Simulating Synaptic Behaviors through Frequency Modulation in a Capacitor–Memristor Circuit
Abstract
:1. Introduction
2. The Comprehensive Physical Model of an Oxide Memristor
3. The Capacitor–Memristor Circuit with Rectangular Pulses as the Input
4. The Theoretical Analysis of the Capacitor–Memristor Circuit
4.1. The Rectangular Pulse as the Input
4.2. The Action Pulse as the Input
5. Imitation of Synaptic Behavior Based on the Capacitor–Memristor Circuit
5.1. Long-Term Depression (LTD)
5.2. Long-Term Potentiation (LTP)
5.3. A Hebbian-Like Learning Mechanism
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, L. Principles of Neurobiology; Garland Science: New York, NY, USA, 2015. [Google Scholar]
- Zhang, W.Q.; Gao, B.; Tang, J.S.; Yao, P.; Yu, S.M.; Chang, M.F.; Yoo, H.J.; Qian, H.; Wu, H.Q. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Liu, Z.W.; Tang, J.S.; Gao, B.; Yao, P.; Li, X.Y.; Liu, D.K.; Zhou, Y.; Qian, H.; Hong, B.; Wu, H.Q. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nat. Commun. 2020, 11, 4234. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.J.; Grimwood, P.D.; Morris, R.G.M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, Y.; Yi, M.; Zhu, Y.; Li, T.; Liu, L.; Wang, L.; Xie, L.; Huang, W. Recent progress in memristors for stimulating synaptic plasticity. Sci. Sin. Informationis 2018, 48, 115–142. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Di Ventra, M. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 2010, 23, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Ilyas, N.; Li, C.M.; Jiang, X.D.; Jiang, Y.D.; Li, W. Synaptic learning and memory functions in SiO2:Ag/TiO2 based memristor devices. J. Phys. D-Appl. Phys. 2020, 53, 175102. [Google Scholar] [CrossRef]
- Tanim, M.M.H.; Templin, Z.; Zhao, F. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems. Micromachines 2023, 14, 235. [Google Scholar] [CrossRef]
- Shen, J.X.; Shang, D.S.; Chai, Y.S.; Wang, S.G.; Shen, B.G.; Sun, Y. Mimicking synaptic plasticity and neural network using memtranstors. Adv. Mater. 2018, 30, 1706717. [Google Scholar] [CrossRef]
- Chua, L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, CT18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Wang, Z.R.; Midya, R.; Xia, Q.F.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D-Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Dudek, S.M.; Bear, M.F. Homosynaptic long-term depression in area CAl of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 1992, 89, 4363–4367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.R.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.Y.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Du, C.; Sheridan, P.; Ma, W.; Choi, S.; Lu, W.D. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 2015, 15, 2203–2211. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Lu, W. Comprehensive physical model of dynamic resistive switching in an oxide memristor. Acs Nano 2014, 8, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Moon, J.; Jeong, Y.; Lee, J.; Li, X.Y.; Wu, H.Q.; Lu, W.D. Quantitative, dynamic TaOx memristor/resistive random access memory model. ACS Appl. Electron. Mater. 2020, 2, 701–709. [Google Scholar] [CrossRef]
- Kim, J.; Pershin, Y.V.; Yin, M.; Datta, T.; Di Ventra, M. An experimental proof that resistance-switching memory cells are not memristors. Adv. Electron. Mater. 2020, 6, 2000010. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, G.H.; Sohn, H.; Yang, M.K. Positive effects of a Schottky-type diode on unidirectional resistive switching devices. Appl. Phys. Lett. 2019, 115, 4. [Google Scholar] [CrossRef]
- Wang, Z.R.; Rao, M.Y.; Han, J.W.; Zhang, J.M.; Lin, P.; Li, Y.N.; Li, C.; Song, W.H.; Asapu, S.; Midya, R.; et al. Capacitive neural network with neuro-transistors. Nat. Commun. 2018, 9, 3208. [Google Scholar] [CrossRef]
- Prodromakis, T.; Papavassiliou, C. Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 2009, 255, 6989–6994. [Google Scholar] [CrossRef]
- Pickett, M.D.; Williams, R.S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 2012, 23, 215202. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Nardi, F.; Cagli, C. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 2011, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S.J.; Kim, K.M.; Lee, S.R.; Chang, M.; Cho, E.; Kim, Y.B.; Kim, C.J.; Chung, U.I.; Yoo, I.K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 2013, 3, 1680. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.Q.; Poo, M.M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 2001, 24, 139–166. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.G.; Liu, Y.; Liu, Z.; Chen, T.P.; Yu, Q.; Deng, L.J.; Yin, Y.; Hosaka, S. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor. J. Appl. Phys. 2014, 116, 214502. [Google Scholar] [CrossRef]
- Khan, S.R.; Al-Shidaifat, A.; Song, H.J. Efficient Memristive Circuit Design of Neural Network-Based Associative Memory for Pavlovian Conditional Reflex. Micromachines 2022, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.W.; Wang, Y.Y.; Liu, P.; Wen, S.P.; Wang, Y.F. Memristor-Based Neural Network Circuit with Multimode Generalization and Differentiation on Pavlov Associative Memory. IEEE Trans. Cybern. 2023, 53, 3351–3362. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.P.; Chen, Z.F.; Zhang, S.; Zeng, Z.G. Memristive Circuit Implementation of Operant Cascaded with Classical Conditioning. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 926–938. [Google Scholar] [CrossRef]
- Sun, J.W.; Han, G.Y.; Zeng, Z.G.; Wang, Y.F. Memristor-based neural network circuit of full-function pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern. 2020, 50, 2935–2945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, K.; Li, J.; Xiong, Y.; Zhu, M.; Tan, Z.; Jin, Z. Simulating Synaptic Behaviors through Frequency Modulation in a Capacitor–Memristor Circuit. Micromachines 2023, 14, 2014. https://doi.org/10.3390/mi14112014
Yin K, Li J, Xiong Y, Zhu M, Tan Z, Jin Z. Simulating Synaptic Behaviors through Frequency Modulation in a Capacitor–Memristor Circuit. Micromachines. 2023; 14(11):2014. https://doi.org/10.3390/mi14112014
Chicago/Turabian StyleYin, Kuibo, Jingcang Li, Yuwei Xiong, Mingyun Zhu, Zhiyuan Tan, and Zhanrui Jin. 2023. "Simulating Synaptic Behaviors through Frequency Modulation in a Capacitor–Memristor Circuit" Micromachines 14, no. 11: 2014. https://doi.org/10.3390/mi14112014
APA StyleYin, K., Li, J., Xiong, Y., Zhu, M., Tan, Z., & Jin, Z. (2023). Simulating Synaptic Behaviors through Frequency Modulation in a Capacitor–Memristor Circuit. Micromachines, 14(11), 2014. https://doi.org/10.3390/mi14112014