Correlate on Imaging Studies. Endocrine 2014, 47, 266–272. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Leboeuf, R.; Robbins, R.J.; Qualey, R.; Pentlow, K.; Larson, S.M.; Chan, C.Y. Empiric Radioactive Iodine Dosing Regimens Frequently Exceed Maximum Tolerated Activity Levels in Elderly Patients with Thyroid Cancer. J. Nucl. Med. 2006, 47, 1587–1591. [Google Scholar]
- Verburg, F.A.; Hänscheid, H.; Luster, M. Radioactive Iodine (RAI) Therapy for Metastatic Differentiated Thyroid Cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 279–290. [Google Scholar] [CrossRef]
- Lassmann, M.; Reiners, C.; Luster, M. Dosimetry and Thyroid Cancer: The Individual Dosage of Radioiodine. Endocr. Relat. Cancer 2010, 17, R161–R172. [Google Scholar] [CrossRef] [Green Version]
- Beasley, M.; Garcez, K. Prospects for Personalised Treatment of Patients with Radioiodine-Avid Locally Recurrent or Metastatic Thyroid Cancer. Clin. Oncol. 2021, 33, 75–79. [Google Scholar] [CrossRef]
- Deandreis, D.; Rubino, C.; Tala, H.; Leboulleux, S.; Terroir, M.; Baudin, E.; Larson, S.; Fagin, J.A.; Schlumberger, M.; Tuttle, R.M. Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry—Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. J. Nucl. Med. 2017, 58, 717–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pötzi, C.; Moameni, A.; Karanikas, G.; Preitfellner, J.; Becherer, A.; Pirich, C.; Dudczak, R. Comparison of Iodine Uptake in Tumour and Nontumour Tissue under Thyroid Hormone Deprivation and with Recombinant Human Thyrotropin in Thyroid Cancer Patients. Clin. Endocrinol. 2006, 65, 519–523. [Google Scholar] [CrossRef]
- Van Nostrand, D.; Khorjekar, G.R.; O’Neil, J.; Moreau, S.; Atkins, F.B.; Kharazi, P.; Mete, M.; Chennupati, S.P.; Burman, K.D.; Wartofsky, L. Recombinant Human Thyroid-Stimulating Hormone Versus Thyroid Hormone Withdrawal in the Identification of Metastasis in Differentiated Thyroid Cancer with 131I Planar Whole-Body Imaging and 124I PET. J. Nucl. Med. 2012, 53, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Klubo-Gwiezdzinska, J.; Burman, K.D.; Van Nostrand, D.; Mete, M.; Jonklaas, J.; Wartofsky, L. Potential Use of Recombinant Human Thyrotropin in the Treatment of Distant Metastases in Patients with Differentiated Thyroid Cancer. Endocr. Pract. 2013, 19, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Lippi, F.; Capezzone, M.; Angelini, F.; Taddei, D.; Molinaro, E.; Pinchera, A.; Pacini, F. Radioiodine Treatment of Metastatic Differentiated Thyroid Cancer in Patients on L-Thyroxine, Using Recombinant Human TSH. Eur. J. Endocrinol. 2001, 144, 5–11. [Google Scholar] [CrossRef] [Green Version]
- de Keizer, B.; Brans, B.; Hoekstra, A.; Zelissen, P.M.J.; Koppeschaar, H.P.F.; Lips, C.J.M.; van Rijk, P.P.; Dierckx, R.A.; de Klerk, J.M.H. Tumour Dosimetry and Response in Patients with Metastatic Differentiated Thyroid Cancer Using Recombinant Human Thyrotropin before Radioiodine Therapy. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Tala, H.; Robbins, R.; Fagin, J.A.; Larson, S.M.; Tuttle, R.M. Five-Year Survival Is Similar in Thyroid Cancer Patients with Distant Metastases Prepared for Radioactive Iodine Therapy with Either Thyroid Hormone Withdrawal or Recombinant Human TSH. J. Clin. Endocrinol. Metab. 2011, 96, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Klubo-Gwiezdzinska, J.; Burman, K.D.; Van Nostrand, D.; Mete, M.; Jonklaas, J.; Wartofsky, L. Radioiodine Treatment of Metastatic Thyroid Cancer: Relative Efficacy and Side Effect Profile of Preparation by Thyroid Hormone Withdrawal versus Recombinant Human Thyrotropin. Thyroid 2012, 22, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Zagar, I.; Schwarzbartl-Pevec, A.A.; Vidergar-Kralj, B.; Horvat, R.; Besic, N. Recombinant Human Thyrotropin-Aided Radioiodine Therapy in Patients with Metastatic Differentiated Thyroid Carcinoma. J. Thyroid Res. 2012, 2012, 670180. [Google Scholar] [CrossRef]
- Rani, D.; Kaisar, S.; Awasare, S.; Kamaldeep; Abhyankar, A.; Basu, S. Examining Recombinant Human TSH Primed 131I Therapy Protocol in Patients with Metastatic Differentiated Thyroid Carcinoma: Comparison with the Traditional Thyroid Hormone Withdrawal Protocol. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1767–1780. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-C.; Ho, K.-C.; Chen, S.-H.; Tseng, J.-R.; Yang, L.-Y.; Lin, K.-J.; Cheng, J.-C.; Liou, M.-J. Feasibility of Recombinant Human TSH as a Preparation for Radioiodine Therapy in Patients with Distant Metastases from Papillary Thyroid Cancer: Comparison of Long-Term Survival Outcomes with Thyroid Hormone Withdrawal. Diagnostics 2022, 12, 221. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Lima, C.J.; Chittimoju, S.; Wehbeh, L.; Dia, S.; Pagadala, P.; Al-Jundi, M.; Jhawar, S.; Tefera, E.; Mete, M.; Klubo-Gwiezdzinska, J.; et al. Metastatic Differentiated Thyroid Cancer Survival Is Unaffected by Mode of Preparation for 131I Administration. J. Endocr. Soc. 2022, 6, bvac032. [Google Scholar] [CrossRef]
