Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of CTA-Based Lutein Emulsion
2.2.1. Microstructure
2.2.2. Encapsulation Efficiency
2.3. Acute Dosing Study—Pharmacokinetic Parameters and Bioavailability of Lutein
2.3.1. Animal Experiment
2.3.2. Analysis of Lutein Concentration in Serum, Liver, Spleen, Brain, and Eye
2.3.3. Bioavailability Analysis
2.4. Daily Dosing Studies in Neonatal Rats
2.4.1. Animal Experiments
2.4.2. Analysis of Lutein Concentration in Serum and Tissues
2.5. Statistical Analysis
3. Results
3.1. Microstructure of Lutein Emulsion Stabilized by 30% (w/v) CTA
3.2. Acute Dosing Study—Serum Lutein Kinetics
3.3. Acute Dosing Study—Pharmacokinetic Parameters and Bioavailability of Lutein
3.4. Acute Dosing Study—Tissue Lutein Profiles
3.5. Daily Dosing Studies—Serum and Tissue Lutein Concentrations
4. Discussion
4.1. Innovation and Advantages of the CTA-Stabilized Emulsion
4.2. Characteristics of the CTA-Stabilized Lutein Emulsion
4.3. CTA-Stabilized Lutein Emulsion Enhanced Lutein Bioavailability in Neonatal Rats
4.4. CTA-Stabilized Lutein Emulsion Improved Tissue Lutein Status
4.5. Strengths and Limitations of the Study
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Perrone, S.; Negro, S.; Tataranno, M.L.; Buonocore, G. Oxidative stress and antioxidant strategies in newborns. J. Matern.-Fetal Neonatal Med. 2010, 23 (Suppl. S3), 63–65. [Google Scholar] [CrossRef]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef]
- Resch, B.; Paes, B. Are late preterm infants as susceptible to RSV infection as full term infants? Early Hum. Dev. 2011, 87 (Suppl. S1), S47–S49. [Google Scholar] [CrossRef]
- Dowling, D.J.; Levy, O. Ontogeny of early life immunity. Trends Immunol. 2014, 35, 299–310. [Google Scholar] [CrossRef]
- McAdams, R.M.; Juul, S.E. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol. Res. Int. 2012, 2012, 561494. [Google Scholar] [CrossRef]
- Wickramasinghe, L.C.; van Wijngaarden, P.; Tsantikos, E.; Hibbs, M.L. The immunological link between neonatal lung and eye disease. Clin. Transl. Immunology 2021, 10, e1322. [Google Scholar] [CrossRef]
- Hellgren, G.; Löfqvist, C.; Hansen-Pupp, I.; Gram, M.; Smith, L.E.; Ley, D.; Hellström, A. Increased postnatal concentrations of pro-inflammatory cytokines are associated with reduced IGF-I levels and retinopathy of prematurity. Growth Horm. IGF Res. 2018, 39, 19–24. [Google Scholar] [CrossRef]
- Furr, H.C.; Clark, R.M. Intestinal absorption and tissue distribution of carotenoids. J. Nutr. Biochem. 1997, 8, 364–377. [Google Scholar] [CrossRef]
- Ranard, K.M.; Jeon, S.; Mohn, E.S.; Griffiths, J.C.; Johnson, E.J.; Erdman, J.W., Jr. Dietary guidance for lutein: Consideration for intake recommendations is scientifically supported. Eur. J. Nutr. 2017, 56, 37–42. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Jia, Y.-P.; Sun, L.; Yu, H.-S.; Liang, L.-P.; Li, W.; Ding, H.; Song, X.-B.; Zhang, L.-J. The pharmacological effects of lutein and zeaxanthin on visual disorders and cognition diseases. Molecules 2017, 22, 610. [Google Scholar] [CrossRef]
- Giordano, E.; Quadro, L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch. Biochem. Biophys. 2018, 647, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The effect of lutein on eye and extra-eye health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef]
- Barker, F.M., 2nd; Snodderly, D.M.; Johnson, E.J.; Schalch, W.; Koepcke, W.; Gerss, J.; Neuringer, M. Nutritional manipulation of primate retinas, V: Effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3934–3942. [Google Scholar] [CrossRef]
- Zimmer, J.P.; Hammond, B.R., Jr. Possible influences of lutein and zeaxanthin on the developing retina. Clin. Ophthalmol. 2007, 1, 25–35. [Google Scholar]
- Vishwanathan, R.; Kuchan, M.J.; Sen, S.; Johnson, E.J. Lutein and preterm infants with decreased concentrations of brain carotenoids. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 659–665. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Sharifzadeh, M.; Liu, A.; Ermakov, I.; Nelson, K.; Sheng, X.; Panish, C.; Carlstrom, B.; Hoffman, R.O.; Gellermann, W. Blue-light reflectance imaging of macular pigment in infants and children. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4034–4040. [Google Scholar] [CrossRef]
- Bettler, J.; Zimmer, J.P.; Neuringer, M.; DeRusso, P.A. Serum lutein concentrations in healthy term infants fed human milk or infant formula with lutein. Eur. J. Nutr. 2010, 49, 45–51. [Google Scholar] [CrossRef]
- Johnson, L.; Norkus, E.; Abbasi, S.; Gerdes, J.; Bhutani, V. Contribution of beta-carotene (BC) from BC enriched formulae to individual and total serum carotenoids in term infants. FASEB J. 1995, 9, 1869. [Google Scholar]
