Upconversion Luminescence Response of a Single YVO4:Yb, Er Particle
Abstract
:1. Introduction
2. Experimental Section
2.1. Hydrothermal Synthesis of YVO4:Er, Yb UCNPs
2.2. Characterization of the Large Nanoparticle YVO4:Er, Yb Ensemble (LNPE)
2.3. Atomic-Force Microscope (AFM) Preparation of Sample for SP Spectroscopy
2.4. Luminescence Response of the Single Particle (SP)
3. Results
3.1. Large Nanoparticle YVO4:Yb, Er Ensemble (LNPE)
3.2. Single YVO4:Yb, Er Particle (SP) on the Cleaned Glass Substrate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhelm, S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11, 10644–10653. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.S.; de Camargo, A.S.S. Exploring the use of upconversion nanoparticles in chemical and biological sensors: From surface modifications to point-of-care devices. Nanoscale Adv. 2021, 3, 5135–5165. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.-P.; Liao, L.-Y.; Feng, W.; Sun, W.; Li, Z.-X.; Xu, C.-H.; Fang, C.-J.; Sun, L.-D.; Zhang, Y.-W.; et al. Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout. Adv. Mater. 2010, 22, 633–637. [Google Scholar] [CrossRef]
- Deng, R.; Qin, F.; Chen, R.; Huang, W.; Hong, M.; Liu, X. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237–242. [Google Scholar] [CrossRef]
- Wang, L.; Dong, H.; Li, Y.; Liu, R.; Wang, Y.-F.; Bisoyi, H.K.; Sun, L.-D.; Yan, C.-H.; Li, Q. Luminescence-Driven Reversible Handedness Inversion of Self-Organized Helical Superstructures Enabled by a Novel Near-Infrared Light Nanotransducer. Adv. Mater. 2015, 27, 2065–2069. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Li, G.; Yang, B.; Yu, B.; Shen, Y.; Cong, H. Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field. Nanotechnol. Rev. 2019, 8, 1–17. [Google Scholar] [CrossRef]
- Abdul Jalil, R.; Zhang, Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 2008, 29, 4122–4128. [Google Scholar] [CrossRef]
- Li, Z.; Liang, T.; Lv, S.; Zhuang, Q.; Liu, Z. A Rationally Designed Upconversion Nanoprobe for in Vivo Detection of Hydroxyl Radical. J. Am. Chem. Soc. 2015, 137, 11179–11185. [Google Scholar] [CrossRef]
- Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K.; et al. A Core/Satellite Multifunctional Nanotheranostic for in Vivo Imaging and Tumor Eradication by Radiation/Photothermal Synergistic Therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, X.; Chen, X.; Chen, X.; Xu, Z.; Zhang, W.; Liao, Q.; Duan, X.; Wang, X.; Liu, M.; et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 2017, 142, 136–148. [Google Scholar] [CrossRef]
- Jalani, G.; Tam, V.; Vetrone, F.; Cerruti, M. Seeing, Targeting and Delivering with Upconverting Nanoparticles. J. Am. Chem. Soc. 2018, 140, 10923–10931. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Gu, N. Cell Temperature Measurement for Biometabolism Monitoring. ACS Sens. 2020, 6, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Wang, D.; Zhou, J.; Zhang, L.; Stenzel, M.H.; Su, Q.P.; Jin, D. Quantitatively Monitoring In Situ Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Lett. 2021, 21, 1651–1658. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Upconversion emission studies of single particles. Nano Today 2020, 35, 100956. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, L.; Zhang, Y.; Yan, C. Rare earth upconversion nanophosphors: Synthesis, functionalization and application as biolabels and energy transfer donors. J. Rare Earths 2010, 28, 807–819. [Google Scholar] [CrossRef]
- Dong, C.; Pichaandi, J.; Regier, T.; van Veggel, F.C.J.M. Nonstatistical Dopant Distribution of Ln3+-Doped NaGdF4 Nanoparticles. J. Phys. Chem. C 2011, 115, 15950–15958. [Google Scholar] [CrossRef]
- Mialon, G.; Gohin, M.; Gacoin, T.; Boilot, J.-P. High Temperature Strategy for Oxide Nanoparticle Synthesis. ACS Nano 2008, 2, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Mialon, G.; Türkcan, S.; Dantelle, G.; Collins, D.P.; Hadjipanayi, M.; Taylor, R.A.; Gacoin, T.; Alexandrou, A.; Boilot, J.-P. High Up-Conversion Efficiency of YVO4:Yb, Er Nanoparticles in Water down to the Single-Particle Level. J. Phys. Chem. C 2010, 114, 22449–22454. [Google Scholar] [CrossRef]
- Mahata, M.K.; Tiwari, S.P.; Mukherjee, S.; Kumar, K.; Rai, V.K. YVO4:Er3+/Yb3+ phosphor for multifunctional applications. J. Opt. Soc. Am. B 2014, 31, 1814. [Google Scholar] [CrossRef]
- Alkahtani, M.H.; Alghannam, F.S.; Sanchez, C.; Gomes, C.L.; Liang, H.; Hemmer, P.R. High efficiency upconversion nanophosphors for high-contrast bioimaging. Nanotechnology 2016, 27, 485501. [Google Scholar] [CrossRef]
- Zharkov, D.K.; Shmelev, A.G.; Leontyev, A.V.; Nikiforov, V.G.; Lobkov, V.S.; Alkahtani, M.H.; Hemmer, P.R.; Samartsev, V.V. Light converting Yb3+/Er3+ doped YVO4 nanoparticles for biological applications. Laser Phys. Lett. 2020, 17, 075901. [Google Scholar] [CrossRef]