- Ma, C.; Xie, J.; Liu, W.; Wang, G.; Zuo, S.; Wang, X.; Wu, F. Recombinant Human Thyrotropin (RhTSH) Aided Radioiodine Treatment for Residual or Metastatic Differentiated Thyroid Cancer. Cochrane Database Syst. Rev. 2010, 2010, CD008302. [Google Scholar] [CrossRef]
- Hay, I.D.; Johnson, T.R.; Kaggal, S.; Reinalda, M.S.; Iniguez-Ariza, N.M.; Grant, C.S.; Pittock, S.T.; Thompson, G.B. Papillary Thyroid Carcinoma (PTC) in Children and Adults: Comparison of Initial Presentation and Long-Term Postoperative Outcome in 4432 Patients Consecutively Treated at the Mayo Clinic During Eight Decades (1936–2015). World J. Surg. 2018, 42, 329–342. [Google Scholar] [CrossRef]
- Hogan, A.R.; Zhuge, Y.; Perez, E.A.; Koniaris, L.G.; Lew, J.I.; Sola, J.E. Pediatric Thyroid Carcinoma: Incidence and Outcomes in 1753 Patients. J. Surg. Res. 2009, 156, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Busó, M.N.; Burillo, A.G.; Perdigó, M.S.; Mora, P.G.; de Ferrater, M.B.; Borrós, G.C.; Álvarez, C.S.; Conesa, J.C. Long-Term Follow-up of Differentiated Thyroid Carcinoma in Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2020, 33, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Thankamony, P.; Nirmal, G.; Chandar, R.; Nair, A.K.R.; Veeramoni Iyer Mriduladevi, P. Differentiated Thyroid Carcinoma in Children: A Retrospective Analysis of 125 Pediatric Cases from a Single Institution in India. Pediatr. Blood Cancer 2021, 68, e29076. [Google Scholar] [CrossRef]
- Sapuppo, G.; Hartl, D.; Fresneau, B.; Hadoux, J.; Breuskin, I.; Baudin, E.; Rigaud, C.; Guerlain, J.; Ghuzlan, A.A.; Leboulleux, S.; et al. Differentiated Thyroid Cancer in Children and Adolescents: Long Term Outcome and Risk Factors for Persistent Disease. Cancers 2021, 13, 3732. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, W.; Shang, X.; Huang, D.; Liu, M.; Zong, L. Incidence and Prognosis of Thyroid Cancer in Children: Based on the SEER Database. Pediatr. Surg. Int. 2022, 38, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Handkiewicz-Junak, D.; Wloch, J.; Roskosz, J.; Krajewska, J.; Kropinska, A.; Pomorski, L.; Kukulska, A.; Prokurat, A.; Wygoda, Z.; Jarzab, B. Total Thyroidectomy and Adjuvant Radioiodine Treatment Independently Decrease Locoregional Recurrence Risk in Childhood and Adolescent Differentiated Thyroid Cancer. J. Nucl. Med. 2007, 48, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Handkiewicz-Junak, D.; Gawlik, T.; Rozkosz, J.; Puch, Z.; Michalik, B.; Gubala, E.; Krajewska, J.; Kluczewska, A.; Jarzab, B. Recombinant Human Thyrotropin Preparation for Adjuvant Radioiodine Treatment in Children and Adolescents with Differentiated Thyroid Cancer. Eur. J. Endocrinol. 2015, 173, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugino, K.; Nagahama, M.; Kitagawa, W.; Ohkuwa, K.; Uruno, T.; Matsuzu, K.; Suzuki, A.; Tomoda, C.; Hames, K.Y.; Akaishi, J.; et al. Distant Metastasis in Pediatric and Adolescent Differentiated Thyroid Cancer: Clinical Outcomes and Risk Factor Analyses. J. Clin. Endocrinol. Metab. 2020, 105, e3981–e3988. [Google Scholar] [CrossRef] [PubMed]
- Pires, B.P.; Alves, P.A.G.; Bordallo, M.A.; Bulzico, D.A.; Lopes, F.P.P.L.; Farias, T.; Dias, F.; Lima, R.A.; Santos Gisler, I.C.; Coeli, C.M.; et al. Prognostic Factors for Early and Long-Term Remission in Pediatric Differentiated Thyroid Carcinoma: The Role of Sex, Age, Clinical Presentation, and the Newly Proposed American Thyroid Association Risk Stratification System. Thyroid 2016, 26, 1480–1487. [Google Scholar] [CrossRef]
- Biko, J.; Reiners, C.; Kreissl, M.C.; Verburg, F.A.; Demidchik, Y.; Drozd, V. Favourable Course of Disease after Incomplete Remission on 131I Therapy in Children with Pulmonary Metastases of Papillary Thyroid Carcinoma: 10 Years Follow-Up. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Jhiang, S.M.; Sipos, J.A. Na+/I− Symporter Expression, Function, and Regulation in Non-Thyroidal Tissues and Impact on Thyroid Cancer Therapy. Endocr. Relat. Cancer 2021, 28, T167–T177. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Scipioni, A.; Durante, C.; Ferretti, E.; Gandini, L.; Maggisano, V.; Paoli, D.; Verrienti, A.; Costante, G.; Lenzi, A.; et al. Expression and Localization of the Sodium/Iodide Symporter (NIS) in Testicular Cells. Endocrine 2011, 40, 35–40. [Google Scholar] [CrossRef]
- Pashnehsaz, M.; Takavar, A.; Izadyar, S.; Zakariaee, S.S.; Mahmoudi, M.; Paydar, R.; Geramifar, P. Gastrointestinal Side Effects of the Radioiodine Therapy for the Patients with Differentiated Thyroid Carcinoma Two Days after Prescription. World J. Nucl. Med. 2016, 15, 173–178. [Google Scholar] [CrossRef]
- Singer, M.C.; Marchal, F.; Angelos, P.; Bernet, V.; Boucai, L.; Buchholzer, S.; Burkey, B.; Eisele, D.; Erkul, E.; Faure, F.; et al. Salivary and Lacrimal Dysfunction after Radioactive Iodine for Differentiated Thyroid Cancer: American Head and Neck Society Endocrine Surgery Section and Salivary Gland Section Joint Multidisciplinary Clinical Consensus Statement of Otolaryngology, Ophthalmology, Nuclear Medicine and Endocrinology. Head Neck 2020, 42, 3446–3459. [Google Scholar] [CrossRef]
- Riesco-Eizaguirre, G.; Santisteban, P.; De la Vieja, A. The Complex Regulation of NIS Expression and Activity in Thyroid and Extrathyroidal Tissues. Endocr. Relat. Cancer 2021, 28, T141–T165. [Google Scholar] [CrossRef]
