Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Duration of BRAF/MEK Inhibitor Therapy
3.3. Treatment Duration Is Not Correlated with the Risk of TAE, But with a Longer PFS and OS
3.4. Factors Associated with Disease Progression and Survival upon BRAF/MEKi Treatment
3.5. Treatment Outcomes upon BRAF/MEKi Therapy
3.6. Impact of Treatment Discontinuation
3.7. Duration of Response and Second-Line Treatment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef][Green Version]
- McArthur, G.A.; Chapman, P.B.; Robert, C.; Larkin, J.; Haanen, J.B.; Dummer, R.; Ribas, A.; Hogg, D.; Hamid, O.; Ascierto, P.A.; et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014, 15, 323–332. [Google Scholar] [CrossRef][Green Version]
- Long, G.V.; Flaherty, K.T.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: Long-term survival and safety analysis of a phase 3 study. Ann. Oncol. 2017, 28, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.; Grob, J.J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H., Jr.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Larkin, J.; Del Vecchio, M.; Ascierto, P.A.; Krajsova, I.; Schachter, J.; Neyns, B.; Espinosa, E.; Garbe, C.; Sileni, V.C.; Gogas, H.; et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: An open-label, multicentre, safety study. Lancet Oncol. 2014, 15, 436–444. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Johnson, D.B.; Peng, C.; Sosman, J.A. Nivolumab in melanoma: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2015, 7, 97–106. [Google Scholar] [CrossRef][Green Version]
- Maio, M.; Grob, J.J.; Aamdal, S.; Bondarenko, I.; Robert, C.; Thomas, L.; Garbe, C.; Chiarion-Sileni, V.; Testori, A.; Chen, T.T.; et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J. Clin. Oncol. 2015, 33, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.; Wanek, L.A.; Morton, D.L. Prognostic factors in 1521 melanoma patients with distant metastases. J. Am. Coll. Surg. 1995, 181, 193–201. [Google Scholar]
- Eberlein, T.J. Prognosis of patients with advanced melanoma. J. Am. Coll. Surg. 1995, 181, 263–265. [Google Scholar]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Croce, L.; Coperchini, F.; Magri, F.; Chiovato, L.; Rotondi, M. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget 2019, 10, 6623–6640. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shi, H.; Hong, A.; Kong, X.; Koya, R.C.; Song, C.; Moriceau, G.; Hugo, W.; Yu, C.C.; Ng, C.; Chodon, T.; et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014, 4, 69–79. [Google Scholar] [CrossRef][Green Version]
- Vido, M.J.; Le, K.; Hartsough, E.J.; Aplin, A.E. BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep. 2018, 25, 1501–1510.e1503. [Google Scholar] [CrossRef][Green Version]
- Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014, 4, 94–109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ribas, A.; Daud, A.; Pavlick, A.C.; Gonzalez, R.; Lewis, K.D.; Hamid, O.; Gajewski, T.F.; Puzanov, I.; Wongchenko, M.; Rooney, I.; et al. Extended 5-Year Follow-up Results of a Phase Ib Study (BRIM7) of Vemurafenib and Cobimetinib in BRAF-Mutant Melanoma. Clin. Cancer Res. 2020, 26, 46–53. [Google Scholar] [CrossRef][Green Version]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef][Green Version]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Schummer, P.; Schilling, B.; Gesierich, A. Long-Term Outcomes in BRAF-Mutated Melanoma Treated with Combined Targeted Therapy or Immune Checkpoint Blockade: Are We Approaching a True Cure? Am. J. Clin. Dermatol. 2020, 21, 493–504. [Google Scholar] [CrossRef][Green Version]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef][Green Version]
