Martino, F.; Varricchio, S.; Russo, D.; Merolla, F.; Ilardi, G.; Mascolo, M.; dell’Aversana, G.O.; Califano, L.; Toscano, G.; De Pietro, G.;
et al. A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections. Cancers 2020, 12, 1344.
https://doi.org/10.3390/cancers12051344
AMA Style
Martino F, Varricchio S, Russo D, Merolla F, Ilardi G, Mascolo M, dell’Aversana GO, Califano L, Toscano G, De Pietro G,
et al. A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections. Cancers. 2020; 12(5):1344.
https://doi.org/10.3390/cancers12051344
Chicago/Turabian Style
Martino, Francesco, Silvia Varricchio, Daniela Russo, Francesco Merolla, Gennaro Ilardi, Massimo Mascolo, Giovanni Orabona dell’Aversana, Luigi Califano, Guglielmo Toscano, Giuseppe De Pietro,
and et al. 2020. "A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections" Cancers 12, no. 5: 1344.
https://doi.org/10.3390/cancers12051344
APA Style
Martino, F., Varricchio, S., Russo, D., Merolla, F., Ilardi, G., Mascolo, M., dell’Aversana, G. O., Califano, L., Toscano, G., De Pietro, G., Frucci, M., Brancati, N., Fraggetta, F., & Staibano, S.
(2020). A Machine-learning Approach for the Assessment of the Proliferative Compartment of Solid Tumors on Hematoxylin-Eosin-Stained Sections. Cancers, 12(5), 1344.
https://doi.org/10.3390/cancers12051344