- Lee, Y.; Chung, C.-H.; Lin, L.-F.; Chiu, C.-H.; Chen, Y.-F.; Chang, C.-F.; Cheng, C.-Y.; Chien, W.-C. Radioactive Iodine Treatment for Thyroid Cancer Patients Increases the Risk of Long-Term Gastrointestinal Disorders: A Nationwide Population-Based Cohort Analysis. Cancers 2022, 14, 2505. [Google Scholar] [CrossRef] [PubMed]
- Grewal, R.K.; Larson, S.M.; Pentlow, C.E.; Pentlow, K.S.; Gonen, M.; Qualey, R.; Natbony, L.; Tuttle, R.M. Salivary Gland Side Effects Commonly Develop Several Weeks after Initial Radioactive Iodine Ablation. J. Nucl. Med. 2009, 50, 1605–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, S.C.; Peeters, R.P.; Ronckers, C.M.; Links, T.P.; van den Heuvel-Eibrink, M.M.; van Dijkum, E.J.M.N.; van Rijn, R.R.; van der Pal, H.J.H.; Neggers, S.J.; Kremer, L.C.M.; et al. Intermediate and Long-Term Adverse Effects of Radioiodine Therapy for Differentiated Thyroid Carcinoma—A Systematic Review. Cancer Treat. Rev. 2015, 41, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Barrueco, A.S.; Galán, F.G.; Rueda, I.A.; Coello, J.M.S.; Dorado, M.P.B.; Aubá, J.M.V.; Escanciano, M.E.; Jiménez, L.L.; Fernández, I.M.; Español, C.C. Incidence and risk factors for radioactive iodine-induced sialadenitis. Acta Oto-Laryngol. 2020, 140, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Bader, J.B.; Schaefer, A.; Finke, C.; Kirsch, C.M. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J. Nucl. Med. 1998, 39, 1551–1554. [Google Scholar] [PubMed]
- Solans, R.; Bosch, J.A.; Galofré, P.; Porta, F.; Roselló, J.; Selva-O’Callagan, A.; Vilardell, M. Salivary and lacrimal gland dysfunction (sicca syndrome) after radioiodine therapy. J. Nucl. Med. 2001, 42, 738–743. [Google Scholar] [PubMed]
- Zettinig, G.; Hanselmayer, G.; Fueger, B.; Hofmann, A.; Pirich, C.; Nepp, J.; Dudczak, R. Long-Term Impairment of the Lacrimal Glands after Radioiodine Therapy: A Cross-Sectional Study. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 1428–1432. [Google Scholar] [CrossRef]
- Ali, M.J. Iodine-131 Therapy and Nasolacrimal Duct Obstructions: What We Know and What We Need to Know. Ophthal. Plast. Reconstr. Surg. 2016, 32, 243–248. [Google Scholar] [CrossRef]
- da Fonseca, F.L.; Yamanaka, P.K.; Kato, J.M.; Matayoshi, S. Lacrimal System Obstruction After Radioiodine Therapy in Differentiated Thyroid Carcinomas: A Prospective Comparative Study. Thyroid 2016, 26, 1761–1767. [Google Scholar] [CrossRef]
- Andresen, N.S.; Buatti, J.M.; Tewfik, H.H.; Pagedar, N.A.; Anderson, C.M.; Watkins, J.M. Radioiodine Ablation Following Thyroidectomy for Differentiated Thyroid Cancer: Literature Review of Utility, Dose, and Toxicity. Eur. Thyroid J. 2017, 6, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, H.H.; Creutzig, H. Salivary gland scintigraphy after radio-iodine therapy. Functional scintigraphy of the salivary gland after high dose radio-iodine therapy (author’s transl). Rofo Fortschr. Geb. Rontgenstrahlen Nukl. 1976, 125, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Van Nostrand, D.; Neutze, J.; Atkins, F. Side Effects of “Rational Dose” Iodine-131 Therapy for Metastatic Well-Differentiated Thyroid Carcinoma. J. Nucl. Med. 1986, 27, 1519–1527. [Google Scholar] [PubMed]
- Lin, W.Y.; Shen, Y.Y.; Wang, S.J. Short-Term Hazards of Low-Dose Radioiodine Ablation Therapy in Postsurgical Thyroid Cancer Patients. Clin. Nucl. Med. 1996, 21, 780–782. [Google Scholar] [CrossRef]
- Horvath, E.; Skoknic, V.; Majlis, S.; Tala, H.; Silva, C.; Castillo, E.; Whittle, C.; Niedmann, J.P.; González, P. Radioiodine-Induced Salivary Gland Damage Detected by Ultrasonography in Patients Treated for Papillary Thyroid Cancer: Radioactive Iodine Activity and Risk. Thyroid 2020, 30, 1646–1655. [Google Scholar] [CrossRef]
- Burmeister, L.A.; duCret, R.P.; Mariash, C.N. Local Reactions to Radioiodine in the Treatment of Thyroid Cancer. Am. J. Med. 1991, 90, 217–222. [Google Scholar] [CrossRef]
- Kinuya, S.; Hwang, E.H.; Ikeda, E.; Yokoyama, K.; Michigishi, T.; Tonami, N. Mallory-Weiss Syndrome Caused by Iodine-131 Therapy for Metastatic Thyroid Carcinoma. J. Nucl. Med. 1997, 38, 1831. [Google Scholar]
- Dorn, R.; Kopp, J.; Vogt, H.; Heidenreich, P.; Carroll, R.G.; Gulec, S.A. Dosimetry-Guided Radioactive Iodine Treatment in Patients with Metastatic Differentiated Thyroid Cancer: Largest Safe Dose Using a Risk-Adapted Approach. J. Nucl. Med. 2003, 44, 451–456. [Google Scholar]
- Bourcigaux, N.; Rubino, C.; Berthaud, I.; Toubert, M.E.; Donadille, B.; Leenhardt, L.; Petrot-Keller, I.; Brailly-Tabard, S.; Fromigué, J.; de Vathaire, F.; et al. Impact on Testicular Function of a Single Ablative Activity of 3.7 GBq Radioactive Iodine for Differentiated Thyroid Carcinoma. Hum. Reprod. 2018, 33, 1408–1416. [Google Scholar] [CrossRef] [Green Version]
- Rubino, C.; de Vathaire, F.; Dottorini, M.E.; Hall, P.; Schvartz, C.; Couette, J.E.; Dondon, M.G.; Abbas, M.T.; Langlois, C.; Schlumberger, M. Second Primary Malignancies in Thyroid Cancer Patients. Br. J. Cancer 2003, 89, 1638–1644. [Google Scholar] [CrossRef]
