Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Participant Inclusion Criteria
2.2. Measurement of Dietary Intake of Live Microbes
2.3. Measurement of Recreational Physical Activity
2.4. Measurement of Systemic Immune-Inflammation Index
2.5. Measurement of Covariates
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Olmo, B.M.; Butler, M.J.; Barrientos, R.M. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cano, F.J. Dietary Modulation of the Immune Function: Direct and Microbiota-Dependent Effect. Nutrients 2022, 14, 1957. [Google Scholar] [CrossRef] [PubMed]
- Sears, B. Anti-inflammatory Diets. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 14–21. [Google Scholar] [CrossRef]
- Szymanska, P.; Rozalski, M.; Wilczynski, M.; Golanski, J. Systemic immune-inflammation index (SII) and neutrophil to lymphocyte ratio (NLR) are useful markers for assessing effects of anti-inflammatory diet in patients before coronary artery bypass grafting. Rocz. Panstw. Zakl. Hig. 2021, 72, 327–335. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Xu, Q.; Liu, W.; Wang, P.; Yao, J.; Zhao, A.; Chen, Y.; Wang, W. Higher dietary inflammation potential and certain dietary patterns are associated with polycystic ovary syndrome risk in China: A case-control study. Nutr. Res. 2022, 100, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Li, H.; Li, D.; Wang, X.; Zhao, A.; Liang, W.; Xiao, R.; Xi, Y. Association of Dietary Inflammatory Potential with Blood Inflammation: The Prospective Markers on Mild Cognitive Impairment. Nutrients 2022, 14, 2417. [Google Scholar] [CrossRef]
- Sanlier, N.; Gokcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Klasson, C.L.; Sadhir, S.; Pontzer, H. Daily physical activity is negatively associated with thyroid hormone levels, inflammation, and immune system markers among men and women in the NHANES dataset. PLoS ONE 2022, 17, e0270221. [Google Scholar] [CrossRef]
- El Assar, M.; Alvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodriguez-Manas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.S.; Dooley, E.E.; Master, H.; Spartano, N.L.; Brittain, E.L.; Pettee Gabriel, K. Physical Activity Over the Lifecourse and Cardiovascular Disease. Circ. Res. 2023, 132, 1725–1740. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.; Pedersen, B.K. Physical Activity, Obesity and Weight Loss Maintenance. Handb. Exp. Pharmacol. 2022, 274, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Mee-Inta, O.; Zhao, Z.W.; Kuo, Y.M. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 2019, 8, 691. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, X.; Bai, Y.; Wei, W.; Li, G.; Fu, M.; Jie, J.; Wang, C.; Guan, X.; Feng, Y.; et al. Physical activity attenuates the associations of systemic immune-inflammation index with total and cause-specific mortality among middle-aged and older populations. Sci. Rep. 2021, 11, 12532. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Tancredi, D.J.; Cifelli, C.J.; Slavin, J.L.; Gahche, J.; Marco, M.L.; Hutkins, R.; Fulgoni, V.L., 3rd; Merenstein, D.; Sanders, M.E. Positive Health Outcomes Associated with Live Microbe Intake from Foods, Including Fermented Foods, Assessed using the NHANES Database. J. Nutr. 2023, 153, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Hutkins, R.; Hill, C.; Fulgoni, V.L.; Cifelli, C.J.; Gahche, J.; Slavin, J.L.; Merenstein, D.; Tancredi, D.J.; Sanders, M.E. A Classification System for Defining and Estimating Dietary Intake of Live Microbes in US Adults and Children. J. Nutr. 2022, 152, 1729–1736. [Google Scholar] [CrossRef]
