Advances in the Application of Electrostatics in Agriculture: A Review from Macroscale Spray Engineering to Microscale Plant Biostimulation
Abstract
1. Introduction
1.1. Fundamental Principles of Electrostatics and Its Agricultural Potential
1.2. A Multi-Scale Framework for Reviewing Electrostatic Applications in Agriculture
2. Macroscale Electrostatic Spraying from Charging Mechanisms to System Integration
2.1. Physical Basis and Charging Mechanisms of Electrostatic Spraying
2.2. Design and Optimization of Electrostatic Atomization Nozzles
2.3. Integration of Intelligent Spraying Systems with Electrostatic Modules
2.4. Emerging Applications of Electrostatic Spraying in Environmental and Material Control
3. Microscale Electrostatic Biostimulation and Self-Powered Agricultural Systems
3.1. Mechanistic Insights into Electrostatic Stimulation of Plant Physiology
3.2. Electrostatic Enhancement of Seed Germination and Vigor
3.3. Electrostatic Promotion of Plant Growth and Physiological Performance
3.4. TENG-Based Self-Powered Stimulation Systems
4. Discussion and Outlook
4.1. Cross-Scale Comparative Analysis of Macroscale and Microscale Electrostatic Applications
4.2. Synthesized Challenges and Limitations
4.3. Conclusions and Perspectives
- Mechanistic elucidation at the microscale. To address the lack of mechanistic clarity in electrostatic biostimulation, future studies should leverage multi-omics technologies and biophysical modeling to elucidate the complete signal transduction pathway, from initial electric field perception to downstream cellular responses. This knowledge will support parameter optimization and biological safety assessments.
- Technological integration and cross-scale system design. To overcome environmental instability in macroscale systems and standardization challenges in microscale applications, future platforms need to combine adaptive engineering with biological responsiveness. Intelligent systems that integrate real-time sensing, variable-rate control, and electrostatic modulation could synchronize field-level spraying with localized biostimulation.
- Paradigm shifts via self-powered systems. Emerging TENG technologies offer a disruptive solution to the power and scalability bottlenecks in microscale applications. TENGs can convert ambient mechanical energy into electric fields, enabling autonomous, localized plant stimulation. Key research frontiers include improving energy conversion efficiency, stability under field conditions, and integration with plant-compatible materials.
- Standardization and interdisciplinary collaboration. The lack of consistent testing protocols for both droplet behavior and plant physiological response hinders comparability and reproducibility. A cross-scale evaluation framework which standardizes metrics for deposition, energy input, and bioeffectiveness is urgently needed. Equally important is fostering deep and sustained collaboration across agricultural science, engineering, physics and materials science to break through current disciplinary silos, which will enable holistic innovation and accelerate the translation of fundamental research into practical, sustainable agricultural solutions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dönmez, D.; Isak, M.A.; İzgü, T.; Şimşek, Ö. Green Horizons: Navigating the Future of Agriculture through Sustainable Practices. Sustainability 2024, 16, 3505. [Google Scholar] [CrossRef]
- Yingying, W.; Yibin, W.; Fei, L. Dynamics of Agricultural System Vulnerability to Climate Change and the Externalities of Its Mitigation in China. Mitig. Adapt. Strat. Glob. Change 2024, 29, 1–26. [Google Scholar] [CrossRef]