- Brown, A.P.; Chen, J.; Hitchcock, Y.J.; Szabo, A.; Shrieve, D.C.; Tward, J.D. The Risk of Second Primary Malignancies up to Three Decades after the Treatment of Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2008, 93, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Sawka, A.M.; Thabane, L.; Parlea, L.; Ibrahim-Zada, I.; Tsang, R.W.; Brierley, J.D.; Straus, S.; Ezzat, S.; Goldstein, D.P. Second Primary Malignancy Risk after Radioactive Iodine Treatment for Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid 2009, 19, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.M.; Shin, J.-Y.; Kim, B.I.; Song, H.-C.; Yoon, J.-K.; Won, K.S.; Kim, S.-M.; Cho, I.H.; Jeong, S.Y.; Lee, S.-W.; et al. Incidence Rate and Factors Associated with the Development of Secondary Cancers after Radioiodine Therapy in Differentiated Thyroid Cancer: A Multicenter Retrospective Study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, H.; Biko, J.; Drozd, V.; Demidchik, Y.; Burkhardt, A.; Trusen, A.; Beer, M.; Reiners, C. Pulmonary Fibrosis in Youth Treated with Radioiodine for Juvenile Thyroid Cancer and Lung Metastases after Chernobyl. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1683–1690. [Google Scholar] [CrossRef]
- Albano, D.; Bertagna, F.; Panarotto, M.B.; Giubbini, R. Early and Late Adverse Effects of Radioiodine for Pediatric Differentiated Thyroid Cancer. Pediatr. Blood Cancer 2017, 64, e26595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqual, E.; Schonfeld, S.; Morton, L.M.; Villoing, D.; Lee, C.; Berrington de Gonzalez, A.; Kitahara, C.M. Association Between Radioactive Iodine Treatment for Pediatric and Young Adulthood Differentiated Thyroid Cancer and Risk of Second Primary Malignancies. J. Clin. Oncol. 2022, 40, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, M.; Qi, X.; Zhu, H.; Yang, G.; Guo, Y.; Dong, Q.; Yang, Q. Association of Radioiodine for Differentiated Thyroid Cancer and Second Breast Cancer in Female Adolescent and Young Adult. Front. Endocrinol. 2021, 12, 805194. [Google Scholar] [CrossRef] [PubMed]
- Nappi, C.; Klain, M.; Cantoni, V.; Green, R.; Piscopo, L.; Volpe, F.; Maurea, S.; Petretta, M.; Cuocolo, A. Risk of Primary Breast Cancer in Patients with Differentiated Thyroid Cancer Undergoing Radioactive Iodine Therapy: A Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1630–1639. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.-I.; Boo, D.; Kim, B.; Choi, I.Y.; Ko, S.; Yoo, I.R.; Kim, K.; Kim, J.; Joo, Y.; et al. Second Primary Malignancy Risk in Thyroid Cancer and Matched Patients with and without Radioiodine Therapy Analysis from the Observational Health Data Sciences and Informatics. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3547–3556. [Google Scholar] [CrossRef]
- Noaparast, Z.; Hosseinimehr, S.J. Radioprotective Agents for the Prevention of Side Effects Induced by Radioiodine-131 Therapy. Future Oncol. 2013, 9, 1145–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Kuang, A.; Huang, R.; Zhao, Z.; Zeng, Y.; Wang, J.; Tian, R. Influence of Vitamin C on Salivary Absorbed Dose of 131I in Thyroid Cancer Patients: A Prospective, Randomized, Single-Blind, Controlled Trial. J. Nucl. Med. 2010, 51, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Bohuslavizki, K.H.; Klutmann, S.; Brenner, W.; Mester, J.; Henze, E.; Clausen, M. Salivary Gland Protection by Amifostine in High-Dose Radioiodine Treatment: Results of a Double-Blind Placebo-Controlled Study. J. Clin. Oncol. 1998, 16, 3542–3549. [Google Scholar] [CrossRef] [PubMed]
- Bohuslavizki, K.H.; Klutmann, S.; Jenicke, L.; Kröger, S.; Buchert, R.; Mester, J.; Clausen, M. Salivary Gland Protection by S-2-(3-Aminopropylamino)-Ethylphosphorothioic Acid (Amifostine) in High-Dose Radioiodine Treatment: Results Obtained in a Rabbit Animal Model and in a Double-Blind Multi-Arm Trial. Cancer Biother. Radiopharm. 1999, 14, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Nakada, K.; Ishibashi, T.; Takei, T.; Hirata, K.; Shinohara, K.; Katoh, S.; Zhao, S.; Tamaki, N.; Noguchi, Y.; Noguchi, S. Does Lemon Candy Decrease Salivary Gland Damage after Radioiodine Therapy for Thyroid Cancer? J. Nucl. Med. 2005, 46, 261–266. [Google Scholar] [PubMed]
- Van Nostrand, D. Sialoadenitis Secondary to 131I Therapy for Well-Differentiated Thyroid Cancer. Oral Dis. 2011, 17, 154–161. [Google Scholar] [CrossRef]
- Kulkarni, K.; Van Nostrand, D.; Atkins, F.; Mete, M.; Wexler, J.; Wartofsky, L. Does Lemon Juice Increase Radioiodine Reaccumulation within the Parotid Glands More than If Lemon Juice Is Not Administered? Nucl. Med. Commun. 2014, 35, 210–216. [Google Scholar] [CrossRef]
- Klein Hesselink, E.N.; Brouwers, A.H.; de Jong, J.R.; van der Horst-Schrivers, A.N.A.; Coppes, R.P.; Lefrandt, J.D.; Jager, P.L.; Vissink, A.; Links, T.P. Effects of Radioiodine Treatment on Salivary Gland Function in Patients with Differentiated Thyroid Carcinoma: A Prospective Study. J. Nucl. Med. 2016, 57, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Van Nostrand, D. Radioiodine Refractory Differentiated Thyroid Cancer: Time to Update the Classifications. Thyroid 2018, 28, 1083–1093. [Google Scholar] [CrossRef]
