Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber
Abstract
1. Introduction
2. Deposition of Bentonite Clay Saturable Absorber (SA)
3. Synthesis and Characterization of Bentonite Clay Nanoparticles
4. Modulation Depth of Bentonite Clay Nanoparticles
5. Experimental Setup of Erbium-Doped Fiber Laser
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, W.; Fang, Q.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Fiber lasers and their applications. Appl. Opt. 2014, 53, 6554–6568. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, L.; Sharafudeen, K.; Qiu, J. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser. Laser Phys. 2013, 23, 105105. [Google Scholar] [CrossRef]
- Armas-Rivera, I.; Rodriguez-Morales, L.A.; Durán-Sánchez, M.; Avazpour, M.; Carrascosa, A.; Silvestre, E.; Kuzin, E.A.; Andres, M.V.; Ibarra-Escamilla, B. Wide wavelength-tunable passive mode-locked Erbium-doped fiber laser with a SESAM. Opt. Laser Technol. 2021, 134, 106593. [Google Scholar] [CrossRef]
- Subramaniam, T.K. Erbium doped fiber lasers for long distance communication using network of fiber optics. Am. J. Opt. Photonics 2015, 3, 34–37. [Google Scholar] [CrossRef]
- Głuszek, A.; Senna Vieira, F.; Hudzikowski, A.; Wąż, A.; Sotor, J.; Foltynowicz, A.; Soboń, G. Compact mode-locked Er-doped fiber laser for broadband cavity-enhanced spectroscopy. Appl. Phys. B 2020, 126, 137. [Google Scholar] [CrossRef]
- Falconi, M.C.; Loconsole, A.M.; Annunziato, A.; Cozic, S.; Poulain, S.; Prudenzano, F. Design of a Broadband Erbium-doped Fluoroindate Fiber Laser Emitting up to 3.91 µm. J. Light. Technol. 2023, 41, 6065–6072. [Google Scholar] [CrossRef]
- Friebele, E.J.; Baker, C.C.; Sanghera, J.S.; LuValle, M.J.; Logothetis, S. Erbium doped fibers for radiation tolerant, high power space laser communications. In Free-Space Laser Communications XXXII; SPIE: Bellingham, WA, USA, 2020; Volume 11272, pp. 235–244. [Google Scholar]
- Zhang, L.; Wang, F. Stannic oxide saturable absorbers for generating Q-switched erbium-doped fiber lasers. Opt. Fiber Technol. 2023, 80, 103469. [Google Scholar] [CrossRef]
- Ahmad, H.; Soltani, S.; Thambiratnam, K.; Yasin, M.; Tiu, Z.C. Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol. 2019, 50, 177–182. [Google Scholar] [CrossRef]
- Chernysheva, M.; Al Araimi, M.; Kbashi, H.; Arif, R.; Sergeyev, S.V.; Rozhin, A. Isolator-free switchable uni-and bidirectional hybrid mode-locked erbium-doped fiber laser. Opt. Express 2016, 24, 15721–15729. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, W.; Liu, X.; Ouyang, Y.; Hou, H.; Lei, M.; Wei, Z. Yttrium oxide as a Q-switcher for the near-infrared erbium-doped fiber laser. Nanophotonics 2020, 9, 2887–2894. [Google Scholar] [CrossRef]
- Hu, G.; Zhu, L.; Chen, K.; Chen, G.; Wang, Z.; Guo, G. Tunable period-multiplying Q-switched pulse outputs based on birefringence induced multiwavelength tuning in a linear erbium-doped fiber oscillator. Infrared Phys. Technol. 2021, 117, 103821. [Google Scholar] [CrossRef]
- Harun, S.W.; Ismail, M.A.; Ahmad, F.; Ismail, M.F.; Nor, R.M.; Zulkepely, N.R.; Ahmad, H. A Q-switched erbium-doped fiber laser with a carbon nanotube based saturable absorber. Chin. Phys. Lett. 2012, 29, 114202. [Google Scholar] [CrossRef]
- Chang, Y.M.; Lee, J.; Jhon, Y.M.; Lee, J.H. Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator. Opt. Express 2011, 19, 26911–26916. [Google Scholar] [CrossRef] [PubMed]
