Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morley, J.W.; Goodwin, A.W.; Darian-Smith, I. Tactile discrimination of gratings. Exp. Brain Res. 1983, 49, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.R.; Packard, W.J.; Cutkosky, M.R. Utilizing sensed incipient slip signals for grasp force control. In Proceedings of the Symposium on Rexible Automation, San Francisco, CA, USA, 13–15 July 1992; pp. 1237–1243. [Google Scholar]
- Turrell, Y.N.; Li, F.X.; Wing, A.M. Estimating the minimum grip force required when grasping objects under impulsive loading conditions. Behav. Res. Methods Instrum. Comput. 2001, 33, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Donlon, E.; Dong, S.; Liu, M.; Li, J.; Adelson, E.; Rodriguez, A. GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 1927–1934. [Google Scholar] [CrossRef]
- Taylor, I.H.; Dong, S.; Rodriguez, A. Gel Slim 3.0: High-Resolution Measurement of Shape, Force and Slip in a Compact Tactile-Sensing Finger. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10781–10787. [Google Scholar]
- Alspach, A.; Hashimoto, K.; Kuppuswarny, N.; Tedrake, R. Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation. In Proceedings of the RoboSoft 2019–2019 IEEE International Conference on Soft Robotics, Seoul, Republic of Korea, 14–18 April 2019; pp. 597–604. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Atkeson, C.G. Combining Finger Vision and Optical Tactile Sensing: Reducing and Handling Errors While Cutting Vegetables. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016. [Google Scholar]
- Bauza, M.; Valls, E.; Lim, B.; Sechopoulos, T.; Rodriguez, A. Tactile Object Pose Estimation from the First Touch with Geometric Contact Rendering, no. CoRL. 2020. Available online: http://arxiv.org/abs/2012.05205 (accessed on 27 January 2023).
- Kuppuswamy, N.; Alspach, A.; Uttamchandani, A.; Creasey, S.; Ikeda, T.; Tedrake, R. Soft-bubble grippers for robust and perceptive manipulation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 9917–9924. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Atkeson, C.G. Implementing tactile behaviors using FingerVision. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Birmingham, UK, 15–17 November 2017; pp. 241–248. [Google Scholar] [CrossRef]
- Ma, D.; Donlon, E.; Dong, S.; Rodriguez, A. Dense tactile force estimation using gelslim and inverse FEM. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 5418–5424. [Google Scholar] [CrossRef]
- Dong, S.; Ma, D.; Donlon, E.; Rodriguez, A. Maintaining Grasps within Slipping Bounds by Monitoring Incipient Slip. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3818–3824. [Google Scholar] [CrossRef]
- Muhammad, H.B.; Oddo, C.M.; Beccai, L.; Recchiuto, C.; Anthony, C.J.; Adams, M.J.; Carrozza, M.C.; Hukins, D.W.L.; Ward, M.C.L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229. [Google Scholar] [CrossRef]
- Chang, Y.; Zuo, J.; Zhang, H.; Duan, X. State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems. Nanotechnol. Precis. Eng. 2020, 3, 43–52. [Google Scholar] [CrossRef]
- Oddo, C.M.; Beccai, L.; Muscolo, G.G.; Carrozza, M.C. A biomimetic MEMS-based tactile sensor array with fingerprints integrated in a robotic fingertip for artificial roughness encoding. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 894–900. [Google Scholar] [CrossRef]
- Makihata, M.; Tanaka, S.; Muroyama, M.; Matsuzaki, S.; Yamada, H.; Nakayama, T.; Yamaguchi, U.; Mima, K.; Nonomura, Y.; Fujiyoshi, M.; et al. Integration and packaging technology of MEMS-on-CMOS capacitive tactile sensor for robot application using thick BCB isolation layer and backside-grooved electrical connection. Sens. Actuators A Phys. 2012, 188, 103–110. [Google Scholar] [CrossRef]
- Wang, F.F.; Shen, J.J.; Wu, Y.Y. Passive tactile sensor for measuring elastic modulus of soft material: Continuum-mechanics model and experiment. Sens. Actuators A Phys. 2018, 283, 291–297. [Google Scholar] [CrossRef]
- Mei, T.; Li, W.J.; Ge, Y.; Chen, Y.; Ni, L.; Chan, M.H. An integrated MEMS three-dimensional tactile sensor with large force range. Sens. Actuators A Phys. 2000, 80, 155–162. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tanii, R.; Takahata, T.; Shimoyama, I. Development of a single-chip elasticity sensor using MEMS-based piezoresistive cantilevers with different tactile properties. Sens. Actuators A Phys. 2019, 285, 362–368. [Google Scholar] [CrossRef]
- Wettels, N.; Santos, V.J.; Johansson, R.S.; Loeb, G.E. Biomimetic tactile sensor array. Adv. Robot. 2008, 22, 829–849. [Google Scholar] [CrossRef]
- Noda, K.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators A Phys. 2006, 127, 295–301. [Google Scholar] [CrossRef]
- Choi, E.; Hwang, S.; Yoon, Y.; Seo, H.; Lee, J.; Yeom, S.; Ryu, G.; Yang, H.; Kim, S.; Sul, O.; et al. Highly Sensitive Tactile Shear Sensor Using Spatially Digitized Contact Electrodes. Sensors 2019, 19, 1300. [Google Scholar] [CrossRef] [PubMed]
- Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C.F. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors 2014, 14, 5296–5332. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Chung, K.; Tian, F.; Ku, P.-C. A tensorial shear stress sensor based on light-emitting GaN nanopillars. Appl. Phys. Lett. 2019, 115, 021103. [Google Scholar] [CrossRef]
- Dvořák, N.; Chung, K.; Mueller, K.; Ku, P.C. Ultrathin Tactile Sensors with Directional Sensitivity and a High Spatial Resolution. Nano Lett. 2021, 21, 8304–8310. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, N.A.; Ku, P.C. Low-Profile Shear Force Tactile Sensor Based on Optical Methods. IEEE Electron Device Lett. 2022, 43, 1081–1084. [Google Scholar] [CrossRef]
- Zheng, Q.; Peng, M.; Liu, Z.; Li, S.; Han, R.; Ouyang, H.; Fan, Y.; Pan, C.; Hu, W.; Zhai, J.; et al. Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Sci. Adv. 2021, 7, 7738–7764. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvořák, N.; Fazeli, N.; Ku, P.-C. Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines 2023, 14, 916. https://doi.org/10.3390/mi14050916
Dvořák N, Fazeli N, Ku P-C. Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines. 2023; 14(5):916. https://doi.org/10.3390/mi14050916
Chicago/Turabian StyleDvořák, Nathan, Nima Fazeli, and Pei-Cheng Ku. 2023. "Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor" Micromachines 14, no. 5: 916. https://doi.org/10.3390/mi14050916
APA StyleDvořák, N., Fazeli, N., & Ku, P.-C. (2023). Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines, 14(5), 916. https://doi.org/10.3390/mi14050916