- Lu, H.; Wu, Y.; Li, Y.; Liu, Y. Effects of Meteorological Droughts on Agricultural Water Resources in Southern China. J. Hydrol. 2017, 548, 419–435. [Google Scholar] [CrossRef]
- Hou, M.; Li, Y.; Biswas, A.; Chen, X.; Xie, L.; Liu, D.; Li, L.; Feng, H.; Wu, S.; Satoh, Y.; et al. Concurrent Drought Threatens Wheat and Maize Production and Will Widen Crop Yield Gaps in the Future. Agric. Syst. 2024, 220, 104056. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Y.; Zhu, Y.; Ren, L.; Liu, Y.; Zhang, X.; Zhang, L. Impact of Flash Droughts on Global Crop Yields Considering Crop Phenology and Irrigation Conditions. Agric. For. Meteorol. 2025, 373, 110763. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Gong, C. Investigation of Optimum Applied Voltage, Liquid Flow Pressure, and Spraying Height for Pesticide Application by Induction Charging. Appl. Eng. Agric. 2019, 35, 795–804. [Google Scholar] [CrossRef]
- Ji, X.; Wang, A.; Wei, X. Precision Control of Spraying Quantity Based on Linear Active Disturbance Rejection Control Method. Agriculture 2021, 11, 761. [Google Scholar] [CrossRef]
- Mosha, A.; Shen, P.; Gao, J.; Elsherbiny, O.; Qureshi, W. Optimizing Plasma Discharge Intensities and Spraying Intervals for Enhanced Growth, Mineral Uptake, and Yield in Aeroponically Grown Lettuce. Horticulturae 2025, 11, 650. [Google Scholar] [CrossRef]
- Qureshi, W.A.; Xiang, Q.; Tunio, M.H.; Qureshi, J.A.; Mosha, A.H.; Gao, J.; Elsherbiny, O. Optimization of Inner Flow Dynamics in Aeration Impact Sprinklers through CFD Simulation, Theoretical Analysis, and Experimental Validation of Stabilizer Design for Enhanced Hydraulic Performance. Agric. Water Manag. 2025, 312, 109463. [Google Scholar] [CrossRef]
- Taha, M.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.; Abdalla, A.; Mousa, S.; Elwakeel, A.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Lakhiar, I.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Li, Y.; Guan, Z.; Liao, C.; Qiao, X. Design and Experiment on the Air-Blowing and Vibrating Supply Seed Tray for Precision Seeders. Int. J. Agric. Biol. Eng. 2022, 15, 115–121. [Google Scholar] [CrossRef]
- Tunio, M.; Gao, J.; Qureshi, W.; Sheikh, S.; Chen, J.; Chandio, F.; Lakhiar, I.; Solangi, K. Effects of Droplet Size and Spray Interval on Root-to-Shoot Ratio, Photosynthesis Efficiency, and Nutritional Quality of Aeroponically Grown Butterhead Lettuce. Int. J. Agric. Biol. Eng. 2022, 15, 79–88. [Google Scholar] [CrossRef]
- Liao, C.; Chen, J.; Geng, F.; Tang, X. Airflow Basin Structure Numerical Optimisation Analysis and Suction Nozzle Characteristics Experimental Study of Vacuum-Vibration Tray Precision Seeder. J. Agric. Eng. 2022, 53, 1294. [Google Scholar] [CrossRef]
- Jin, M.; Zhao, Z.; Chen, S.; Chen, J. Improved Piezoelectric Grain Cleaning Loss Sensor Based on Adaptive Neuro-Fuzzy Inference System. Precis. Agric. 2022, 23, 1174–1188. [Google Scholar] [CrossRef]
- Li, Z.; Yang, H.; Fang, W.; Huang, X.; Shi, J.; Zou, X. Effects of Variety and Pulsed Electric Field on the Quality of Fresh-Cut Apples. Agriculture 2023, 13, 929. [Google Scholar] [CrossRef]
- Qin, W.; Qiu, B.; Xue, X.; Chen, C.; Xu, Z.; Zhou, Q. Droplet Deposition and Control Effect of Insecticides Sprayed with an Unmanned Aerial Vehicle against Plant Hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of A Laser-Guided, Embedded-Computer-Controlled, Air-Assisted Precision Sprayer. Trans. Asabe 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Lei, X.; Zhao, S.; Lu, J.; Jiang, Y.; Xie, B.; Wang, M. Research Progress on Efficient Pollination Technology of Crops. Agronomy 2022, 12, 2872. [Google Scholar] [CrossRef]
