Long-Travel 3-PRR Parallel Platform Based on Biomimetic Variable-Diameter Helical Flexible Hinges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanism Design
2.1.1. Variable-Diameter Helical Flexible Hinge
2.1.2. Design of the 3-PRR Flexible Parallel Platform
2.2. Kinematic Model
2.2.1. Inverse Kinematics Solution
2.2.2. Forward Kinematics Solution
3. Results and Discussion
3.1. Simulation
3.2. Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, Y.; Vinoth, V.; Kiran, Y.R.; Mohanta, J.K.; Mohan, S. Inverse dynamics and control of a 3-dof planar parallel (U-shaped 3-PPR) manipulator. Robot. Comput. Integr. Manuf. 2015, 34, 164–179. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, S.; Fu, H. Stiffness analysis of a novel flexible positioning mechanism for large-aperture grating tiling. J. Mech. Eng. 2018, 54, 117–125. [Google Scholar] [CrossRef]
- Ren, J.; Li, Q.; Wu, H.; Cao, Q. Optimal design for 3-PSS Flexible Parallel micromanipulator based on kinematic and dynamic characteristics. Micromachines 2022, 13, 1457. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sun, D.; Mills, J.K.; Cheng, S.H. Integrated vision and force control in suspended cell injection system: Towards automatic batch biomanipulation. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3413–3418. [Google Scholar]
- Huang, H.B.; Sun, D.; Mills, J.K.; Cheng, S.H. Robotic cell injection system with position and force control: Toward automatic batch biomanipulation. IEEE Trans. Robot. 2009, 25, 727–737. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J.; Shen, X.; Xiao, Q.; Huang, J.; Wang, Y. Design, modeling, and testing of a novel XY piezo-actuated compliant micro-positioning stage. Micromachines 2019, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, F.; Zhu, J.; Pang, M.; Ru, C. Long-stroke nanopositioning stage driven by piezoelectric motor. J. Sens. 2014, 2014, 926314. [Google Scholar] [CrossRef]
- Ferris, M.; Phillips, N. The use and advancement of an affordable, adaptable antenna. In Proceedings of the 14th European Space Mechanisms & Tribology Symposium Constance, Constance, Germany, 28–30 September 2011; pp. 227–234. [Google Scholar]
- Du, Z.; Shi, R.; Dong, W. A piezo-actuated high-precision flexible parallel pointing mechanism: Conceptual design, development, and experiments. IEEE Trans. Robot. 2014, 30, 131–137. [Google Scholar] [CrossRef]
- Al-Jodah, A.; Shirinzadeh, B.; Ghafarian, M.; Das, T.K.; Pinskier, J. Design, modeling, and control of a large range 3-DOF micropositioning stage. Mech. Mach. Theory 2021, 156, 104159. [Google Scholar] [CrossRef]
- Masouleh, M.T.; Gosselin, C.M. Determination of singularity-free zones in the workspace of planar 3-PRR parallel. J. Mech. Des. 2007, 129, 649–652. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhang, X.; Jian, Z.; Zhang, H. Error modelling and motion reliability analysis of a planar parallel manipulator with multiple uncertainties. Mech. Mach. Theory 2018, 124, 55–72. [Google Scholar] [CrossRef]
- Lu, S.; Tian, C.; Yan, P. Adaptive extended state observer-based synergetic control for a long-stroke compliant microstage with stress stiffening. IEEE/ASME Trans. Mechatron. 2020, 25, 259–270. [Google Scholar] [CrossRef]
- Hongtao, Y.; Chi, Z.; Bao, Y.; Chen, S.L.; Fang, Z.; Li, R.; Yang, G. The design and kinetostatic modeling of 3PPR planar compliant parallel mechanism based on compliance matrix method. Rev. Sci. Instrum. 2019, 90, 045102. [Google Scholar]
- Zhang, L.; Yan, P. Design of a parallel XYθ micro-manipulating system with large stroke. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 4775–4780. [Google Scholar] [CrossRef]
- Chen, G.; Ding, Y.; Zhu, X.; Liu, P.; Ding, H. Design and modeling of a compliant tip-tilt-piston micropositioning stage with a large rotation range. Proc. Inst. Mech. Eng. C 2019, 233, 2001–2014. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage. Robot. Comput. Integr. Manuf. 2018, 54, 162–172. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, C.; Yang, G.; Dong, W. Optimal design and tracking control of a superelastic flexure hinge based 3-PRR compliant parallel manipulator. IEEE Access 2019, 7, 174236–174247. [Google Scholar] [CrossRef]