- Schlumberger, M.; Brose, M.; Elisei, R.; Leboulleux, S.; Luster, M.; Pitoia, F.; Pacini, F. Definition and Management of Radioactive Iodine-Refractory Differentiated Thyroid Cancer. Lancet Diabetes Endocrinol. 2014, 2, 356–358. [Google Scholar] [CrossRef]
- Lamartina, L.; Godbert, Y.; Nascimento, C.; Do Cao, C.; Hescot, S.; Borget, I.; Al Ghuzlan, A.; Hartl, D.; Hadoux, J.; Pottier, E.; et al. Locally Unresectable Differentiated Thyroid Cancer: Outcomes and Perspectives. Endocrine 2020, 69, 133–141. [Google Scholar] [CrossRef]
- Robbins, R.J.; Wan, Q.; Grewal, R.K.; Reibke, R.; Gonen, M.; Strauss, H.W.; Tuttle, R.M.; Drucker, W.; Larson, S.M. Real-Time Prognosis for Metastatic Thyroid Carcinoma Based on 2-[18F]Fluoro-2-Deoxy-d-Glucose-Positron Emission Tomography Scanning. J. Clin. Endocrinol. Metab. 2006, 91, 498–505. [Google Scholar] [CrossRef]
- Deandreis, D.; Al Ghuzlan, A.; Leboulleux, S.; Lacroix, L.; Garsi, J.P.; Talbot, M.; Lumbroso, J.; Baudin, E.; Caillou, B.; Bidart, J.M.; et al. Do Histological, Immunohistochemical, and Metabolic (Radioiodine and Fluorodeoxyglucose Uptakes) Patterns of Metastatic Thyroid Cancer Correlate with Patient Outcome? Endocr. Relat. Cancer 2011, 18, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Mengensatzproduktion, S.; Stückle, D. Abstracts. Eur. Thyroid J. 2017, 6, 23–118. [Google Scholar] [CrossRef]
- Miyauchi, A.; Kudo, T.; Kihara, M.; Higashiyama, T.; Ito, Y.; Kobayashi, K.; Miya, A. Relationship of Biochemically Persistent Disease and Thyroglobulin-Doubling Time to Age at Surgery in Patients with Papillary Thyroid Carcinoma. Endocr. J. 2013, 60, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Miyauchi, A.; Ito, M.; Yabuta, T.; Masuoka, H.; Higashiyama, T.; Fukushima, M.; Kobayashi, K.; Kihara, M.; Miya, A. Prognosis and Prognostic Factors of Differentiated Thyroid Carcinoma after the Appearance of Metastasis Refractory to Radioactive Iodine Therapy. Endocr. J. 2014, 61, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Saïe, C.; Wassermann, J.; Mathy, E.; Chereau, N.; Leenhardt, L.; Tezenas du Montcel, S.; Buffet, C. Impact of Age on Survival in Radioiodine Refractory Differentiated Thyroid Cancer Patients. Eur. J. Endocrinol. 2021, 184, 667–676. [Google Scholar] [CrossRef]
- de la Fouchardière, C.; Decaussin-Petrucci, M.; Berthiller, J.; Descotes, F.; Lopez, J.; Lifante, J.-C.; Peix, J.-L.; Giraudet, A.-L.; Delahaye, A.; Masson, S.; et al. Predictive Factors of Outcome in Poorly Differentiated Thyroid Carcinomas. Eur. J. Cancer 2018, 92, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jiang, H.; Xu, W.; Wang, X.; Ma, B.; Liao, T.; Wang, Y. Clinical, Pathological, and Molecular Characteristics Correlating to the Occurrence of Radioiodine Refractory Differentiated Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 549882. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhu, X.; Sun, Y.; Li, X.; Yun, C.; Zhang, W. The Genetic Duet of BRAF V600E and TERT Promoter Mutations Predicts the Poor Curative Effect of Radioiodine Therapy in Papillary Thyroid Cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3470–3481. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [CrossRef] [Green Version]
- Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Elisei, R.; Bendlová, B.; Yip, L.; Mian, C.; et al. Association between BRAF V600E Mutation and Recurrence of Papillary Thyroid Cancer. J. Clin. Oncol. 2015, 33, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Durante, C.; Puxeddu, E.; Ferretti, E.; Morisi, R.; Moretti, S.; Bruno, R.; Barbi, F.; Avenia, N.; Scipioni, A.; Verrienti, A.; et al. BRAF Mutations in Papillary Thyroid Carcinomas Inhibit Genes Involved in Iodine Metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 2840–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anekpuritanang, T.; Uataya, M.; Claimon, A.; Laokulrath, N.; Pongsapich, W.; Pithuksurachai, P. The Association Between Radioiodine Refractory in Papillary Thyroid Carcinoma, Sodium/Iodide Symporter Expression, and BRAF V600E Mutation. OncoTargets Ther. 2021, 14, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Tirrò, E.; Martorana, F.; Romano, C.; Vitale, S.R.; Motta, G.; Di Gregorio, S.; Massimino, M.; Pennisi, M.S.; Stella, S.; Puma, A.; et al. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes 2019, 10, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannin, A.; Escande, A.; Al Ghuzlan, A.; Blanchard, P.; Hartl, D.; Chevalier, B.; Deschamps, F.; Lamartina, L.; Lacroix, L.; Dupuy, C.; et al. Anaplastic Thyroid Carcinoma: An Update. Cancers 2022, 14, 1061. [Google Scholar] [CrossRef]