- You, Y.; Chen, Y.; Zhang, Q.; Yan, N.; Ning, Y.; Cao, Q. Muscle quality index is associated with trouble sleeping: A cross-sectional population based study. BMC Public Health 2023, 23, 489. [Google Scholar] [CrossRef]
- You, Y.; Chen, Y.; Zhang, Y.; Zhang, Q.; Yu, Y.; Cao, Q. Mitigation role of physical exercise participation in the relationship between blood cadmium and sleep disturbance: A cross-sectional study. BMC Public Health 2023, 23, 1465. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- You, Y.; Chen, Y.; Fang, W.; Li, X.; Wang, R.; Liu, J.; Ma, X. The association between sedentary behavior, exercise, and sleep disturbance: A mediation analysis of inflammatory biomarkers. Front. Immunol. 2022, 13, 1080782. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Mo, L.; Tong, J.; Chen, X.; You, Y. The role of education attainment on 24-hour movement behavior in emerging adults: Evidence from a population-based study. Front. Public Health 2024, 12, 1197150. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Goyal, A. Evolving Roles of Probiotics in Cancer Prophylaxis and Therapy. Probiotics Antimicrob. Proteins 2013, 5, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Den, H.; Dong, X.; Chen, M.; Zou, Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment—A meta-analysis of randomized controlled trials. Aging 2020, 12, 4010–4039. [Google Scholar] [CrossRef] [PubMed]
- Bibbo, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar] [PubMed]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gallego, J.; Garcia-Mediavilla, M.V.; Sanchez-Campos, S.; Tunon, M.J. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 2010, 104 (Suppl. S3), S15–S27. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res. 2022, 107, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Campos-Vega, R.; Gonzalez de Mejia, E.; Loarca-Pina, G. Consumption of a baked corn and bean snack reduced chronic colitis inflammation in CD-1 mice via downregulation of IL-1 receptor, TLR, and TNF-alpha associated pathways. Food Res. Int. 2020, 132, 109097. [Google Scholar] [CrossRef] [PubMed]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Gonzalez-Gil, A.M.; Elizondo-Montemayor, L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020, 12, 1899. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.L.; Shirin, H. Inflammatory Bowel Disease: Its Effects on Physical Activity, Sports Participation, and Athletes. Curr. Sports Med. Rep. 2021, 20, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, M.; Wang, L.; Li, J.; Xie, Z.; Guo, R.; Wang, Y.; Li, B. The role of dietary inflammatory index and physical activity in depressive symptoms: Results from NHANES 2007–2016. J. Affect. Disord. 2023, 335, 332–339. [Google Scholar] [CrossRef]
- Pruimboom, L.; Raison, C.L.; Muskiet, F.A. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation. Behav. Neurol. 2015, 2015, 569869. [Google Scholar] [CrossRef]
- Cataldi, S.; Bonavolonta, V.; Poli, L.; Clemente, F.M.; De Candia, M.; Carvutto, R.; Silva, A.F.; Badicu, G.; Greco, G.; Fischetti, F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. Biology 2022, 11, 479. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49, 3–23. [Google Scholar] [CrossRef]
- Barnard, N.D.; Goldman, D.M.; Loomis, J.F.; Kahleova, H.; Levin, S.M.; Neabore, S.; Batts, T.C. Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients 2019, 11, 130. [Google Scholar] [CrossRef]