- Zheng, Z.; He, Y.; He, Y.; Zhan, J.; Shi, C.; Xu, Y.; Wang, X.; Wang, J.; Zhang, C. Micro-Nano Bubble Water Subsurface Drip Irrigation Affects Strawberry Yield and Quality by Modulation of Microbial Communities. Agric. Water Manag. 2025, 307, 109228. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Y.; Xing, D. The Differential Response of Intracellular Water Metabolism Derived from Intrinsic Electrophysiological Information in Morus alba L. and Broussonetia papyrifera (L.) Vent. Subjected to Water Shortage. Horticulturae 2022, 8, 182. [Google Scholar] [CrossRef]
- Manzoor, M.; Ahmed, Z.; Ahmad, N.; Karrar, E.; Rehman, A.; Aadil, R.; Al-Farga, A.; Iqbal, M.; Rahaman, A.; Zeng, X. Probing the Combined Impact of Pulsed Electric Field and Ultra-Sonication on the Quality of Spinach Juice. J. Food Process. Preserv. 2021, 45, e15475. [Google Scholar] [CrossRef]
- Marques, R.S.; da Cunha, J.P.A.R.; Alves, G.S.; Alves, T.C.; Silva, S.M.; Zandonadi, C.H.S. Control of Dalbulus Maidis in Maize Crop with Electrostatic Spraying. Biosci. J. 2019, 35, 1780–1788. [Google Scholar] [CrossRef]
- Patel, M.K.; Sahoo, H.K.; Nayak, M.K.; Ghanshyam, C. Plausibility of Variable Coverage High Range Spraying: Experimental Studies of an Externally Air-Assisted Electrostatic Nozzle. Comput. Electron. Agric. 2016, 127, 641–651. [Google Scholar] [CrossRef]
- Salcedo, R.; Llop, J.; Campos, J.; Costas, M.; Gallart, M.; Ortega, P.; Gil, E. Evaluation of Leaf Deposit Quality between Electrostatic and Conventional Multi-Row Sprayers in a Trellised Vineyard. Crop Prot. 2020, 127, 104964. [Google Scholar] [CrossRef]
- Tavares, R.M.; Cunha, J.P.; Alves, T.C.; Bueno, M.R.; Silva, S.M.; Zandonadi, C.H. Electrostatic Spraying in the Chemical Control of Triozoida Limbata (Enderlein) (Hemiptera: Triozidae) in Guava Trees (Psidium guajava L.). Pest. Manag. Sci. 2017, 73, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.-J.; Hu, P.; Kim, K.; Anastasia, C.M.; Kim, H.-I.; Castillo, C.; Ahern, C.B.; Pedersen, J.A.; Fairbrother, D.H.; Giraldo, J.P. Electrostatics Control Nanoparticle Interactions with Model and Native Cell Walls of Plants and Algae. Environ. Sci. Technol. 2023, 57, 19663–19677. [Google Scholar] [CrossRef]
- Khatawkar, D.S.; James, S.P.; Dhalin, D. Role of Electrostatics in Artificial Pollination and Future Agriculture. Curr. Sci. 2021, 120, 484–491. [Google Scholar] [CrossRef]
- Lekner, J. Comparison of Hyperbolic and Hyperboloid Conductor Electrostatics. Eur. J. Phys. 2006, 27, 87–94. [Google Scholar] [CrossRef]
- Lekner, J. Electrostatics of Hyperbolic Conductors. Eur. J. Phys. 2004, 25, 737–744. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.; Ma, Y. Optimization of the Electric Field Calculation for a Rod-Shaped Conductor in a Uniform Electric Field. Int. J. Mod. Phys. C 2019, 30, 1950039. [Google Scholar] [CrossRef]
- Gabovich, A.; Voitenko, A. A New Model of a Molecular Rotor in the Oscillating Electric Field. Low Temp. Phys. 2022, 48, 819–824. [Google Scholar] [CrossRef]
- Gabovich, A.; Voitenko, A. Orientation of Adsorbed Polar Molecules (Dipoles) in External Electrostatic Field. J. Phys. Condens. Matter 2021, 33, 035004. [Google Scholar] [CrossRef] [PubMed]
- Slavchov, R.; Dimitrova, I.; Ivanov, T. The Polarized Interface between Quadrupolar Insulators: Maxwell Stress Tensor, Surface Tension, and Potential. J. Chem. Phys. 2015, 143, 154707. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Li, J.; Zhang, M.; Yang, Y.; Yu, K. Electrostatic Effects of Corona Discharge on the Spectrum and Density Evolution of Water Droplets in Air. IEEE Access 2020, 8, 196264–196273. [Google Scholar] [CrossRef]