- Liu, R.; Bishop, J.; Zhu, G.; Zhang, T.; Ladenson, P.W.; Xing, M. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol. 2017, 3, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, J.; Rüschoff, J.; Grimm, D.; Marienhagen, J.; Rümmele, P.; Meyringer, R.; Kossmehl, P.; Hofstaedter, F.; Eilles, C. Glucose Transporter 1 Gene Expression Is Related to Thyroid Neoplasms with an Unfavorable Prognosis: An Immunohistochemical Study. Thyroid 2002, 12, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Grabellus, F.; Nagarajah, J.; Bockisch, A.; Schmid, K.W.; Sheu, S.-Y. Glucose Transporter 1 Expression, Tumor Proliferation, and Iodine/Glucose Uptake in Thyroid Cancer with Emphasis on Poorly Differentiated Thyroid Carcinoma. Clin. Nucl. Med. 2012, 37, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ha, L.N.; Iravani, A.; Nhung, N.T.; Hanh, N.T.M.; Hutomo, F.; Son, M.H. Relationship between Clinicopathologic Factors and FDG Avidity in Radioiodine-Negative Recurrent or Metastatic Differentiated Thyroid Carcinoma. Cancer Imaging 2021, 21, 8. [Google Scholar] [CrossRef]
- Lodi Rizzini, E.; Repaci, A.; Tabacchi, E.; Zanoni, L.; Vicennati, V.; Cavicchi, O.; Pagotto, U.; Morganti, A.G.; Fanti, S.; Monari, F. Impact of 18F-FDG PET/CT on Clinical Management of Suspected Radio-Iodine Refractory Differentiated Thyroid Cancer (RAI-R-DTC). Diagnostics 2021, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- Hassani, R.A.E.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative Stress in Thyroid Carcinomas: Biological and Clinical Significance. Endocr. Relat. Cancer 2019, 26, R131–R143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puppin, C.; Arturi, F.; Ferretti, E.; Russo, D.; Sacco, R.; Tell, G.; Damante, G.; Filetti, S. Transcriptional Regulation of Human Sodium/Iodide Symporter Gene: A Role for Redox Factor-1. Endocrinology 2004, 145, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Azouzi, N.; Cailloux, J.; Cazarin, J.M.; Knauf, J.A.; Cracchiolo, J.; Al Ghuzlan, A.; Hartl, D.; Polak, M.; Carré, A.; El Mzibri, M.; et al. NADPH Oxidase NOX4 Is a Critical Mediator of BRAFV600E-Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxid. Redox Signal. 2017, 26, 864–877. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.M.; Ahn, B.-C. Molecular Mechanisms of Radioactive Iodine Refractoriness in Differentiated Thyroid Cancer: Impaired Sodium Iodide Symporter (NIS) Expression Owing to Altered Signaling Pathway Activity and Intracellular Localization of NIS. Theranostics 2021, 11, 6251–6277. [Google Scholar] [CrossRef] [PubMed]
- Buffet, C.; Wassermann, J.; Hecht, F.; Leenhardt, L.; Dupuy, C.; Groussin, L.; Lussey-Lepoutre, C. Redifferentiation of Radioiodine-Refractory Thyroid Cancers. Endocr. Relat. Cancer 2020, 27, R113–R132. [Google Scholar] [CrossRef]
- Lamartina, L.; Anizan, N.; Dupuy, C.; Leboulleux, S.; Schlumberger, M. Redifferentiation-Facilitated Radioiodine Therapy in Thyroid Cancer. Endocr. Relat. Cancer 2021, 28, T179–T191. [Google Scholar] [CrossRef]
- Aashiq, M.; Silverman, D.A.; Na’ara, S.; Takahashi, H.; Amit, M. Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers 2019, 11, 1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Huillard, O.; Tenenbaum, F.; Clerc, J.; Goldwasser, F.; Groussin, L. Restoring Radioiodine Uptake in BRAF V600E-Mutated Papillary Thyroid Cancer. J. Endocr. Soc. 2017, 1, 285–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, L.A.; Sherman, E.J.; Baxi, S.S.; Tchekmedyian, V.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J. Clin. Endocrinol. Metab. 2019, 104, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Jaber, T.; Waguespack, S.G.; Cabanillas, M.E.; Elbanan, M.; Vu, T.; Dadu, R.; Sherman, S.I.; Amit, M.; Santos, E.B.; Zafereo, M.; et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J. Clin. Endocrinol. Metab. 2018, 103, 3698–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iravani, A.; Solomon, B.; Pattison, D.A.; Jackson, P.; Ravi Kumar, A.; Kong, G.; Hofman, M.S.; Akhurst, T.; Hicks, R.J. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019, 29, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Cao, C.D.; Zerdoud, S.; Attard, M.; Bournaud, C.; Benisvy, D.; Taieb, D.; Bardet, S.; Terroir-Cassou-Mounat, M.; Betrian, S.; et al. MERAIODE: A Redifferentiation Phase II Trial with Trametinib and Dabrafenib Followed by Radioactive Iodine Administration for Metastatic Radioactive Iodine Refractory Differentiated Thyroid Cancer Patients with a BRAFV600E Mutation (NCT 03244956). J. Endocr. Soc. 2021, 5, A876. [Google Scholar] [CrossRef]
- Tchekmedyian, V.; Dunn, L.; Sherman, E.; Baxi, S.S.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Enhancing Radioiodine Incorporation in BRAF-Mutant, Radioiodine-Refractory Thyroid Cancers with Vemurafenib and the Anti-ErbB3 Monoclonal Antibody CDX-3379: Results of a Pilot Clinical Trial. Thyroid 2022, 32, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Dupuy, C.; Lacroix, L.; Attard, M.; Grimaldi, S.; Corre, R.; Ricard, M.; Nasr, S.; Berdelou, A.; Hadoux, J.; et al. Redifferentiation of a BRAFK601E-Mutated Poorly Differentiated Thyroid Cancer Patient with Dabrafenib and Trametinib Treatment. Thyroid 2019, 29, 735–742. [Google Scholar] [CrossRef]
- Montero-Conde, C.; Ruiz-Llorente, S.; Dominguez, J.M.; Knauf, J.A.; Viale, A.; Sherman, E.J.; Ryder, M.; Ghossein, R.A.; Rosen, N.; Fagin, J.A. Relief of Feedback Inhibition of HER3 Transcription by RAF and MEK Inhibitors Attenuates Their Antitumor Effects in BRAF-Mutant Thyroid Carcinomas. Cancer Discov. 2013, 3, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Leboulleux, S.; Benisvy, D.; Taieb, D.; Attard, M.; Bournaud, C.; Terroir, M.; Ghuzlan, A.A.; Lamartina, L.; Schlumberger, M.J.; Godbert, Y.; et al. 1743MO MERAIODE: A Redifferentiation Phase II Trial with Trametinib Followed by Radioactive Iodine for Metastatic Radioactive Iodine Refractory Differentiated Thyroid Cancer Patients with a RAS Mutation. Ann. Oncol. 2021, 32, S1204. [Google Scholar] [CrossRef]