- You, Y.; Liu, J.; Li, X.; Wang, P.; Liu, R.; Ma, X. Relationship between accelerometer-measured sleep duration and Stroop performance: A functional near-infrared spectroscopy study among young adults. PeerJ 2024, 12, e17057. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Butler, G.; Garriguet, D.; Prince, S.A.; Roberts, K.C. Comparison of self-reported and accelerometer-measured physical activity in Canadian adults. Health Rep. 2018, 29, 3–15. [Google Scholar] [PubMed]
Category Variables | (%) |
---|---|
Age | |
<40 | 35.78 |
[40, 60) | 37.90 |
≥60 | 26.32 |
Sex | |
Male | 48.71 |
Female | 51.29 |
Race/ethnicity | |
Non-Hispanic White | 68.79 |
Non-Hispanic Black | 10.3 |
Mexican American | 8.09 |
Other race/ethnicity | 12.82 |
Marital status | |
Never married | 17.9 |
Married/living with partner | 63.71 |
Widowed/divorced | 18.4 |
Education | |
Below high school | 4.79 |
High school | 33.05 |
College or above | 62.16 |
Poverty income ratio | |
<1 | 14.14 |
[1, 3) | 35.83 |
≥3 | 50.03 |
Body mass index (kg/m2) | |
<25 | 29.22 |
[25, 30) | 32.78 |
≥30 | 38 |
Smoking status | |
Never smoker | 55.65 |
Former smoker | 24.98 |
Current smoker | 19.37 |
Alcohol status | |
Nondrinker | 28.48 |
Moderate alcohol use | 51.49 |
High alcohol use | 20.03 |
Diabetes mellitus | |
No | 85.57 |
Yes | 14.43 |
Cardiovascular diseases | |
No | 91.26 |
Yes | 8.74 |
Hypertension | |
No | 62.09 |
Yes | 37.91 |
Continuous Variables | (Mean ± SE) |
Systemic immune inflammation index (109/L) | 532 ± 3.63 |
Recreational physical activity (minutes/week) | 219.31 ± 5.05 |
Intake of low live microbe-containing foods (100 * g/d) | 34.14 ± 0.20 |
Intake of medium live microbe-containing foods (100 * g/d) | 1.06 ± 0.02 |
Intake of high live microbe-containing foods (100 * g/d) | 0.23 ± 0.01 |
β | 95% CI | p-Value | |
---|---|---|---|
Model 1 | |||
Intake of medium-LMC foods (100 * g/d) | −5.690 | (−8.777, −2.603) | <0.001 |
Model 2 | |||
Intake of medium-LMC foods (100 * g/d) | −7.945 | (−11.006, −4.885) | <0.001 |
Model 3 | |||
Intake of medium-LMC foods (100 * g/d) | −4.807 | (−7.752, −1.862) | 0.002 |
β | 95% CI | p-Value | |
---|---|---|---|
Model 1 | |||
Recreational physical activity (minutes/week) | −0.049 | (−0.061, −0.037) | <0.001 |
Model 2 | |||
Recreational physical activity (minutes/week) | −0.037 | (−0.048, −0.025) | <0.001 |
Model 3 | |||
Recreational physical activity (minutes/week) | −0.022 | (−0.034, −0.011) | <0.001 |
Estimate | 95% CI | p-Value | |
---|---|---|---|
Total effect | −5.686 | (−8.222, −3.234) | <0.001 |
Mediation effect (recreational physical activity) | −0.383 | (−0.586, −0.216) | <0.001 |
Direct effect (intake of medium-LMC foods) | −5.303 | (−7.841, −2.807) | <0.001 |
Proportion mediated (recreational physical activity) | 0.067 | (0.033, 0.133) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Chen, Y.; Wei, M.; Tang, M.; Lu, Y.; Zhang, Q.; Cao, Q. Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients 2024, 16, 777. https://doi.org/10.3390/nu16060777
You Y, Chen Y, Wei M, Tang M, Lu Y, Zhang Q, Cao Q. Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients. 2024; 16(6):777. https://doi.org/10.3390/nu16060777
Chicago/Turabian StyleYou, Yanwei, Yuquan Chen, Mengxian Wei, Meihua Tang, Yuqing Lu, Qi Zhang, and Qiang Cao. 2024. "Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study" Nutrients 16, no. 6: 777. https://doi.org/10.3390/nu16060777
APA StyleYou, Y., Chen, Y., Wei, M., Tang, M., Lu, Y., Zhang, Q., & Cao, Q. (2024). Mediation Role of Recreational Physical Activity in the Relationship between the Dietary Intake of Live Microbes and the Systemic Immune-Inflammation Index: A Real-World Cross-Sectional Study. Nutrients, 16(6), 777. https://doi.org/10.3390/nu16060777