- Dumitran, L.M.; Blejan, O.; Notingher, P.V.; Samuila, A.; Dascalescu, L. Dascalescu Particle Charging in Combined Corona-Electrostatic Fields. IEEE Trans. Ind. Appl. 2008, 44, 1385–1390. [Google Scholar] [CrossRef]
- Basiry, M.; Esehaghbeygi, A. Cleaning and Charging of Seeds with an Electrostatic Separator. Appl. Eng. Agric. 2012, 28, 143–147. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, Q.; Zha, B.; Sun, J.; Xu, B.; Chen, Z. Triboelectric Separation of Wheat Bran Tissues: Influence of Tribo-material, Water Content, and Particle Size. J. Food Process Eng. 2020, 43, e13346. [Google Scholar] [CrossRef]
- Hu, W.; Gao, Z.; Dong, X.; Chen, J.; Qiu, B. Contact Electrification of Liquid Droplets Impacting Living Plant Leaves. Agronomy 2024, 14, 573. [Google Scholar] [CrossRef]
- Wu, P.; Lei, X.; Zeng, J.; Qi, Y.; Yuan, Q.; Huang, W.; Ma, Z.; Shen, Q.; Lyu, X. Research Progress in Mechanized and Intelligentized Pollination Technologies for Fruit and Vegetable Crops. Int. J. Agric. Biol. Eng. 2024, 17, 11–21. [Google Scholar] [CrossRef]
- Guo, J.; Dong, X.; Qiu, B. Analysis of the Factors Affecting the Deposition Coverage of Air-Assisted Electrostatic Spray on Tomato Leaves. Agronomy 2024, 14, 1108. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Tunio, M.; Chen, X.; Chen, Z. Design of a High-Voltage Electrostatic Ultrasonic Atomization Nozzle and Its Droplet Adhesion Effects on Aeroponically Cultivated Plant Roots. Int. J. Agric. Biol. Eng. 2023, 16, 30–37. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Z.; Zhao, X.; Yuan, Y.; Wang, S. Electrostatic Spray and Non-Electrostatic Spray on Droplet Deposition Quality on Tomato Leaf Surface. Cienc. Rural. 2025, 55, e20240124. [Google Scholar] [CrossRef]
- Oikonomou, V.K.; Huerta, M.; Sandéhn, A.; Dreier, T.; Daguerre, Y.; Lim, H.; Berggren, M.; Pavlopoulou, E.; Näsholm, T.; Bech, M.; et al. eSoil: A Low-Power Bioelectronic Growth Scaffold That Enhances Crop Seedling Growth. Proc. Natl. Acad. Sci. USA 2024, 121, e2304135120. [Google Scholar] [CrossRef]
- EdwardLaw, S. Electrostatic Pesticide Spraying: Concepts and Practice. IEEE Trans. Ind. Appl. 1983, IA-19, 160–168. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Chen, T.; Meng, S.; Liu, D.; Dong, D.; You, T. Electric Field-Induced Specific Preconcentration to Enhance DNA-Based Electrochemical Sensing of Hg2+ via the Synergy of Enrichment and Self-Cleaning. J. Agric. Food Chem. 2022, 70, 7412–7419. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Wang, T.; Huang, X.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of Pulsed Electric Field Pretreatment on Mass Transfer Kinetics of Pickled Lotus Root (Nelumbo Nucifera Gaertn.). Lwt-Food Sci. Technol. 2021, 151, 112205. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Zhu, W.; Wei, X.; Sun, H. Maturity Assessment of Tomato Fruit Based on Electrical Impedance Spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 154–161. [Google Scholar] [CrossRef]
- Li, M.; Li, J.; Wei, X.; Zhu, W. Early Diagnosis and Monitoring of Nitrogen Nutrition Stress in Tomato Leaves Using Electrical Impedance Spectroscopy. Int. J. Agric. Biol. Eng. 2017, 10, 194–205. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.; Li, Y.; Chen, M.; Zhang, R. Experimental Research on a Needle Roller-Type Electrostatic Separation Device for Separating Unginned Cotton and Residual Films. Agriculture 2023, 13, 324. [Google Scholar] [CrossRef]