T | N | M | Additional Features | Stage ≥55 Year | Stage <55 Year | Risk of Death (%) | 2015 ATA Risk | Risk of Recurrence (%) | RAIT Recommended | |
---|---|---|---|---|---|---|---|---|---|---|
≥55 Year | <55 Year | |||||||||
1a | 0 | 0 | - | I | I | <2 | <2 | L | <5 | No |
1–2 | 0 | 0 | Uni or Multifocal * | I | I | <2 | <2 | L | <5 | Not routine |
1–3 | 0 | 0 | FTC minimal vascular invasion | I/II | I | 2–5 | <2 | L | <5 | Not routine |
3 | 0 | 0 | - | II | I | ~5 | <2 | L | <5 | Not routine |
1–3 | 1a | 0 | ≤5 microscopic N1 (<2 mm) | II | I | ~5 | <2 | L | <5 | Not routine |
1–3 | 0 | 0 | Minimal ETE | I/II | I | 2–5 | <2 | I | 5–20 | Favored (consider size) |
1–3 | 1a/b | 0 | >5 N1 of <3 cm | II | I | ~5 | <2 | I | 5–20 | Favored |
1b–3 | 0 | 0 | BRAF mutation | I/II | I | 2–5 | <2 | I | 5–20 | Favored |
1–3 | any | 0 | Aggressive histology * | I/II | I | 2–5 | <2 | I | 5–20 | Favored |
1–3 | any | 0 | Uptake outside thyroid bed on RxWBS | I/II | I | 2–5 | <2 | I | 5–20 | Favored |
1–3 | any | 0 | Vascular invasion * | I/II | I | 2–5 | <2 | I | 5–20 | Favored |
1–3 | any | 0 | FTC > 4 foci of vascular invasion | I/II | I | 2–5 | <2 | H | >20 | Yes |
1–3 | 1a/b | 0 | N1 > 3 cm | II | I | ~5 | <2 | H | 20 | Yes |
4a | any | 0 | - | III | I | 5–20 | <2 | H | 20 | Yes |
4b | any | 0 | IVa | I | >50 | <2 | H | 20 | Yes | |
Any T | Any N | 1 | - | IVb | II | >80 | ~5 | H | 20 | Yes |
Any T | Any N | 0 | Incomplete tumor resection | - | I | <2 | H | 20 | Yes | |
Any T | Any N | 0 | Tg out of proportion with RxWBS findings | - | I | <2 | H | 20 | - |
Authors, Reference | Study Design | Intermediate-Risk (N/Total) | THW Preparation (%) | Iodine Activity-GBq (N) | Median Follow-Up [Range] | Main Outcomes |
---|---|---|---|---|---|---|
Welsh et al. [64] | Prospective | 53/53 | 100 | 1.1 (53) | 24 years (4–34) | 51% of unsuccessfully ablated patients; 30 years DSS and OS of 87% and 62%, respectively, in unsuccessfully ablated patients, without significant differences between groups. |
Rosario et al. [53] | Retrospective | 152/152 | 72.4 | 1.1 (152) | 76 months (18–140) | Persistent/recurrent disease in 6% of patients. |
Han et al. [65] | Retrospective | 176/176 | 100 | 1.1 (96) vs. 5.5 (80) | 7.2 years (3.3–9.4) | No significant differences in BIR/SIR between high vs. low RAI activity groups. |
Jeong et al. [66] | Retrospective | 204/204 | 100 | 1.1 (80) vs. 3.7–5.5 (124) | 10 years (NA) | BIR/SIR 10.5% vs. 25% in high vs. low RAI activity groups, respectively (p = 0.01); Need for additional RAI in 6% vs. 22% of high vs. low RAI activity groups, respectively (p = 0.001). |
Gomez-Perez et al. [67] | Retrospective | 47/174 | - | 1.1 (13) vs. ≥1.1 (34) | - | Recurrent disease for 67% vs. 24% of low vs. high RAI activity groups, respectively (p = 0.003). |
Authors, Reference | Study Design | Population (N) | ATA-Risk Patients (N) | Group Comparison (N) | Follow-Up (Range/SD) | Disease Recurrences |
---|---|---|---|---|---|---|
Ballal et al. [70] | Retrospective | 254 | IR (254) | (A) surgically ablated (125) (B) non-surgically ablated a (129) | median 10.3 years (1–21) | No significant differences |
Grani, Lamartina et al. [51] | Retrospective | 252 | LR (204) IR (68) | (A) Cohort 1 (116): TT and RAI (B) Cohort 2 (156): TT and DRS b | (A) median 8 years (3–12) (B) median 4 years (3–6) | No significant differences |
Abelleira et al. [71] | Retrospective | 307 | LR (191) IR (116) | (A) Low-dynamic c LR+ IR (166) (B) High-dynamic c LR+IR (141) | (A) and (B) mean 59.5 months (±22.31) | SIR for LR: A (2%) vs. B (5%), p = 0.3 SIR for IR: A (5%) vs. B (22%) p = 0.008 |
Authors, Reference | Study Design | Number of Patients (rhTSH/Total) | Median Age (Years) [Range] rhTSH | Aggressive Histology a (%) | Type of RAI Protocol | Metastatic Sites | Median Follow-Up [Range/SD] | Response (N) | OS Difference with THW |
---|---|---|---|---|---|---|---|---|---|
Lippi et al. [108] | Retrospective | 12/12 | - [48–75] | 83.3 | Dosimetry(100%) | lung, bones, and other b | 12 months [-] | Biochemical c (10) Tg reduction 40%; Tg stability 20%; Tg increase 40% | NA |
De Keizer et al. [109] | Prospective | 16/16 | 73.1 [41–87] | 68.7 | Empiric doses (100%) | lung, bones, and other b | 3 months [-] | Biochemical c (11) Tg reduction 27%; Tg stability 18%; Tg increase 55% | NA |
Tala et al. [110] | Retrospective | 58/175 (82 THW and rhTSH) | 60 [20–89] d | 63.8 c | Dosimetry (100%) | lung and/or bones | 3.4 years [1.3–10.3] d | Structural (43) d CR 19%; PR 0%; SD 35%; PD 46% | No difference |
Zagar et al. [112] | Prospective | 18/18 | 72 [37–83] | 77.8 | Empiric doses (100%) | lung, bones, and other b | 50 months [15–19] | Biochemical c (18) Tg reduction 17%; Tg stability 22%; Tg increase 61% | NA |