- Carlino, M.S.; Vanella, V.; Girgis, C.; Giannarelli, D.; Guminski, A.; Festino, L.; Kefford, R.F.; Menzies, A.M.; Long, G.V.; Ascierto, P.A. Cessation of targeted therapy after a complete response in BRAF-mutant advanced melanoma: A case series. Br. J. Cancer 2016, 115, 1280–1284. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Heinzerling, L.; Eigentler, T.K.; Fluck, M.; Hassel, J.C.; Heller-Schenck, D.; Leipe, J.; Pauschinger, M.; Vogel, A.; Zimmer, L.; Gutzmer, R. Tolerability of BRAF/MEK inhibitor combinations: Adverse event evaluation and management. ESMO Open 2019, 4, e000491. [Google Scholar] [CrossRef][Green Version]
- Greco, A.; Safi, D.; Swami, U.; Ginader, T.; Milhem, M.; Zakharia, Y. Efficacy and Adverse Events in Metastatic Melanoma Patients Treated with Combination BRAF Plus MEK Inhibitors Versus BRAF Inhibitors: A Systematic Review. Cancers 2019, 11, 1950. [Google Scholar] [CrossRef][Green Version]
- Menzies, A.M.; Kefford, R.F.; Long, G.V. Paradoxical oncogenesis: Are all BRAF inhibitors equal? Pigment Cell Melanoma Res. 2013, 26, 611–615. [Google Scholar] [CrossRef]
- Escuin-Ordinas, H.; Li, S.; Xie, M.W.; Sun, L.; Hugo, W.; Huang, R.R.; Jiao, J.; de-Faria, F.M.; Realegeno, S.; Krystofinski, P.; et al. Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nat. Commun. 2016, 7, 12348. [Google Scholar] [CrossRef]
- Cherobin, A.; Wainstein, A.J.A.; Colosimo, E.A.; Goulart, E.M.A.; Bittencourt, F.V. Prognostic factors for metastasis in cutaneous melanoma. An. Bras. Dermatol. 2018, 93, 19–26. [Google Scholar] [CrossRef][Green Version]
- Kim, J.E.; Chung, B.Y.; Sim, C.Y.; Park, A.Y.; Lee, J.S.; Whang, K.U.; Park, Y.L.; Kim, H.O.; Park, C.W.; Lee, S.Y. Clinicopathologic Features and Prognostic Factors of Primary Cutaneous Melanoma: A Multicenter Study in Korea. J. Korean Med. Sci. 2019, 34, e126. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Wilmott, J.S.; Drummond, M.; Lo, S.; Lyle, M.; Chan, M.M.; Thompson, J.F.; Guminski, A.; Carlino, M.S.; Scolyer, R.A.; et al. Clinicopathologic features associated with efficacy and long-term survival in metastatic melanoma patients treated with BRAF or combined BRAF and MEK inhibitors. Cancer 2015, 121, 3826–3835. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ascierto, P.A.; Ribas, A.; Larkin, J.; McArthur, G.A.; Lewis, K.D.; Hauschild, A.; Flaherty, K.T.; McKenna, E.; Zhu, Q.; Mun, Y.; et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib +/− cobimetinib: A pooled analysis of four clinical trials. J. Transl. Med. 2020, 18, 294. [Google Scholar] [CrossRef]
- Warburton, L.; Meniawy, T.M.; Calapre, L.; Pereira, M.; McEvoy, A.; Ziman, M.; Gray, E.S.; Millward, M. Stopping targeted therapy for complete responders in advanced BRAF mutant melanoma. Sci. Rep. 2020, 10, 18878. [Google Scholar] [CrossRef]
- Desvignes, C.; Abi Rached, H.; Templier, C.; Drumez, E.; Lepesant, P.; Desmedt, E.; Mortier, L. BRAF inhibitor discontinuation and rechallenge in advanced melanoma patients with a complete initial treatment response. Melanoma Res. 2017, 27, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Vanhaecke, C.; Deilhes, F.; Chanal, J.; Regnier-Rosencher, E.; Boitier, F.; Boulinguez, S.; Avril, M.F.; Guégan, S.; Dupin, N.; Aractingi, S.; et al. BRAF V600 inhibitor discontinuation after complete response in advanced melanoma: A retrospective analysis of 16 patients. Br. J. Dermatol. 2017, 177, e94–e95. [Google Scholar] [CrossRef]
