Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength
Abstract
1. Introduction
2. Device Structures, Material Growth, and the Device Fabrication
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Rabinowitz, J.; Bianconi, S.; Park, M.-S.; Mohseni, H. Highly sensitive SWIR detector array based on nanoscale phototransistors integrated on CMOS readout. Appl. Phys. Lett. 2020, 117, 191102. [Google Scholar] [CrossRef]
- Wen, M.; Wei, L.; Zhuang, X.; He, D.; Wang, S.; Wang, Y. High-sensitivity short-wave infrared technology for thermal imaging. Infrared Phys. Technol. 2018, 95, 93–99. [Google Scholar] [CrossRef]
- Hinds, S.; Klem, E.; Gregory, C.; Hilton, A.; Hames, G.; Violette, K. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers; SPIE: Bellingham, WA, USA, 2020; Volume 11407. [Google Scholar]
- Treps, N. Surpassing the Standard Quantum Limit for Optical Imaging Using Nonclassical Multimode Light. Phys. Rev. Lett. 2002, 88, 203601. [Google Scholar] [CrossRef] [PubMed]
- Pooser, R.C.; Lawrie, B. Plasmonic Trace Sensing below the Photon Shot Noise Limit. ACS Photonics 2016, 3, 8–13. [Google Scholar] [CrossRef]
- Lee, C.; Lawrie, B.; Pooser, R.; Lee, K.-G.; Rockstuhl, C.; Tame, M. Quantum Plasmonic Sensors. Chem. Rev. 2021, 121, 4743–4804. [Google Scholar] [CrossRef] [PubMed]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Martinelli, R.U.; Zamerowski, T.J.; Longeway, P.A. 2.6 μm InGaAs photodiodes. Appl. Phys. Lett. 1988, 53, 989–991. [Google Scholar] [CrossRef]
- Linga, K.R.; Olsen, G.H.; Ban, V.S.; Joshi, A.N.; Kosonocky, W.F. Dark current analysis and characterization of In/sub x/Ga/sub 1-x/As/InAs/sub y/P/sub 1-y/ graded photodiodes with x>0.53 for response to longer wavelengths (>1.7 mu m). J. Light. Technol. 1992, 10, 1050–1055. [Google Scholar] [CrossRef]
- Olsen, G.; Lange, M.; Cohen, M.; Kim, D.-S.; Forrest, S. Three-Band 1.0–2.5 um Near-Infrared InGaAs Detector Array; SPIE: Bellingham, WA, USA, 1994; Volume 2225. [Google Scholar]
- Zimmermann, L.; John, J.; Degroote, S.; Borghs, G.; Hoof, C.V.; Nemeth, S. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors. Appl. Phys. Lett. 2003, 82, 2838–2840. [Google Scholar] [CrossRef]
- Ting, D.Z.-Y.; Hill, C.J.; Soibel, A.; Keo, S.A.; Mumolo, J.M.; Nguyen, J.; Gunapala, S.D. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl. Phys. Lett. 2009, 95, 023508. [Google Scholar] [CrossRef]
- Youngdale, E.R.; Meyer, J.R.; Hoffman, C.A.; Bartoli, F.J.; Grein, C.H.; Young, P.M.; Ehrenreich, H.; Miles, R.H.; Chow, D.H. Auger lifetime enhancement in InAs–Ga1−xInxSb superlattices. Appl. Phys. Lett. 1994, 64, 3160–3162. [Google Scholar] [CrossRef]
- Delaunay, P.Y.; Nguyen, B.M.; Hoffman, D.; Huang, E.K.W.; Razeghi, M. Background Limited Performance of Long Wavelength Infrared Focal Plane Arrays Fabricated From M-Structure InAs–GaSb Superlattices. IEEE J. Quantum Electron 2009, 45, 157–162. [Google Scholar] [CrossRef]
- Nguyen, B.-M.; Hoffman, D.; Delaunay, P.-Y.; Razeghi, M. Dark current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl. Phys. Lett. 2007, 91, 163511. [Google Scholar] [CrossRef]