- Zhang, Y.; Kong, L.; Tan, L. Effectiveness of nanoscale delivery systems on improving the bioavailability of lutein in rodent models: A systematic review. Crit. Rev. Food Sci. 2020, 62, 2375–2390. [Google Scholar] [CrossRef]
- van het Hof, K.H.; Weststrate, J.A.; West, C.E.; Hautvast, J.G.A.J. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [CrossRef]
- Norkus, E.P.; Norkus, K.L.; Dharmarajan, T.; Schierle, J.; Schalch, W. Serum lutein response is greater from free lutein than from esterified lutein during 4 weeks of supplementation in healthy adults. J. Am. Coll. Nutr. 2010, 29, 575–585. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Wilson, T.A.; Nicolosi, R.J. Bioavailability of a nanoemulsion of lutein is greater than a lutein supplement. Nano Biomed. Eng. 2009, 1, 38–49. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Qian, C.; Martín-Belloso, O.; McClements, D.J. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 2013, 141, 1472–1480. [Google Scholar] [CrossRef]
- Ochoa Becerra, M.; Mojica Contreras, L.; Hsieh Lo, M.; Mateos Díaz, J.; Castillo Herrera, G. Lutein as a functional food ingredient: Stability and bioavailability. J. Func. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- Ndayishimiye, J.; Kumeria, T.; Popat, A.; Blaskovich, M.A.T.; Falconer, J.R. Understanding the relationship between solubility and permeability of γ-cyclodextrin-based systems embedded with poorly aqueous soluble benznidazole. Int. J. Pharm. 2022, 616, 121487. [Google Scholar] [CrossRef]
- Partridge, D.; Lloyd, K.; Rhodes, J.; Walker, A.; Johnstone, A.; Campbell, B. Food additives: Assessing the impact of exposure to permitted emulsifiers on bowel and metabolic health–introducing the FADiets study. Nutr. Bull. 2019, 44, 329–349. [Google Scholar] [CrossRef]
- Csáki, K.F. Synthetic surfactant food additives can cause intestinal barrier dysfunction. Med. Hypotheses 2011, 76, 676–681. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Tan, C.P.; Fu, X.; Zhang, B.; Huang, Q. Physicochemical properties and in vitro bioaccessibility of lutein loaded emulsions stabilized by corn fiber gums. RSC Adv. 2017, 7, 38243–38250. [Google Scholar] [CrossRef]
- Weigel, F.; Weiss, J.; Decker, E.A.; McClements, D.J. Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability. Food Chem. 2018, 242, 395–403. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Li, C.; Fu, X.; Huang, Q. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chem. 2020, 305, 125476. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Flavourings (FAF); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; et al. Opinion on the re-evaluation of starch sodium octenyl succinate (E 1450) as a food additive in foods for infants below 16 weeks of age and the follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA J. 2020, 18, e05874. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tian, G.; Zhao, C.; Lu, C.; Bao, Y.; Liu, X.; Zheng, J. Emulsifying stability properties of octenyl succinic anhydride (OSA) modified waxy starches with different molecular structures. Food Hydrocoll. 2018, 85, 248–256. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Kong, L.; Tan, L. Developing biopolymer-stabilized emulsions for improved stability and bioaccessibility of lutein. Int. J. Biol. Macromol. 2024, 259, 129202. [Google Scholar] [CrossRef] [PubMed]
- Tirado, D.F.; Palazzo, I.; Scognamiglio, M.; Calvo, L.; Della Porta, G.; Reverchon, E. Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: A study on particle size, encapsulation efficiency, release profile and antioxidant activity. J. Supercrit. Fluids 2019, 150, 128–136. [Google Scholar] [CrossRef]
- Kamil, A.; Smith, D.E.; Blumberg, J.B.; Astete, C.; Sabliov, C.; Chen, C.-Y.O. Bioavailability and biodistribution of nanodelivered lutein. Food Chem. 2016, 192, 915–923. [Google Scholar] [CrossRef]
- Liu, C.; Chang, D.; Zhang, X.; Sui, H.; Kong, Y.; Zhu, R.; Wang, W. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: Formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech 2017, 18, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, L. Maternal high-fat diet consumption in Sprague Dawley rats compromised the availability and altered the tissue distribution of lutein in neonatal offspring. Metabolites 2023, 13, 544. [Google Scholar] [CrossRef]
- Zhang, Y.; Crowe-White, K.M.; Kong, L.; Tan, L. Vitamin A status and deposition in neonatal and weanling rats reared by mothers consuming normal and high-fat diets with adequate or supplemented vitamin A. Nutrients 2020, 12, 1460. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Considerations; Food and Drug Administration: Washington, DC, USA, 2003.