- Nissilae, S.M.; Kostamovaara, J.T. Fiber laser as the pulse source for a laser rangefinder system. In Industrial Applications of Optical Inspection, Metrology, and Sensing; SPIE: Bellingham, WA, USA, 1993; Volume 1821, pp. 375–383. [Google Scholar]
- Chandonnet, A.; Larose, G. High-power Q-switched erbium fiber laser using an all-fiber intensity modulator. Opt. Eng. 1993, 32, 2031. [Google Scholar] [CrossRef]
- Keller, U.; Weingarten, K.J.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Fluck, R.; Honninger, C.; Matuschek, N.; Der Au, J.A. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef]
- Muhammad, F.D.; Zulkifli, M.Z.; Latif, A.A.; Harun, S.W.; Ahmad, H. Graphene-based saturable absorber for single-longitudinal-mode operation of highly doped erbium-doped fiber laser. IEEE Photonics J. 2012, 4, 467–475. [Google Scholar] [CrossRef]
- Lazdovskaia, U.S.; Orekhov, I.O.; Ismaeel, A.; Feifei, Y.; Dvoretskiy, D.A.; Sazonkin, S.G.; Karasik, V.E.; Denisov, L.K.; Davydov, V.A. High-Density Well-Aligned Single-Walled Carbon Nanotubes for Application as a Saturable Absorber with a High-Pass Filter Effect in an Erbium-Doped Ultra-Short-Pulse Fiber Laser. ACS Appl. Nano Mater. 2023, 6, 23410–23417. [Google Scholar] [CrossRef]
- Hong, Z.; Jiang, X.; Zhang, M.; Zhang, H.; Liu, X. High power and large-energy pulse generation in an erbium-doped fiber laser by a ferromagnetic insulator-Cr2Si2Te6 saturable absorber. Nanomaterials 2022, 12, 564. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.N.; Jiao, Z.H.; Liu, W.J. Ternary transition metal dichalcogenides for passively Q-switched Er-doped fiber laser applications. Optik 2021, 248, 168096. [Google Scholar] [CrossRef]
- Asghar, H.; Ahmed, R.; Ajmal, R.; Umar, Z.A.; McInerney, J.G.; Baig, M.A. Ameliorating the stability of erbium-doped fiber laser using saturable absorber fabricated by the pulsed laser deposition technique. Sci. Rep. 2022, 12, 20267. [Google Scholar] [CrossRef]
- Asghar, H.; Ahmed, R.; Umar, Z.A.; Baig, M.A. A novel technique for the fabrication of a saturable absorber for fiber lasers: Pulsed laser deposition. Laser Phys. Lett. 2022, 19, 075106. [Google Scholar] [CrossRef]
- Alghamdi, T.A.; Adwan, S.; Arof, H.; Harun, S.W. Application of black phosphorus for pulse generation in erbium-doped fiber laser. Results Opt. 2021, 4, 100091. [Google Scholar] [CrossRef]
- Asghar, H.; Ahmed, R.; Sohail, M.; Umar, Z.A.; Baig, M.A. Q-switched pulse operation in erbium-doped fiber laser subject to CdS nanoparticles-based saturable absorber deposit directly on the fiber ferrule. Opt. Mater. 2022, 134, 113109. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Effect of nanoclay on the electrical resistivity and rheological properties of smart and sensing bentonite drilling muds. J. Pet. Sci. Eng. 2015, 130, 86–95. [Google Scholar] [CrossRef]
- Bhat, G.; Hegde, R.R.; Kamath, M.G.; Deshpande, B. Nanoclay reinforced fibers and nonwovens. J. Eng. Fibers Fabr. 2008, 3, 155892500800300303. [Google Scholar] [CrossRef]
- Muhammad, F.D.; Chyi, J.L.Y.; Mohd Asran, A.N.; Alresheedi, M.T.; Ng, E.K.; Mahdi, M.A. Fe2O3 Nanoparticle-Based Q-Switched Pulse Fiber Laser. Photonics 2023, 10, 995. [Google Scholar] [CrossRef]