- Cohen-Elias, D.; Uliel, Y.; Klin, O.; Snapi, N.; Weiss, E.; Shafir, I.; Westreich, O.; Katz, M. Short wavelength infrared InAs/InSb/AlSb type-II superlattice photodetector. Infrared Phys. Technol. 2017, 84, 82–86. [Google Scholar] [CrossRef]
- Jones, A.H.; March, S.D.; Bank, S.R.; Campbell, J.C. Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2-μm applications. Nat. Photonics 2020, 14, 559–563. [Google Scholar] [CrossRef]
- Savich, G.R.; Sidor, D.E.; Du, X.; Wicks, G.W.; Debnath, M.C.; Mishima, T.D.; Santos, M.B.; Golding, T.D.; Jain, M.; Craig, A.P.; et al. III–V semiconductor extended short-wave infrared detectors. J. Vac. Sci. Technol. B 2017, 35, 02B105. [Google Scholar] [CrossRef]
- Wicks, G.; Golding, T.; Jain, M.; Savich, G.; Sidor, D.; Du, X.; Debnath, M.; Mishima, T.; Santos, M. Extended-Shortwave Infrared Unipolar Barrier Detectors; SPIE: Bellingham, WA, USA, 2015; Volume 9370. [Google Scholar]
- Leemans, J.; Pejović, V.; Georgitzikis, E.; Minjauw, M.; Siddik, A.B.; Deng, Y.-H.; Kuang, Y.; Roelkens, G.; Detavernier, C.; Lieberman, I.; et al. Colloidal III–V Quantum Dot Photodiodes for Short-Wave Infrared Photodetection. Adv. Sci. 2022, 9, 2200844. [Google Scholar] [CrossRef]
- Miao, Y.; Lin, H.; Li, B.; Dong, T.; He, C.; Du, J.; Zhao, X.; Zhou, Z.; Su, J.; Wang, H.; et al. Review of Ge(GeSn) and InGaAs Avalanche Diodes Operating in the SWIR Spectral Region. Nanomaterials 2023, 13, 606. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Du, W.; Zhang, Y.; Grant, P.C.; Grant, J.M.; Sun, G.; Soref, R.A.; Margetis, J.; Tolle, J.; et al. High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging. J. Appl. Phys. 2018, 124, 013101. [Google Scholar] [CrossRef]
- Eales, T.D.; Marko, I.P.; Schulz, S.; O’Halloran, E.; Ghetmiri, S.; Du, W.; Zhou, Y.; Yu, S.-Q.; Margetis, J.; Tolle, J.; et al. Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration. Sci. Rep. 2019, 9, 14077. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Lee, S.Y.; Lei, D.; Gong, X.; Loke, W.K.; Yoon, S.F.; Liang, G.; Yeo, Y.C. Avalanche photodiode featuring Germanium-tin multiple quantum wells on silicon: Extending photodetection to wavelengths of 2 and beyond. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 30.35.31–30.35.34. [Google Scholar]
- Yang, J.; Hu, H.; Miao, Y.; Wang, B.; Wang, W.; Su, H.; Ma, Y. Single-crystalline GePb alloys formed by rapid thermal annealing-induced epitaxy. J. Phys. D Appl. Phys. 2020, 53, 265105. [Google Scholar] [CrossRef]
- Besikci, C. Extended Short Wavelength infrared FPA Technology: Status and Trends; SPIE: Bellingham, WA, USA, 2018; Volume 10540. [Google Scholar]
- Olsen, G.; Joshi, A.; Mason, S.; Woodruff, K.; Mykietyn, E.; Ban, V.; Lange, M.; Hladky, J.; Erickson, G.; Gasparian, G. Room-Temperature InGaAs Detector Arrays for 2.5 µm; SPIE: Bellingham, WA, USA, 1990; Volume 1157. [Google Scholar]