- Casanova, D.; Giaume, D.; Moreau, M.; Martin, J.-L.; Gacoin, T.; Boilot, J.-P.; Alexandrou, A. Counting the Number of Proteins Coupled to Single Nanoparticles. J. Am. Chem. Soc. 2007, 129, 12592–12593. [Google Scholar] [CrossRef]
- Giaume, D.; Poggi, M.; Casanova, D.; Mialon, G.; Lahlil, K.; Alexandrou, A.; Gacoin, T.; Boilot, J.-P. Organic Functionalization of Luminescent Oxide Nanoparticles toward Their Application As Biological Probes. Langmuir 2008, 24, 11018–11026. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, G.; Wu, E.; Bi, G.; Wu, B.; Teng, Y.; Zhou, S.; Qiu, J. Ultrasensitive Polarized Up-Conversion of Tm3+–Yb3+ Doped β-NaYF4 Single Nanorod. Nano Lett. 2013, 13, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Song, M.; Wu, E.; Wu, B.; Zhou, J.; Zeng, H.; Liu, X.; Qiu, J. Polarization modulated upconversion luminescence: Single particle vs few-particle aggregates. Nanoscale 2015, 7, 6462–6466. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Peng, Z.; Zhan, Q.; Huang, X.; Peng, X.; Guo, X.; Dong, G.; Qiu, J. Anisotropic Excitation Polarization Response from a Single White Light-Emitting β-NaYF4:Yb3+,Pr3+ Microcrystal. Small 2019, 15, 1904298. [Google Scholar] [CrossRef]
- He, J.; Zheng, W.; Ligmajer, F.; Chan, C.-F.; Bao, Z.; Wong, K.-L.; Chen, X.; Hao, J.; Dai, J.; Yu, S.-F.; et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core–shell–satellite nanostructures. Light Sci. Appl. 2016, 6, e16217. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.T.; Lindgren, D.; Xie, H.; Thomas, D.; Gundlach, C.; Andersson-Engels, S. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale 2013, 5, 4770. [Google Scholar] [CrossRef]
- Nikiforov, V.G. Non-radiative relaxation and nonlinear properties of YVO4:Yb3+, Er3+ upconversion nanoparticles. Chem. Phys. 2021, 551, 111337. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Suyver, J.F.; Aebischer, A.; García-Revilla, S.; Gerner, P.; Güdel, H.U. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 2005, 71, 125123. [Google Scholar] [CrossRef]
- Lei, Y.; Song, H.; Yang, L.; Yu, L.; Liu, Z.; Pan, G.; Bai, X.; Fan, L. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires. J. Chem. Phys. 2005, 123, 174710. [Google Scholar] [CrossRef]
- Zaldo, C. Lanthanide-based luminescent thermosensors: From bulk to nanoscale. In Lanthanide-Based Multifunctional Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 335–379. [Google Scholar]
- Green, K.; Huang, K.; Pan, H.; Han, G.; Lim, S.F. Optical Temperature Sensing with Infrared Excited Upconversion Nanoparticles. Front. Chem. 2018, 6, 416. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Zhong, H.; Xu, S.; Cheng, L.; Sun, J.; Zhang, J.; Li, L.; Chen, B. Up-conversion luminescence, temperature sensing properties and laser-induced heating effect of Er3+/Yb3+ co-doped YNbO4 phosphors under 1550 nm excitation. Sci. Rep. 2018, 8, 5736. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhan, S.; Han, J.; Liu, Y. Nanoscale Ultrasensitive Temperature Sensing Based on Upconversion Nanoparticles with Lattice Self-Adaptation. Nano Lett. 2020, 21, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, B.; Wang, F. Overcoming thermal quenching in upconversion nanoparticles. Nanoscale 2021, 13, 3454–3462. [Google Scholar] [CrossRef]
- Rao, L.; Chen, Y.; Huang, J.; Gong, X.; Lin, Y.; Luo, Z.; Huang, Y. Polarized spectroscopic properties of Er3+/Yb3+ co-doped Ca9Y(VO4)3(PO4)4 crystal. Opt. Mater. Express 2021, 11, 3666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharkov, D.K.; Leontyev, A.V.; Shmelev, A.G.; Nurtdinova, L.A.; Chuklanov, A.P.; Nurgazizov, N.I.; Nikiforov, V.G. Upconversion Luminescence Response of a Single YVO4:Yb, Er Particle. Micromachines 2023, 14, 1075. https://doi.org/10.3390/mi14051075
Zharkov DK, Leontyev AV, Shmelev AG, Nurtdinova LA, Chuklanov AP, Nurgazizov NI, Nikiforov VG. Upconversion Luminescence Response of a Single YVO4:Yb, Er Particle. Micromachines. 2023; 14(5):1075. https://doi.org/10.3390/mi14051075
Chicago/Turabian StyleZharkov, Dmitry K., Andrey V. Leontyev, Artemi G. Shmelev, Larisa A. Nurtdinova, Anton P. Chuklanov, Niaz I. Nurgazizov, and Victor G. Nikiforov. 2023. "Upconversion Luminescence Response of a Single YVO4:Yb, Er Particle" Micromachines 14, no. 5: 1075. https://doi.org/10.3390/mi14051075
APA StyleZharkov, D. K., Leontyev, A. V., Shmelev, A. G., Nurtdinova, L. A., Chuklanov, A. P., Nurgazizov, N. I., & Nikiforov, V. G. (2023). Upconversion Luminescence Response of a Single YVO4:Yb, Er Particle. Micromachines, 14(5), 1075. https://doi.org/10.3390/mi14051075