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, R.; Prashanth, K.V.H.; Manabe, Y.; Hirata, T.; Sugawara, T.; Dharmesh, S.M.; Baskaran, V. Biodegradable poly (Lactic-co-Glycolic Acid)-polyethylene glycol nanocapsules: An efficient carrier for improved solubility, bioavailability, and anticancer property of lutein. J. Pharm. Sci. 2015, 104, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Ravikrishnan, R.; Rusia, S.; Ilamurugan, G.; Salunkhe, U.; Deshpande, J.; Shankaranarayanan, J.; Shankaranarayana, M.L.; Soni, M.G. Safety assessment of lutein and zeaxanthin (Lutemax 2020): Subchronic toxicity and mutagenicity studies. Food Chem. Toxicol. 2011, 49, 2841–2848. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, C.; Giannantonio, C.; Cota, F.; Papacci, P.; Vento, G.; Valente, E.; Purcaro, V.; Costa, S. A prospective, randomized, double blind study comparing lutein to placebo for reducing occurrence and severity of retinopathy of prematurity. J. Matern.-Fetal Neonatal. Med. 2011, 24 (Suppl. S1), 147–150. [Google Scholar] [CrossRef] [PubMed]
- Gazzolo, D.; Picone, S.; Gaiero, A.; Bellettato, M.; Montrone, G.; Riccobene, F.; Lista, G.; Pellegrini, G. Early pediatric benefit of lutein for maturing eyes and brain-an overview. Nutrients 2021, 13, 3239. [Google Scholar] [CrossRef] [PubMed]
- Murillo, A.G.; Aguilar, D.; Norris, G.H.; DiMarco, D.M.; Missimer, A.; Hu, S.; Smyth, J.A.; Gannon, S.; Blesso, C.N.; Luo, Y.; et al. Compared with powdered lutein, a lutein nanoemulsion increases plasma and liver lutein, protects against Hepatic Steatosis, and affects lipoprotein metabolism in guinea pigs. J. Nutr. 2016, 146, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar] [PubMed]
- Gallier, S.; Gragson, D.; Jiménez-Flores, R.; Everett, D.W. Surface characterization of bovine milk phospholipid monolayers by langmuir isotherms and microscopic techniques. J. Agric. Food Chem. 2010, 58, 12275–12285. [Google Scholar] [CrossRef]
- da Silva, R.C.; Colleran, H.L.; Ibrahim, S.A. Milk fat globule membrane in infant nutrition: A dairy industry perspective. J. Dairy Res. 2021, 88, 105–116. [Google Scholar] [CrossRef]
- Dallas, D.C.; Traber, M.G. How does breast milk enhance lutein absorption? J. Nutr. 2018, 148, 1–2. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef]
- Dickinson, E. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll. 2017, 68, 219–231. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- Wu, M.; Feng, Z.; Deng, Y.; Zhong, C.; Liu, Y.; Liu, J.; Zhao, X.; Fu, Y. Liquid antisolvent precipitation: An effective method for ocular targeting of lutein esters. Int. J. Nanomed. 2019, 14, 2667. [Google Scholar] [CrossRef]
- Sato, Y.; Joumura, T.; Nashimoto, S.; Yokoyama, S.; Takekuma, Y.; Yoshida, H.; Sugawara, M. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system. Eur. J. Pharm. Biopharm. 2018, 127, 171–176. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, R.; Li, X.-L.; Liu, W.-J.; Cheng, J.-S.; Wang, W. Preparation of Pickering emulsion gels based on κ-carrageenan and covalent crosslinking with EDC: Gelation mechanism and bioaccessibility of curcumin. Food Chem. 2021, 357, 129726. [Google Scholar] [CrossRef]
- Ranganathan, A.; Manabe, Y.; Sugawara, T.; Hirata, T.; Shivanna, N.; Baskaran, V. Poly (D, L-lactide-co-glycolide)-phospholipid nanocarrier for efficient delivery of macular pigment lutein: Absorption pharmacokinetics in mice and antiproliferative effect in Hep G2 cells. Drug Deliv. Transl. Res. 2019, 9, 178–191. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Xu, X.-D.; Shao, B.; Shen, Q.; Zhou, H.; Hong, Y.-M.; Yu, L.-M. Physicochemical properties and bioavailability of lutein microencapsulation (LM). Food Sci. Technol. 2015, 21, 503–507. [Google Scholar] [CrossRef]