- Yusoff, R.A.M.; Jafry, A.A.A.; Kasim, N.; Zulkipli, N.F.; Samsamnun, F.S.M.; Yasin, M.; Harun, S.W. Q-switched and mode-locked erbium-doped fiber laser using gadolinium oxide as saturable absorber. Opt. Fiber Technol. 2020, 57, 102209. [Google Scholar] [CrossRef]
- Johari, A.R.; Krishnan, G.; Bakhtiar, H.; Sapingi, H.H.J. Pulsed Laser Performance of Erbium Doped Fiber Laser Using Titanium Dioxide Nanoparticles as Saturable Absorber. J. Phys. Conf. Ser. 2021, 1892, 012013. [Google Scholar] [CrossRef]
- Nizamani, B.; Memon, F.A.; Umar, Z.A.; Salam, S.; Najm, M.M.; Khudus, M.A.; Hanafi, E.; Baig, M.A.; Harun, S.W. Q-switched erbium-doped fiber laser with silicon oxycarbide saturable absorber. Optik 2020, 219, 165234. [Google Scholar] [CrossRef]
- Al-Hayali, S.K.M.; Mohammed, D.Z.; Khaleel, W.A.; Al-Janabi, A.H. Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser. Appl. Opt. 2017, 56, 4720–4726. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.A.; Al-Janabi, A.H. Aluminum nanoparticles saturable absorber as a passive Q-switcher for erbium-doped fiber laser ring cavity configuration. Laser Phys. 2019, 29, 045102. [Google Scholar] [CrossRef]
- Liu, G.; Lyu, Y.; Li, Z.; Wu, T.; Yuan, J.; Yue, X.; Zhang, H.; Zhang, F.; Fu, S. Q-switched erbium-doped fiber laser based on silicon nanosheets as saturable absorber. Optik 2020, 202, 163692. [Google Scholar] [CrossRef]
- Nizamani, B.; Jafry, A.A.A.; Salam, S.; Fizza, G.; Soboh, R.S.M.; Khudus, M.A.; Hanafi, E.; Yasin, M.; Harun, S.W. Aluminium zinc oxide as a saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser. Laser Phys. 2021, 31, 055101. [Google Scholar] [CrossRef]
SA-Material | Integration Method | Pulse Duration (μs) | Repetition Rates (kHz) | Peak Power (mW) | Average Power (mW) | Pulse Energy (nJ) | Q-Switching Threshold- (mW) | Q-Switching Range (mW) | SNR (dB) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
SiOC | PVA-Film | 2.1 | 96.7 | - | 2.4 | 25 | 111.1 | 111.1–198 | 70 | [31] |
Al2O3 | Nanoparticles | 2.8 | 81 | - | - | 56.7 | 158 | 158–330 | 56 | [32] |
Al | Nanoparticles | 2.17 | 48.8 | - | 0.55 | 11.29 | 156 | 156–300 | 45 | [33] |
Si | PVA-Film | 2.32 | 58.7 | 6.3 | 0.89 | - | 41.5 | 41.5–164 | - | [34] |
Aluminium zinc oxide | PVA-Film | 2.2 | 86 | 21.5 | 4.1 | 47.3 | 45.3 | 45.3–198 | 69 | [35] |
Al2H2O6Si | Nanoparticles | 2.6 | 103.6 | 16.56 | 4.6 | 47 | 30.8 | 30.8–278.96 | 51 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, H.; Khalid, U.S.; Sohail, M.; Alrebdi, T.A.; Umar, Z.A.; Alshehri, A.M.; Ahmed, R.; Baig, M.A. Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber. Micromachines 2024, 15, 267. https://doi.org/10.3390/mi15020267
Asghar H, Khalid US, Sohail M, Alrebdi TA, Umar ZA, Alshehri AM, Ahmed R, Baig MA. Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber. Micromachines. 2024; 15(2):267. https://doi.org/10.3390/mi15020267
Chicago/Turabian StyleAsghar, Haroon, Umer Sayyab Khalid, Muhammad Sohail, Tahani A. Alrebdi, Zeshan A. Umar, A. M. Alshehri, Rizwan Ahmed, and M. Aslam Baig. 2024. "Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber" Micromachines 15, no. 2: 267. https://doi.org/10.3390/mi15020267
APA StyleAsghar, H., Khalid, U. S., Sohail, M., Alrebdi, T. A., Umar, Z. A., Alshehri, A. M., Ahmed, R., & Baig, M. A. (2024). Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber. Micromachines, 15(2), 267. https://doi.org/10.3390/mi15020267