High Gain Slot Array Antenna at 110 GHz Based on Computer Numerical Control
Abstract
:1. Introduction
2. Description of the Slot Array Antenna
3. Design of the High-Gain Slot Array Antenna
3.1. Feeding Network
3.2. Slot Array Antenna
4. Measurement and Discussion of the High-Gain Slot Array Antenna
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jilani, S.F.; Alomainy, A. A Multiband Millimeter-Wave 2-D Array Based on Enhanced Franklin Antenna for 5G Wireless Systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2983–2986. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, M.; Qian, J.; Zhang, Y.-P.; Mao, J. Vivaldi antenna array with heat dissipation enhancement for millimeter-wave applications. IEEE Trans. Antennas Propag. 2022, 70, 288–295. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Denidni, T.A.; Limiti, E. High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1576–1580. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Ali, E.M.; Soruri, M.; Dalarsson, M.; Naser-Moghadasi, M.; Virdee, B.S.; Stefanovic, C.; Pietrenko-Dabrowska, A.; Koziel, S.; Szczepanski, S.; et al. A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems. IEEE Access 2022, 10, 3668–3692. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, D.; Qiao, H.; Lv, X.; Yu, W. Design of 0.14 thz lens integrated on-chip antenna with defected ground structure. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Chen, N.-W.; Chuang, C.-T.; Shi, J.-W. A W-Band Linear Tapered Slot Antenna on Rectangular-Grooved Silicon Substrate. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 90–92. [Google Scholar] [CrossRef]
- Ghassemi, N.; Wu, K.; Claude, S.; Zhang, X.; Bornemann, J. Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process. IEEE Trans. Antennas Propag. 2012, 60, 1648–1653. [Google Scholar] [CrossRef]
- Cao, B.; Wang, H.; Huang, Y.; Zheng, J. High-Gain L-Probe Excited Substrate Integrated Cavity Antenna Array with LTCC-Based Gap Waveguide Feeding Network for W-Band Application. IEEE Trans. Antennas Propag. 2015, 63, 5465–5474. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.P.; Bisognin, A.; Titz, D.; Ferrero, F.; Luxey, C. A 94-GHz Dual-Polarized Microstrip Mesh Array Antenna in LTCC Technology. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 634–637. [Google Scholar] [CrossRef]
- Cao, B.; Wang, H.; Huang, Y. W-Band High-Gain TE-Mode Slot Antenna Array with Gap Waveguide Feeding Network. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 988–991. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Hu, W.; Chen, X. Hollow waveguide 32 × 32-slot array antenna covering 71–86 GHz band by the technology of a polyetherimide fabrication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1635–1638. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Valero-Nogueira, A.; Herranz-Herruzo, J.I.; Teniente, J. 60 GHz Single-Layer Slot-Array Antenna Fed by Groove Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 846–850. [Google Scholar] [CrossRef]
- Yao, S.S.; Cheng, Y.J. W-Band High-Efficiency Wideband Planar Array Antenna Based on MEMS Micromachining Technology. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018. [Google Scholar] [CrossRef]
- Zhong, Z.-P.; Li, J.; Xu, Z.; Deng, S.; Yuan, T. A 97-GHz-Band High-Gain 8 × 8 Waveguide Slot Array Antenna. In Proceedings of the IEEE Radio and Wireless Symposium, Las Vegas, NV, USA, 16–19 January 2022; pp. 98–101. [Google Scholar]
f0 (GHz) | Size | Peak Gain (dBi) | Tech. | Ref. |
---|---|---|---|---|
136–144 | π/2 (4.2λ0)2 | 23.4 | lens | [5] |
75–110 | 2.9λ0 × 1.4λ0 | 10 | silicon | [6] |
94.2–101.8 | 10λ0 × 6.7λ0 × 0.68λ0 | 19 | PCB | [7] |
87–101 | 10λ0 × 6.7λ0 | 23.8 | LTCC | [8] |
90–96.5 | 3.13λ0 × 3.13λ0 | 13.3 | LTCC | [9] |
80–102 | 6.5λ0 × 6.5λ0 × 0.34λ0 | 25.3 | PCB | [10] |
71–86 | 27λ0 × 27λ0 × 1.6λ0 | 37 | chemical plate dafter CNC | [11] |
84–104 | 7.1λ0 × 7.1λ0 | 27.7 | micro-maching | [13] |
95.1–98 | 11.5λ0 × 11λ0 × 2.8λ0 | 18.1 | CNC | [14] |
110 | 25λ0 × 14λ0 | 32 | CNC | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Zhao, Y.; Ding, J. High Gain Slot Array Antenna at 110 GHz Based on Computer Numerical Control. Micromachines 2023, 14, 1947. https://doi.org/10.3390/mi14101947
Tan Z, Zhao Y, Ding J. High Gain Slot Array Antenna at 110 GHz Based on Computer Numerical Control. Micromachines. 2023; 14(10):1947. https://doi.org/10.3390/mi14101947
Chicago/Turabian StyleTan, Zhen, Yun Zhao, and Jiangqiao Ding. 2023. "High Gain Slot Array Antenna at 110 GHz Based on Computer Numerical Control" Micromachines 14, no. 10: 1947. https://doi.org/10.3390/mi14101947
APA StyleTan, Z., Zhao, Y., & Ding, J. (2023). High Gain Slot Array Antenna at 110 GHz Based on Computer Numerical Control. Micromachines, 14(10), 1947. https://doi.org/10.3390/mi14101947