- Du, Z.; Shi, R.; Dong, W. Kinematics modeling of a 6-PSS parallel mechanism with wide-range flexure hinges. J. Cent. South Univ. 2012, 19, 2482–2487. [Google Scholar] [CrossRef]
- Yao, G.; Liu, P.; Lu, S.; Yan, P. Design and analysis of additive manufactured flexure hinge with large stroke and high accuracy. Int. J. Precis. Eng. Manuf. 2022, 23, 753–761. [Google Scholar] [CrossRef]
- Lum, G.Z.; Teo, T.J.; Yeo, S.H.; Yang, G.; Sitti, M. Structural optimization for flexure-based parallel mechanisms—Towards achieving optimal dynamic and stiffness properties. Precis. Eng. 2015, 42, 195–207. [Google Scholar] [CrossRef]
- Lum, G.Z.; Pham, M.T.; Teo, T.J.; Yang, G.; Yeo, S.H.; Sitti, M. An XY θz flexure mechanism with optimal stiffness properties. In Proceedings of the2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1103–1110. [Google Scholar]
Parameter | L | W | H | w | t | an | b | |
---|---|---|---|---|---|---|---|---|
Value (mm) | 44 | 14 | 14 | 2 | 2 | 7 | 45 | 100 |
Test Number | Input Displacement (mm) | Simulation Output Displacement (mm-deg) | Theoretical Output Displacement (mm-deg) | Error (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
i | d1 | d2 | d3 | XP | YP | θP | XP | YP | θP | eXp | eYp | ed3 |
1 | −20 | 3 | 6 | −14.74 | 1.95 | −4.68 | −15.3 | 1.94 | −4.95 | 3.5 | 0.5 | 5.4 |
2 | 10 | −5 | 10 | 11.93 | −2.66 | −2.59 | 12.42 | −2.54 | −2.69 | 3.9 | 4.7 | 3.7 |
3 | 10 | 10 | 10 | 0.185 | 0.185 | 9.91 | 0.173 | 0.174 | 10.15 | 6.9 | 6.3 | 1.8 |
4 | −18 | 13 | −25 | −8.73 | −22.89 | −12.9 | −8.25 | −23.3 | −12.85 | 5.8 | 1.6 | 0.39 |
5 | −5 | −10 | −5 | 1.69 | 2.88 | −6.58 | 1.62 | 2.86 | −6.67 | 4.3 | 0.69 | 1.3 |
Test Number | Displacement of the Platform (mm) | Simulation Input Displacement (mm-deg) | Theoretical Input Displacement (mm-deg) | Error (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
i | XP | YP | θP | d1 | d2 | d3 | d1 | d2 | d3 | ed1 | ed2 | ed3 |
1 | 28 | 21 | 5.7 | 38.1 | −24.45 | 22.02 | 39.11 | −24.17 | 23.21 | 2.5 | 1.1 | 5.1 |
2 | −13 | 15 | 1.17 | −9.02 | −1.25 | 21.54 | −9.26 | −1.24 | 20.8 | 2.5 | 0.8 | 3.1 |
3 | −28 | 15 | −11 | −36.7 | 1.74 | 18.78 | −36.5 | 1.67 | 19.33 | 0.57 | 4.1 | 2.8 |
4 | 15 | 5 | 10 | 26.3 | −0.39 | 9.5 | 25.38 | −0.377 | 9.266 | 3.6 | 3.4 | 2.5 |
5 | −5 | −5 | −5 | 0.31 | 10.5 | 3.5 | 0.296 | 10.91 | 3.62 | 4.7 | 3.8 | 3.3 |
Design | Mechanism Volume (mm3) | Workspace Volume (mm2-mrad) | Compactness Index (rad/mm) |
---|---|---|---|
[10] | 156.48 × 137.51 × 92.5 | 2.86 × 3.22 × 66.29 | 3.0672 |
[10] | 350 × 350 × 60 | 1.2 × 1.2 × 104.72 | 0.2052 |
[21] | 350 × 270 × 60 | 2.5 × 2.5 × 174.53 | 1.8967 |
[22] | 400 × 400 × 55 | 5 × 5 × 87.27 | 2.4716 |
This work | 287 × 275 × 46 | 30 × 30 × 610.86 | 1514 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Liu, P.; Lu, S.; Yan, P.; Sun, Q. Long-Travel 3-PRR Parallel Platform Based on Biomimetic Variable-Diameter Helical Flexible Hinges. Micromachines 2024, 15, 338. https://doi.org/10.3390/mi15030338
Dong H, Liu P, Lu S, Yan P, Sun Q. Long-Travel 3-PRR Parallel Platform Based on Biomimetic Variable-Diameter Helical Flexible Hinges. Micromachines. 2024; 15(3):338. https://doi.org/10.3390/mi15030338
Chicago/Turabian StyleDong, Hao, Pengbo Liu, Shuaishuai Lu, Peng Yan, and Qiyuan Sun. 2024. "Long-Travel 3-PRR Parallel Platform Based on Biomimetic Variable-Diameter Helical Flexible Hinges" Micromachines 15, no. 3: 338. https://doi.org/10.3390/mi15030338
APA StyleDong, H., Liu, P., Lu, S., Yan, P., & Sun, Q. (2024). Long-Travel 3-PRR Parallel Platform Based on Biomimetic Variable-Diameter Helical Flexible Hinges. Micromachines, 15(3), 338. https://doi.org/10.3390/mi15030338