- Wyluda, E.J.; Cheng, J.; Schell, T.D.; Haley, J.S.; Mallon, C.; Neves, R.I.; Robertson, G.; Sivik, J.; Mackley, H.; Talamo, G.; et al. Durable complete responses off all treatment in patients with metastatic malignant melanoma after sequential immunotherapy followed by a finite course of BRAF inhibitor therapy. Cancer Biol. Ther. 2015, 16, 662–670. [Google Scholar] [CrossRef]
- Tolk, H.; Satzger, I.; Mohr, P.; Zimmer, L.; Weide, B.; Schad, S.; Gutzmer, R. Complete remission of metastatic melanoma upon BRAF inhibitor treatment—What happens after discontinuation? Melanoma Res. 2015, 25, 362–366. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Dummer, R. Immunological effects of BRAF+MEK inhibition. Oncoimmunology 2018, 7, e1468955. [Google Scholar] [CrossRef]
- Kuske, M.; Westphal, D.; Wehner, R.; Schmitz, M.; Beissert, S.; Praetorius, C.; Meier, F. Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy. Pharmacol. Res. 2018, 136, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Dearden, H.C.; Mason, R.; Nguyen, B.; Soon, J.A.; Smith, J.L.; Randhawa, M.; Mant, A.; Warburton, L.; Lo, S.; Meniawy, T.; et al. Combined ipilimumab and nivolumab first-line and after BRAF-directed targeted therapies in advanced melanoma patients. Ann. Oncol. 2018, 29. [Google Scholar] [CrossRef]
- van Willigen, W.W.; Bloemendal, M.; Boers-Sonderen, M.J.; de Groot, J.W.B.; Koornstra, R.H.T.; van der Veldt, A.A.M.; Haanen, J.; Boudewijns, S.; Schreibelt, G.; Gerritsen, W.R.; et al. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. Oncoimmunology 2020, 9, 1738814. [Google Scholar] [CrossRef][Green Version]
- Kreft, S.; Gesierich, A.; Eigentler, T.; Franklin, C.; Valpione, S.; Ugurel, S.; Utikal, J.; Haferkamp, S.; Blank, C.; Larkin, J.; et al. Efficacy of PD-1-based immunotherapy after radiologic progression on targeted therapy in stage IV melanoma. Eur. J. Cancer 2019, 116, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Margolin, K. Ipilimumab before BRAF inhibitor treatment may be more beneficial than vice versa for the majority of patients with advanced melanoma. Cancer 2014, 120, 1617–1619. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Simeone, E.; Sileni, V.C.; Del Vecchio, M.; Marchetti, P.; Cappellini, G.C.; Ridolfi, R.; de Rosa, F.; Cognetti, F.; Ferraresi, V.; et al. Sequential treatment with ipilimumab and BRAF inhibitors in patients with metastatic melanoma: Data from the Italian cohort of the ipilimumab expanded access program. Cancer Investig. 2014, 32, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, A.; Geukes Foppen, M.H.; Blank, C.U.; van Thienen, J.V.; van Tinteren, H.; Haanen, J.B. Vemurafenib for BRAF V600 mutated advanced melanoma: Results of treatment beyond progression. Eur. J. Cancer 2015, 51, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.A.; Reuben, A.; Spencer, C.N.; Prieto, P.A.; Austin-Breneman, J.L.; Jiang, H.; Haymaker, C.; Gopalakrishnan, V.; Tetzlaff, M.T.; Frederick, D.T.; et al. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology 2016, 5, e1136044. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.A.; Juneja, V.R.; Sage, P.T.; Frederick, D.T.; Piris, A.; Mitra, D.; Lo, J.A.; Hodi, F.S.; Freeman, G.J.; Bosenberg, M.W.; et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol. Res. 2014, 2, 643–654. [Google Scholar] [CrossRef][Green Version]