- Jing, L.; Wei, X. Spray Deposition and Distribution on Rice as Affected by a Boom Sprayer with a Canopy-Opening Device. Agriculture 2023, 13, 94. [Google Scholar] [CrossRef]
- Fattahi, S.H. Sunflower’s Seed Separation in High-Intensity Electric Field. Agric. Eng. Int. CIGR J. 2017, 19, 193. [Google Scholar]
- Jafari, M.; Chegini, G.; Rezaeealam, B.; Shaygani Akmal, A.A. Experimental Determination of the Dielectric Constant of Wheat Grain and Cluster Straw in Different Moisture Contents. Food Sci. Nutr. 2020, 8, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Chegini, G.; Shayegani Akmal, A.A.; Rezaeealam, B. A Roll-Type Corona Discharge–Electrostatic Separator for Separating Wheat Grain and Straw Particles. J. Food Process Eng. 2019, 42, e13281. [Google Scholar] [CrossRef]
- Kovalyshyn, S.J.; Dadak, V.O.; Sokolyk, V.V.; Grundas, S.; Stasiak, M.; Tys, J. Geometrical and Friction Properties of Perennial Grasses and Their Weeds in View of an Electro-Separation Method. Int. Agrophysics 2015, 29, 185–191. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, X.; Chen, C.; Cai, C.; Jiao, Y. Canopy Deposition Characteristics of Different Orchard Pesticide Dose Models. Int. J. Agric. Biol. Eng. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.; Li, Y.; Li, M. Effect of High-Voltage Electrostatic Field on Inorganic Nitrogen Uptake by Cucumber Plants. Trans. Asabe 2016, 59, 25–29. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2024, 14, 47. [Google Scholar] [CrossRef]
- Faraji, S.; Sadri, B.; Vajdi Hokmabad, B.; Jadidoleslam, N.; Esmaeilzadeh, E. Experimental Study on the Role of Electrical Conductivity in Pulsating Modes of Electrospraying. Exp. Therm. Fluid Sci. 2017, 81, 327–335. [Google Scholar] [CrossRef]
- Chen, F.; Deng, X. Droplet Breakup in Electrostatic Spray Based on Multiple Physical Fields. Adv. Powder Technol. 2022, 33, 103842. [Google Scholar] [CrossRef]
- Patel, M.K.; Praveen, B.; Sahoo, H.K.; Patel, B.; Kumar, A.; Singh, M.; Nayak, M.K.; Rajan, P. An Advance Air-Induced Air-Assisted Electrostatic Nozzle with Enhanced Performance. Comput. Electron. Agric. 2017, 135, 280–288. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Wang, S.; Dong, L.; Gao, Z.; Wang, T.; Wang, X.; Lu, X.; Qiu, B. The Behavior of Electrostatic Droplets After Impacting Pepper Leaves. Horticulturae 2025, 11, 608. [Google Scholar] [CrossRef]
- Hines, R.L. Electrostatic Atomization and Spray Painting. J. Appl. Phys. 1966, 37, 2730–2736. [Google Scholar] [CrossRef]
- Anestos, T.C.; Sickles, J.E.; Tepper, R.M. Charge to Mass Distributions in Electrostatic Sprays. IEEE Trans. Ind. Appl. 1977, IA-13, 168–177. [Google Scholar] [CrossRef]
- Yu, Y.C.; Wang, B.H. Review on Electrostatic Spraying Technique. Agric. Technol. 2004, 24, 190–193+195. [Google Scholar]
- Dai, S.; Zhang, J.; Jia, W.; Ou, M.; Zhou, H.; Dong, X.; Chen, H.; Wang, M.; Chen, Y.; Yang, S. Experimental Study on the Droplet Size and Charge-to-Mass Ratio of an Air-Assisted Electrostatic Nozzle. Agriculture 2022, 12, 889. [Google Scholar] [CrossRef]
- Gao, J.; Xu, K.; He, R.; Chen, X.; Tunio, M. Development and Experiments of Low Frequency Ultrasonic Electrostatic Atomizing Nozzle with Double Resonators. Int. J. Agric. Biol. Eng. 2022, 15, 39–48. [Google Scholar] [CrossRef]
- Wu, M.; Liu, S.; Li, Z.; Ou, M.; Dai, S.; Dong, X.; Wang, X.; Jiang, L.; Jia, W. A Review of Intelligent Orchard Sprayer Technologies: Perception, Control, and System Integration. Horticulturae 2025, 11, 668. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, X.; Tan, M.; Liu, H.; Ge, J. Nozzle Structure Optimisation in a Photovoltaic Irrigation System. Irrig. Drain. 2025, 74, 900–914. [Google Scholar] [CrossRef]