- D’Souza, A.; Stapelbroek, M.; Dawson, L.; Ely, P.; Yoneyama, C.; Reekstin, J.; Skokan, M.; Kinch, M.; Liao, P.; Ohlson, M.; et al. SWIR to LWIR HDVIP HgCdTe Detector Array Performance; SPIE: Bellingham, WA, USA, 2006; Volume 6206. [Google Scholar]
- Wang, H.; Xia, H.; Liu, Y.; Chen, Y.; Xie, R.; Wang, Z.; Wang, P.; Miao, J.; Wang, F.; Li, T.; et al. Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 2024, 15, 3639. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, R.D.; Velebir, J.R.; Campbell, J.C.; Qua, G.J. Avalanche photodiodes with separate absorption and multiplication regions grown by metalorganic vapor deposition. IEEE Electron Device Lett. 1986, 7, 296–298. [Google Scholar] [CrossRef]
- Li, J.; Dehzangi, A.; Brown, G.; Razeghi, M. Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice. Sci. Rep. 2021, 11, 7104. [Google Scholar] [CrossRef] [PubMed]
- Moss, T.S. The Interpretation of the Properties of Indium Antimonide. Proc. Phys. Society Sect. B 1954, 67, 775–782. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Ghezzi, C.; Magnanini, R.; Parisini, A.; Rotelli, B.; Tarricone, L.; Bosacchi, A.; Franchi, S. Concentration dependence of optical absorption in tellurium-doped GaSb. Semicond. Sci. Technol. 1997, 12, 858–866. [Google Scholar] [CrossRef]
- Xiang, B.; Gu, G.; Ramaswamyd, N.; Drew, C.; Lu, X. Voltage-dependent extended shortwave infrared (e-SWIR) photodetection-band tuning utilizing the Moss–Burstein effect. J. Phys. D Appl. Phys. 2023, 56, 055101. [Google Scholar] [CrossRef]
- McIntyre, R.J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices 1966, ED-13, 164–168. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
Performance Features | This Work | AlInAsSb/GaSb APD [17] | Ge1−xSnx APD [24] | Stepwise WSe2 APD [29] |
---|---|---|---|---|
Cutoff Wavelength (µm) | 2.6 | 2.0 | 2.003 | <1 |
Gain | 190 | >100 | >15 | >100 |
Operating Temperature | RT | RT | RT | RT |
Reverse Bias (V) | <2.5 | >20 | <10 | <1.6 |
K-Factor | N/A | N/A | ||
Photoresponsivity (A/W) | N/A | 0.33 | N/A | |
N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benker, M.; Gu, G.; Senckowski, A.Z.; Xiang, B.; Dwyer, C.H.; Adams, R.J.; Xie, Y.; Nagarajan, R.; Li, Y.; Lu, X. Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength. Micromachines 2024, 15, 941. https://doi.org/10.3390/mi15080941
Benker M, Gu G, Senckowski AZ, Xiang B, Dwyer CH, Adams RJ, Xie Y, Nagarajan R, Li Y, Lu X. Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength. Micromachines. 2024; 15(8):941. https://doi.org/10.3390/mi15080941
Chicago/Turabian StyleBenker, Michael, Guiru Gu, Alexander Z. Senckowski, Boyang Xiang, Charles H. Dwyer, Robert J. Adams, Yuanchang Xie, Ramaswamy Nagarajan, Yifei Li, and Xuejun Lu. 2024. "Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength" Micromachines 15, no. 8: 941. https://doi.org/10.3390/mi15080941
APA StyleBenker, M., Gu, G., Senckowski, A. Z., Xiang, B., Dwyer, C. H., Adams, R. J., Xie, Y., Nagarajan, R., Li, Y., & Lu, X. (2024). Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength. Micromachines, 15(8), 941. https://doi.org/10.3390/mi15080941