The Recognition Algorithm of Two-Phase Flow Patterns Based on GoogLeNet+5 Coord Attention
Abstract
:1. Introduction
2. Experiment and Image Dataset
3. GoogLeNet Algorithm
4. Coordinate Attention
5. Optimized Algorithm Results and Discussion
5.1. Optimized Algorithm Architecture
5.2. Training and Testing Results
5.3. Prediction Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haase, S.; Marschner, S.; Ayubi, M.-M.; Lange, M. Gas-liquid flow in small channels: Artificial neural network classifiers for flow regime prediction. Chem. Eng. Process.-Process. Intensif. 2022, 180, 108687. [Google Scholar] [CrossRef]
- Wu, Z.; Sundén, B. Liquid-liquid two-phase flow patterns in ultra-shallow straight and serpentine microchannels. Heat Mass Transf. 2019, 55, 1095–1108. [Google Scholar] [CrossRef]
- Qian, J.-Y.; Li, X.-J.; Wu, Z.; Jin, Z.-J.; Sunden, B. A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluid. Nanofluid. 2019, 23, 116. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 16, pp. 770–812. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.G.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; Volume 10, pp. 4510–4520. [Google Scholar]
- Howard, A.G.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; Volume 10, pp. 1314–1324. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Volume 24, pp. 6848–6856. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; Volume 26, pp. 1–9. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Volume 10, pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 2, pp. 3–19. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; Volume 86, pp. 13713–13722. [Google Scholar]
- Guo, M.H.; Lu, C.Z.; Liu, Z.N.; Cheng, M.M.; Hu, S.M. Visual attention network. arXiv 2022, arXiv:2202.09741. [Google Scholar]
- Roman, A.J.; Kreitzer, P.J.; Ervin, J.S.; Hanchak, M.S.; Byrd, L.W. Flow pattern identification of horizontal two-phase refrigerant flow using neural networks. Int. Commun. Heat Mass Transf. 2016, 71, 254–264. [Google Scholar] [CrossRef]
- Tong, W.G.; Pang, X.C.; Zhu, G.H. Flow pattern identification method of gas-liquid two-phase flow based on convolutional neural networks. Chin. J. Syst. Simul. 2021, 33, 883–884. [Google Scholar]
- Zheng, Q.; Xu, Y.; Zhang, P.; Bian, J.; Wang, F. Identification of gas-liquid two-phase flow regime in pipelines with low liquid holdup based on ResNet1D-34. Flow Meas. Instrum. 2022, 88, 102249. [Google Scholar] [CrossRef]
- Liang, F.; Hang, Y.; Yu, H.; Gao, J. Identification of gas-liquid two-phase flow patterns in a horizontal pipe based on ultrasonic echoes and RBF neural network. Flow Meas. Instrum. 2021, 79, 101960. [Google Scholar] [CrossRef]
- Nie, F.; Wang, H.; Song, Q.; Zhao, Y.; Shen, J.; Gong, M. Image identification for two-phase flow patterns based on CNN algorithms. Int. J. Multiph. Flow 2022, 152, 104067. [Google Scholar] [CrossRef]
- Poletaev, I.; Tokarev, M.P.; Pervunin, K.S. Bubble patterns recognition using neural networks: Application to the analysis of a two-phase bubbly jet. Int. J. Multiph. Flow. 2020, 126, 103194. [Google Scholar] [CrossRef]
- Liu, L.; Bai, B. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks. Chem. Eng. Sci. 2019, 199, 588–601. [Google Scholar] [CrossRef]
- Du, M.; Yin, H.; Chen, X.; Wang, X. Oil-in-water two-phase flow pattern identification from experimental snapshots using convolutional neural network. IEEE Access 2019, 73, 6219–6225. [Google Scholar] [CrossRef]
- Zhang, Y.; Azman, A.N.; Xu, K.W.; Kang, C.; Kim, H.B. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning. Exp. Fluids 2020, 61, 212. [Google Scholar] [CrossRef]
- Shen, C.; Zheng, Q.; Shang, M.; Zha, L.; Su, Y. Using deep learning to recognize liquid–liquid flow patterns in microchannels. AIChE J. 2020, 66, e16260. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; Volume 10, pp. 9992–10002. [Google Scholar]
Material Components | Microchannel Type | Convergence Angle | Dispersed Phase | Continuous Phase | Experimental Groups |
---|---|---|---|---|---|
NaAlg –Oil | Convergent coaxial | 9° | NaAlg (10~480 mL/h) | Soybean oil (1~10 mL/h) | 773 |
Oil– NaAlg | Convergent coaxial | 9° | Soybean oil (1~250 mL/h) | NaAlg (1~10 mL/h) | 734 |
NaAlg –Oil | Vertical coaxial | -- | NaAlg (10~480 mL/h) | Soybean oil (1~10 mL/h) | 658 |
Oil– NaAlg | Vertical coaxial | -- | Soybean oil (1~250 mL/h) | NaAlg (1~10 mL/h) | 439 |
GaInSn–water | Vertical coaxial | -- | GaInSn (7~108 mL/h) | Water (36~900 mL/h) | 132 |
Flow Pattern | Features | Experiment Images | Quantity of Images | ||
---|---|---|---|---|---|
Slug | Monodisperse droplets with a bullet-like or plunger-like shape, and the droplet length is 1.5 times larger than the inner diameter of the microchannel | 3624 | |||
Dripping | Monodisperse droplets with an ellipsoid or spherical shape, and the droplet length is 1.5 times smaller than the inner diameter of the microchannel | 10,385 | |||
Jetting | Monodisperse droplets with a nearly spherical shape, and the droplet length is significantly smaller than the inner diameter of the microchannel, with fast generation frequency and a stretching neck | 4366 | |||
Others | Other flow patterns | 4717 |
Slug | Dripping | Jetting | Others | |
---|---|---|---|---|
Images of original pixels | ||||
Images of uniform pixels |
Algorithm | Training Accuracy (%) | Validation Accuracy (%) |
---|---|---|
GoogLeNet | 94.83 | 98.67 |
GoogLeNet+5 Coord | 95.09 | 98.87 |
GoogLeNet+5 CBAM | 94.97 | 98.72 |
GoogLeNet+5 LKA | 94.71 | 98.54 |
GoogLeNet+5 SENet | 95.04 | 98.67 |
Material Components | Dispersed Phase | Continuous Phase | Experimental Groups | Images |
---|---|---|---|---|
Oil–water | Vegetable oil | Water | 59 | |
Oil–water | Lubricating oil | Deionized water | 52 | |
Argon–water | Argon | Water | 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wei, X.; Wang, Z. The Recognition Algorithm of Two-Phase Flow Patterns Based on GoogLeNet+5 Coord Attention. Micromachines 2023, 14, 462. https://doi.org/10.3390/mi14020462
Zhang J, Wei X, Wang Z. The Recognition Algorithm of Two-Phase Flow Patterns Based on GoogLeNet+5 Coord Attention. Micromachines. 2023; 14(2):462. https://doi.org/10.3390/mi14020462
Chicago/Turabian StyleZhang, Jinsong, Xinpeng Wei, and Zhiliang Wang. 2023. "The Recognition Algorithm of Two-Phase Flow Patterns Based on GoogLeNet+5 Coord Attention" Micromachines 14, no. 2: 462. https://doi.org/10.3390/mi14020462
APA StyleZhang, J., Wei, X., & Wang, Z. (2023). The Recognition Algorithm of Two-Phase Flow Patterns Based on GoogLeNet+5 Coord Attention. Micromachines, 14(2), 462. https://doi.org/10.3390/mi14020462