- Pan, X.; Yang, S.; Gao, Y.; Wang, Z.; Zhai, C.; Qiu, W. Evaluation of Spray Drift from an Electric Boom Sprayer: Impact of Boom Height and Nozzle Type. Agronomy 2025, 15, 160. [Google Scholar] [CrossRef]
- Chen, C.; Hussain, Z.; Liu, J.; Zaman, M.; Akhlaq, M. Innovative Technologies in Sprinkler Irrigation: An Overview. Agrociencia 2024, 58, 799–816. [Google Scholar] [CrossRef]
- Lin, J.; Cai, J.; Ouyang, J.; Xiao, L.; Qiu, B. The Influence of Electrostatic Spraying with Waist-Shaped Charging Devices on the Distribution of Long-Range Air-Assisted Spray in Greenhouses. Agronomy 2024, 14, 2278. [Google Scholar] [CrossRef]
- Khatawkar, D.S.; Dharaneedharan, D.; James, P.S. Knapsack Air Assisted Electrostatic Sprayer for Agricultural Formulations. CABI Agric. Biosci. 2024, 5, 80. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Aliakbarlu, J.; Cui, H.; Lin, L. Typical Application of Electrostatic Layer-by-Layer Self-Assembly Technology in Food Safety Assurance. Trends Food Sci. Technol. 2022, 129, 88–97. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Cao, R.; Li, Y.; Zhao, S.; Li, Q.; Zhang, W. Design of Inductive Electrostatic Boom Spray System Based on Embedded Closed Electrode Structure and Droplet Distribution Test in Soybean Field. Front. Plant Sci. 2024, 15, 1367781. [Google Scholar] [CrossRef] [PubMed]
- Amaya, K.; Bayat, A. Innovating an Electrostatic Charging Unit with an Insulated Induction Electrode for Air-Assisted Orchard Sprayers. Crop Prot. 2024, 181, 106701. [Google Scholar] [CrossRef]
- Zhao, D.; Cooper, S.; Chima, P.; Wang, G.; Zhang, L.; Sun, B.; Zhang, X.; Lan, Y. Development and Characterization of a Contact-Charging Electrostatic Spray UAV System. Agriculture 2024, 14, 467. [Google Scholar] [CrossRef]
- Knight, R.; Li, X.; Hocter, J.; Zhang, B.; Zhao, L.; Zhu, H. Optimization of Induction Charging of Water Droplets to Develop An Electrostatic Spray Scrubber Intended for Poultry Particulate Matter Mitigation. J. Asabe 2022, 65, 815–824. [Google Scholar] [CrossRef]
- Oh, Y.-H.; Jo, S.-H.; Son, J.; Jeong, H.-B.; Seo, S.H.; Kim, T.-H.; Son, Y.-S. Optimization of an Electrostatic Spray System for Control of Particulate Matter Generated from Electron Beam Flue Gas Treatment Processes. Process Saf. Environ. Prot. 2025, 198, 107148. [Google Scholar] [CrossRef]
- Liu, A.; Wang, B.; Wang, Y.; Adhikari, B.; Zhang, M. Recent Application of Electrospray Technology in Food Processing: A Review. Food Bioprocess Technol. 2025, 18, 5970–5987. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Zhang, C.; Xu, X.; Wu, C. Synergistic Purification of Flue Gas from Straw Combustion Using Ammonia Method and Electrostatic Charged Spray. Agriculture 2025, 15, 1001. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, Y.; Wang, Y.; Xu, B.; Zhou, C.; Adhikari, B.; Liu, J.; Xu, T.; Wang, B. Atmosphere-Controlled High-Voltage Electrospray for Improving Conductivity, Flexibility, and Antibacterial Properties of Chitosan Films. Food Res. Int. 2025, 200, 115450. [Google Scholar] [CrossRef]