- Kakavand, H.; Wilmott, J.S.; Menzies, A.M.; Vilain, R.; Haydu, L.E.; Yearley, J.H.; Thompson, J.F.; Kefford, R.F.; Hersey, P.; Long, G.V.; et al. PD-L1 Expression and Tumor-Infiltrating Lymphocytes Define Different Subsets of MAPK Inhibitor-Treated Melanoma Patients. Clin. Cancer Res. 2015, 21, 3140–3148. [Google Scholar] [CrossRef][Green Version]
- Massi, D.; Romano, E.; Rulli, E.; Merelli, B.; Nassini, R.; De Logu, F.; Bieche, I.; Baroni, G.; Cattaneo, L.; Xue, G.; et al. Baseline beta-catenin, programmed death-ligand 1 expression and tumour-infiltrating lymphocytes predict response and poor prognosis in BRAF inhibitor-treated melanoma patients. Eur. J. Cancer 2017, 78, 70–81. [Google Scholar] [CrossRef]
- Shi, H.; Hugo, W.; Kong, X.; Hong, A.; Koya, R.C.; Moriceau, G.; Chodon, T.; Guo, R.; Johnson, D.B.; Dahlman, K.B.; et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014, 4, 80–93. [Google Scholar] [CrossRef][Green Version]
- Smith, M.P.; Brunton, H.; Rowling, E.J.; Ferguson, J.; Arozarena, I.; Miskolczi, Z.; Lee, J.L.; Girotti, M.R.; Marais, R.; Levesque, M.P.; et al. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 2016, 29, 270–284. [Google Scholar] [CrossRef][Green Version]
- Girotti, M.R.; Lopes, F.; Preece, N.; Niculescu-Duvaz, D.; Zambon, A.; Davies, L.; Whittaker, S.; Saturno, G.; Viros, A.; Pedersen, M.; et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 2015, 27, 85–96. [Google Scholar] [CrossRef][Green Version]
- Valpione, S.; Carlino, M.S.; Mangana, J.; Mooradian, M.J.; McArthur, G.; Schadendorf, D.; Hauschild, A.; Menzies, A.M.; Arance, A.; Ascierto, P.A.; et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study. Eur. J. Cancer 2018, 91, 116–124. [Google Scholar] [CrossRef][Green Version]
Clinicopathological Features | N (%) |
---|---|
Median age at initiation of TT (range) | 58 (29–80) |
Female | 15/37 (40.5%) |
Male | 22/37 (59.5%) |
Primary tumor | |
Median Breslow thickness (range) | 3.2 mm (0.5–30.0 mm) 1 |
Ulceration | 11/28 (39.3%) 2 |
Clinical course prior to initiation of targeted therapy | |
Median interval from primary diagnosis to advanced stage melanoma (range) | 15 months (0–285 months) |
Median time from primary diagnosis to initiation of BRAF ± MEKi therapy (range) | 21 months (0–290 months) |
Metastatic lesion | |
Metastatic sites, median (range) | 3 (0–7) |
Lung | 25/37 (67.6%) |
Liver | 6/37 (16.2%) |
Nodal | 18/37 (48.6%) |
Cutaneous | 7/37 (18.9%) |
Bone | 7/37 (18.9%) |
Other | 17/37 (45.9%) |
Cerebral | 16/37 (43.2%) |
ECOG 3-status ≥ 1 at beginning of TT | 4/16 (25%) |
Treatments | |
Treatment with BRAF ± MEKi (first-line)
| 2/37 (5.4%) 1/37 (2.7%) 5/37 (13.5%) 20/37 (54.1%) 9/37 (24.3%) |
Median treatment duration (range)
| 16.0 months (1–60 months) 25 months (16–60 months) 22 months (0–70 months) 3 months (0–49 months) |
Treatment-related adverse events of any grade
| 15/37 (40.5%) 6/37 (18.9%) |
Tumor progression | 22/37 (60%) |
Median progression-free survival (95% CI) in months | 27.0 months (1.5–52.5) |
Second-line treatment
| 21/37 (56.7%) 0 months (0–13 months) 4/15 (27%) 2 months 23 months (0–28 months) 3/5 (60%) 9.5 months |
Follow-up | |