Klubo-Gwiezdzinska et al. [111] | Retrospective | 15/56 | 62.4 e [±12.6] | 35.7 | Dosimetry (80%) | lung, bones, and other b | 72 months e [±36.2] | Structural (15) CR 7%; PR 0%; SD 73%; PD 20% | No difference |
Rani et al. [113] | Prospective | 37/37 | 48.7 [14–70] | 24.3 | Dosimetry (100%) | lung and/or bones | - | - | - |
Simoes Pereira et al. [81] | Retrospective | 68/95 | 65.5 [22–85] d | 11.8 | Empiric doses (100%) | lung, bones, and other b | 82 months [8–332] | Structural (67) d CR 6%; PR 4%; SD 30%; PD 60% | No difference |
Gomes-Lima et al. [115] | Retrospective | 27/55 | 59 [47.5–65.5] d | 30.0 | Dosimetry (89%) | lung, bones, and other b | 4.2 years [3.3–5.5] d | Structural (27) CR 0%; PR 63%; SD 11%; PD 56% | No difference |
Tsai et al. [114] | Retrospective | 37/88 | 46.1 [-] | 0 | Empiric doses (100%) | lung, bones, and other b | 6.5 years [1.0–18.1] | - | No difference |
Site | Description | Frequency (%) | Activity (GBq) | References | Commentary |
---|---|---|---|---|---|
Eye | Inflammation of the lacrimal gland and xerophthalmia | 16 (92% at least one altered lacrimal test) | 2.96–22.2 | [131,135,137,138,139,140,141,142] | Test alteration is not related to patient’s symptoms. |
Obstruction of lacrimal duct and epiphora | 2.2–18 | >5.55 | |||
Conjunctivitis (chronic or recurrent) | 23 | 3.7–70.3 | |||
Salivary glands | Sialadenitis: | [137,142,143,144,145,146] | Linear correlation to cumulative activity, more than half of patients develop xerostomia even in the absence of acute post-treatment symptoms. 5% of xerostomia with 1.5 GBq | ||
| 2–67 | 3.7–48.1 | |||
| 2–43 | 1.48–48.1 | |||
Atrophy | 21–78 | 3.7–7.4 | |||
Taste and Smell | Transient loss or change in taste and smell | 2–58 | 1.48–48.1 | [137,143,144] | Dependent on administered activity. |
Nose | Pain Epistaxis | Rare | > 7.4 | [144] | |
Thyroid | Radiation thyroiditis | >2.8 | [147] | ||
| Rare | ||||
| 60 | ||||
Gastrointestinal system | Nausea | 5–67 | 1.48–16.5 | [144,145,148] | Correlation with administered activity. No symptoms with an activity of 1.1 GBq or less. Nausea starting from 1.5 GBq. Vomiting 1% with <3.7 GBq. |
Vomiting | 1–15 | 3.7–16.5 | |||
Bone marrow | Any hematological abnormality | 1—100 | 3.7–38.5 | [137,144,149] | Risk increases with cumulative dose and frequency of treatments. Grade > 3 abnormalities are rare. |
Fertility | Transient ovarian failure | 8 | 1.1–40.7 | [27,150] | Consider cryopreservation if repeated treatments are necessary or activities higher than 3.7 GBq are required in fertile men. |
Transient or permanent testicular failure | 100 | 1.1–49.4 | |||
Prolonged or permanent hormonal impairment (FSH increase) | 81 | >22 | |||
Second Malignancy | Solid cancer and leukemia | Rare | >7.4 | [151,152,153,154] | Linear correlation to dose. +27% increase in risk compared to general population. |
Lung | Pulmonary fibrosis | Rare | 21–71 | [155,156] | Usually pediatric DTC patients with lung metastasis; increased risk after several consecutive RAI courses and higher cumulative activity. |
Authors/Identifier, Reference | Drug | Patients (N) | Molecular Findings (N) | Restored RAI Uptake (N) | Complete Response [N (%)] | Partial Response [N (%)] |
---|---|---|---|---|---|---|
Ho et al. [199] | Selumetinib + 131I | 24 | BRAF-V600E (9) NRAS (5) RET/PTC (3) WT (3) | 8 | 0 | 5 (25) |
Rothenberg et al. [200] | Dabrafenib + 131I | 10 | BRAF-V600E (10) | 6 | 0 | 2 (20) |
Jaber et al. [203] | anti-MEK and/or anti-BRAF + 131I | 13 | BRAF-V600E (9) NRAS/KRAS (3) WT (1) | 9 | 0 | 0 (0) a |
Dunn et al. [202] | Vemurafenib + 131I | 12 | BRAF-V600E (10) | 4 | 0 | 4 (25) |
Iravani et al. [204] | anti-MEK ± anti-BRAF + 131I | 6 | BRAF-V600E (3) NRAS (3) | 4 | 0 | 3 (50) |
Leboulleux et al. [205] | Trametinib + dabrafenib + 131I Trametinib | 21 10 | BRAF-V600E (21) RAS (10) | 20 6 | 0 0 | 8 (38) 2 (20) |
Tchekmedyian et al. [206] | Vemurafenib + Anti-ErbB3 | 6 | BRAF-V600E (6) | 5 | 0 | 2 (40) |
NCT04554680—Japan | Dabrafenib + Trametinib | 5 | BRAF-V600E or RAS | - | - | - |
NCT02152995—United States | Trametinib | 34 | BRAF or RAS | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparano, C.; Moog, S.; Hadoux, J.; Dupuy, C.; Al Ghuzlan, A.; Breuskin, I.; Guerlain, J.; Hartl, D.; Baudin, E.; Lamartina, L. Strategies for Radioiodine Treatment: What’s New. Cancers 2022, 14, 3800. https://doi.org/10.3390/cancers14153800
Sparano C, Moog S, Hadoux J, Dupuy C, Al Ghuzlan A, Breuskin I, Guerlain J, Hartl D, Baudin E, Lamartina L. Strategies for Radioiodine Treatment: What’s New. Cancers. 2022; 14(15):3800. https://doi.org/10.3390/cancers14153800
Chicago/Turabian StyleSparano, Clotilde, Sophie Moog, Julien Hadoux, Corinne Dupuy, Abir Al Ghuzlan, Ingrid Breuskin, Joanne Guerlain, Dana Hartl, Eric Baudin, and Livia Lamartina. 2022. "Strategies for Radioiodine Treatment: What’s New" Cancers 14, no. 15: 3800. https://doi.org/10.3390/cancers14153800
APA StyleSparano, C., Moog, S., Hadoux, J., Dupuy, C., Al Ghuzlan, A., Breuskin, I., Guerlain, J., Hartl, D., Baudin, E., & Lamartina, L. (2022). Strategies for Radioiodine Treatment: What’s New. Cancers, 14(15), 3800. https://doi.org/10.3390/cancers14153800