- Morales-Martínez, J.C.; García, J.A.; Martínez-Mendoza, A.A.; Hernández, E.; Solis, S.; Noguerón, F.J.; Contreras-Ramos, S.M.; Bustos, E. Synergistic Effects of Electrical Stimulation and Plant Growth-Promoting Bacteria on Solanum Lycopersicum Growth, Harvest, and Soil Fertility. Electrochim. Acta 2025, 531, 146457. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Han, K.; Shi, X.; Ren, Z.; Xi, Y.; Ying, Y.; Ping, J.; Wang, Z.L. Stimulation of Ambient Energy Generated Electric Field on Crop Plant Growth. Nat. Food 2022, 3, 133–142. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Huang, Y.; Li, J.; Zeng, X.; Gao, X. Investigating the Effects of Pulsed Electric Field (PEF) on the Physicochemical Properties and Biological Activities of Chlorophyll Aggregates: Mechanistic Insights. Food Chem. 2025, 488, 144899. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, L.; Ke, H.; Zhou, W.; Jiang, C.; Jiang, M.; Zhan, F.; Li, T. Effects, Physiological Response and Mechanism of Plant under Electric Field Application. Sci. Hortic. 2024, 329, 112992. [Google Scholar] [CrossRef]
- Yang, X.; Ma, L.; Zheng, J.; Qiao, Y.; Bai, J.; Cai, J. Effects of Atmospheric Pressure Plasma Treatment on the Quality and Cellulose Modification of Brown Rice. Innov. Food Sci. Emerg. Technol. 2024, 96, 103744. [Google Scholar] [CrossRef]
- Xu, B.; Wei, B.; Ren, X.; Liu, Y.; Jiang, H.; Zhou, C.; Ma, H.; Chalamaiah, M.; Liang, Q.; Wang, Z. Dielectric Pretreatment of Rapeseed 1: Influence on the Drying Characteristics of the Seeds and Physico-Chemical Properties of Cold-Pressed Oil. Food Bioprocess Technol. 2018, 11, 1236–1247. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Wen, X.; Tao, H.; Wang, K.; Fu, R.; Tao, H.; Wang, F.; Chen, N.; Ni, Y. Conformational Changes and the Formation of New Bonds Achieving Robust Nanoemulsions by Electrostatic Interactions between Whey Protein Isolate and Chondroitin Sulfate. Food Hydrocoll. 2023, 136, 108263. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Tao, Y.; Xie, C.; Li, D.; Han, Y. Moderate Electric Field-Stimulated Brown Rice Germination: Insights into Membrane Permeability Modulation and Antioxidant System Activation. Food Chem. 2025, 479, 143737. [Google Scholar] [CrossRef]
- Wang, G.; Huang, J.; Gao, W.; Lu, J.; Li, J.; Liao, R.; Jaleel, C.A. The Effect of High-Voltage Electrostatic Field (HVEF) on Aged Rice (Oryza sativa L.) Seeds Vigor and Lipid Peroxidation of Seedlings. J. Electrost. 2009, 67, 759–764. [Google Scholar] [CrossRef]
- Acosta-Santoyo, G.; Herrada, R.A.; De Folter, S.; Bustos, E. Stimulation of the Germination and Growth of Different Plant Species Using an Electric Field Treatment with IrO2-Ta2O5|Ti Electrodes. J. Chem. Tech. Biotech. 2018, 93, 1488–1494. [Google Scholar] [CrossRef]
- Pelesz, A.; Fojcik, M. Effect of High Static Electric Field on Germination and Early Stage of Growth of Avena Sativa and Raphanus Sativus. J. Electrost. 2024, 130, 103939. [Google Scholar] [CrossRef]
- Kim, D.; Oh, M.-M. Vertical and Horizontal Electric Fields Stimulate Growth and Physiological Responses in Lettuce. Hortic. Environ. Biotechnol. 2024, 65, 229–238. [Google Scholar] [CrossRef]
- Liu, X.; Wan, B.; Hua, H.; Li, X. Electric Field Generated by High-Voltage Transmission System Is Beneficial to Cotton Growth. Acta Ecol. Sin. 2021, 41, 552–559. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, X.; Tang, H.; Huang, F. Effect of Plasma and Electrostatic Field on the Growth and Nutrients of Chinese Cabbage. IEEE Trans. Plasma Sci. 2022, 50, 835–840. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, C.; Li, X.; Dai, S.; Ying, Y.; Ping, J. Highly Efficient Raindrop Energy-Based Triboelectric Nanogenerator for Self-Powered Intelligent Greenhouse. ACS Nano 2021, 15, 12314–12323. [Google Scholar] [CrossRef]
- Han, J.; Feng, Y.; Chen, P.; Liang, X.; Pang, H.; Jiang, T.; Wang, Z.L. Wind-Driven Soft-Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur with High Performance and Durability for Smart Farming. Adv. Funct. Mater. 2022, 32, 2108580. [Google Scholar] [CrossRef]