Overall observation period upon TT initation | 100 months |
Median follow-up after TT discontinuation (range) | 19 months (0–70 months) 4 |
Median overall survival (95% CI) in months | 77 months (19–135 months) |
Deceased | 10/37 (27.0%) |
No. | Age | Sex | Initial AJCC Stage | MBM | Mutation | Therapy | TT (mo) | Reason for Cessation | Cessation Time (mo) | Time to Relapse after Cessation (mo) | TP | BOR to 2nd Line Therapy | Status | OS (mo) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 45 | M | IB | no | V600E | Vem | 30 | Physician’s choice | 13 | 56 | yes | PD (IPI) | AWD | 100 |
2 | 48 | M | IIB | no | V600E | Dab + Tram | 30 | Physician’s choice | 9 | - | no | - | AWD | 39 |
3 | 79 | F | IV | yes | V600R | Cob + Vem | 29 | Physician’s choice | 24 | - | no | NA (Cob + Vem) | AWD | 54 |
4 | 75 | M | IIIB | yes | V600E | Dab + Tram | 5 | Physician’s choice | 24 | - | no | - | AWD | 30 |
5 | 55 | M | IIA | no | V600E | Dab + Tram | 12 | Physician’s choice | 28 | 19 | yes | PR (Dab + Tram) | AWD | 59 |
6 | 48 | M | IIIC | yes | V600E | Dab | 11 | Toxicity | 0 | 35 | yes | CR (Tram) | DC | 36 |
7 | 71 | M | IV | no | V600K | Dab + Tram | 11 | Physician’s choice | 0 | 22 | yes | MR (Nivo) | AWD | 34 |
8 | 59 | M | IV | yes | V600E | Cob + Vem | 5 | Toxicity | 0 | 14 | yes | PD (IPI + Nivo) | AWD | 20 |
9 | 45 | M | IV | yes | V600E | Dab + Tram | 3 | Toxicity | 0 | 27 | yes | PD (Nivo) | AWD | 30 |
10 | 33 | F | IIIC | no | V600E | Cob + Vem | 9 | Physician’s choice | 0 | 48 | yes | CR (IPI) | AWD | 59 |
11 | 74 | M | IIIB | no | V600K | Cob + Vem | 6 | Toxicity | 1 | 2 | yes | PD (Atezo) | DC | 10 |
12 | 61 | M | IB | no | V600E | Dab + Tram | 26 | Toxicity | 0 | - | no | - | AWD | 26 |
13 | 55 | F | IIA | yes | V600K | Enco + Bini | 1 | Toxicity | 0 | 19 | yes | CR (Nivo) | AWD | 20 |
Reports Analzying Outcomes after TT Cessation | Number of Patients (CR) | Median Duration of TT Treatment (Months) | Discontinuation due to Toxicity | Median Follow-up after Discontinuation (Months) | Tumor Progression (%) | Median PFS upon TT Cessation | Response to TT Rechallange |
---|---|---|---|---|---|---|---|
Warburton [31] | 13 | 39 | 0% | 19 | 0% | 5 | 100% |
Wyluda [34] | 3 | 12 | 100% | 15 | 0% | NA | NA |
Desvignes [32] | 6 | 6 | 100% | 15 | 100% | 4 | 17% |
Vanhaecke [33] | 16 | 21 | 63% | 12 | 53% | 2.5 | 63% |
Tolk [35] | 12 | 13 | 54% | 17 | 46% | 3 | 50% |
Carlino [22] | 12 | NA | 100% | 16 | 50% | 6.6 | 33% |
Stege | 37 | 16 | 16% | 19 | 69% | 1 | 60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stege, H.; Haist, M.; Schultheis, M.; Fleischer, M.I.; Mohr, P.; Meier, F.; Schadendorf, D.; Ugurel, S.; Livingstone, E.; Zimmer, L.; et al. Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study. Cancers 2021, 13, 2312. https://doi.org/10.3390/cancers13102312
Stege H, Haist M, Schultheis M, Fleischer MI, Mohr P, Meier F, Schadendorf D, Ugurel S, Livingstone E, Zimmer L, et al. Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study. Cancers. 2021; 13(10):2312. https://doi.org/10.3390/cancers13102312
Chicago/Turabian StyleStege, Henner, Maximilian Haist, Michael Schultheis, Maria Isabel Fleischer, Peter Mohr, Friedegund Meier, Dirk Schadendorf, Selma Ugurel, Elisabeth Livingstone, Lisa Zimmer, and et al. 2021. "Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study" Cancers 13, no. 10: 2312. https://doi.org/10.3390/cancers13102312