- Gao, A.; Zhou, Q.; Cao, Z.; Xu, W.; Zhou, K.; Wang, B.; Pan, J.; Pan, C.; Xia, F. A Self-Powered Biochemical Sensor for Intelligent Agriculture Enabled by Signal Enhanced Triboelectric Nanogenerator. Adv. Sci. 2024, 11, 2309824. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, L.; Jin, Z.; Lee, C. A Multifunctional Hydrogel with Multimodal Self-Powered Sensing Capability and Stable Direct Current Output for Outdoor Plant Monitoring Systems. Nano-Micro Lett. 2024, 17, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, D.; Ji, X.; Zhang, H.; Wu, Y.; Yang, C.; Xu, Z.; Mao, R. A Superhydrophobic Droplet Triboelectric Nanogenerator Inspired by Water Strider for Self-Powered Smart Greenhouse. Nano Energy 2024, 129, 109985. [Google Scholar] [CrossRef]
- Chen, P.; An, J.; Shu, S.; Cheng, R.; Nie, J.; Jiang, T.; Wang, Z.L. Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture. Adv. Energy Mater. 2021, 11, 2003066. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Jiang, C.; Shao, Y.; Luo, J.; Ying, Y.; Ping, J. A Water-Driven and Low-Damping Triboelectric Nanogenerator Based on Agricultural Debris for Smart Agriculture. Small 2022, 18, 2204949. [Google Scholar] [CrossRef]
- Dai, S.; Li, X.; Jiang, C.; Zhang, Q.; Peng, B.; Ping, J.; Ying, Y. Omnidirectional Wind Energy Harvester for Self-Powered Agro-Environmental Information Sensing. Nano Energy 2022, 91, 106686. [Google Scholar] [CrossRef]
- Gu, G.; Gu, G.; Shang, W.; Zhang, Z.; Zhang, W.; Wang, C.; Fang, D.; Cheng, G.; Du, Z. The Self-Powered Agricultural Sensing System with 1.7 Km Wireless Multichannel Signal Transmission Using a Pulsed Triboelectric Nanogenerator of Corn Husk Composite Film. Nano Energy 2022, 102, 107699. [Google Scholar] [CrossRef]
- Yang, N.; Li, Y.; Xu, Z.; Zhu, Y.; He, Q.; Wang, Z.; Zhang, X.; Liu, J.; Liu, C.; Wang, Y.; et al. A Blade-Type Triboelectric-Electromagnetic Hybrid Generator with Double Frequency Up-Conversion Mechanism for Harvesting Breeze Wind Energy. ACS Appl. Mater. Interfaces 2024, 16, 33404–33415. [Google Scholar] [CrossRef]
- Gao, D.; Wu, H.; Lyu, B.; Zheng, C.; Zhou, Y.; Ma, J. Waste-To-Energy: Sustainable Triboelectric Stimulating System Constructed by Bone Gelatin Based Triboelectric Nanogenerator for Crop Growth. Small 2025, 21, 2408925. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Jin, Z.; He, J.; Ju, G.; Mi, L.; Gao, Y.; Lei, R.; Cheng, G. Advances in the Application of Electrostatics in Agriculture: A Review from Macroscale Spray Engineering to Microscale Plant Biostimulation. Micromachines 2025, 16, 1285. https://doi.org/10.3390/mi16111285
Cao J, Jin Z, He J, Ju G, Mi L, Gao Y, Lei R, Cheng G. Advances in the Application of Electrostatics in Agriculture: A Review from Macroscale Spray Engineering to Microscale Plant Biostimulation. Micromachines. 2025; 16(11):1285. https://doi.org/10.3390/mi16111285
Chicago/Turabian StyleCao, Jie, Zhelin Jin, Juan He, Guizhang Ju, Letian Mi, Yang Gao, Rui Lei, and Guanggui Cheng. 2025. "Advances in the Application of Electrostatics in Agriculture: A Review from Macroscale Spray Engineering to Microscale Plant Biostimulation" Micromachines 16, no. 11: 1285. https://doi.org/10.3390/mi16111285
APA StyleCao, J., Jin, Z., He, J., Ju, G., Mi, L., Gao, Y., Lei, R., & Cheng, G. (2025). Advances in the Application of Electrostatics in Agriculture: A Review from Macroscale Spray Engineering to Microscale Plant Biostimulation. Micromachines, 16(11), 1285. https://doi.org/10.3390/mi16111285