- Chang, D.; Ma, Y.; Cao, G.; Wang, J.; Zhang, X.; Feng, J.; Wang, W. Improved oral bioavailability for lutein by nanocrystal technology: Formulation development, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1018–1024. [Google Scholar] [CrossRef]
- Sato, Y.; Kobayashi, M.; Itagaki, S.; Hirano, T.; Noda, T.; Mizuno, S.; Sugawara, M.; Iseki, K. Pharmacokinetic properties of lutein emulsion after oral administration to rats and effect of food intake on plasma concentration of lutein. Biopharm. Drug Dispos. 2011, 32, 151–158. [Google Scholar] [CrossRef]
- Faure, H.; Fayol, V.; Galabert, C.; Grolier, P.; Le Moël, G.; Steghens, J.P.; Van Kappel, A.; Nabet, F. Carotenoids: 1. Metabolism and physiology. Ann. Biol. Clin. 1999, 57, 169–183. [Google Scholar]
- Wood, J.D. Chapter 1—Normal Anatomy, Digestion, Absorption. In Adult Short Bowel Syndrome; Corrigan, M.L., Roberts, K., Steiger, E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Arunkumar, R.; Harish Prashanth, K.V.; Baskaran, V. Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo. Food Chem. 2013, 141, 327–337. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Borel, P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends Food Sci. Technol. 2017, 69, 270–280. [Google Scholar] [CrossRef]
- Kardinaal, A.F.; van’t Veer, P.; Brants, H.A.; van den Berg, H.; van Schoonhoven, J.; Hermus, R.J. Relations between antioxidant vitamins in adipose tissue, plasma, and diet. Am. J. Epidemiol. 1995, 141, 440–450. [Google Scholar] [CrossRef]
- Johnson, E.J.; Hammond, B.R.; Yeum, K.-J.; Qin, J.; Wang, X.D.; Castaneda, C.; Snodderly, D.M.; Russell, R.M. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am. J. Epidemiol. 2000, 71, 1555–1562. [Google Scholar] [CrossRef]
- Bovier, E.R.; Lewis, R.D.; Hammond, B.R., Jr. The relationship between lutein and zeaxanthin status and body fat. Nutrients 2013, 5, 750–757. [Google Scholar] [CrossRef]
- Gupta, A.; Raman, R.; Biswas, S.; Rajan, R.; Kulothungan, V.; Sharma, T. Association between various types of obesity and macular pigment optical density. Eye 2012, 26, 259–266. [Google Scholar] [CrossRef]
- Jeon, S.; Ranard, K.M.; Neuringer, M.; Johnson, E.E.; Renner, L.; Kuchan, M.J.; Pereira, S.L.; Johnson, E.J.; Erdman, J.W., Jr. Lutein is differentially deposited across brain regions following formula or breast feeding of infant Rhesus Macaques. J. Nutr. 2018, 148, 31–39. [Google Scholar] [CrossRef]
- Cannavò, L.; Perrone, S.; Viola, V.; Marseglia, L.; Di Rosa, G.; Gitto, E. Oxidative stress and respiratory diseases in preterm newborns. Int. J. Mol. Sci. 2021, 22, 12504. [Google Scholar] [CrossRef]
- Roy, S.S.; Mukherjee, S.; Das, S.K. Vitamin A, vitamin E, lutein and β-carotene in lung tissues from subjects with chronic obstructive pulmonary disease and emphysema. Open J. Respir Dis. 2013, 3, 44. [Google Scholar]
- Melo van Lent, D.; Leermakers, E.T.M.; Hofman, A.; Stricker, B.H.; Brusselle, G.G.; Franco, O.H.; Lahousse, L.; Kiefte-de Jong, J.C. Association between lutein intake and lung function in adults: The Rotterdam Study. Br. J. Nutr. 2017, 117, 720–730. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Chen, Y.; Wang, X.; He, M. Protective effect of lutein on oxidative stress damage caused by acute PM2.5 exposure in rats. Ann. Palliat. Med. 2020, 9, 2028–2036. [Google Scholar] [CrossRef]
- Matsumoto, A.; Mizukami, H.; Mizuno, S.; Umegaki, K.; Nishikawa, J.-I.; Shudo, K.; Kagechika, H.; Inoue, M. β-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem. Pharmacol. 2007, 74, 256–264. [Google Scholar] [CrossRef]
- Park, J.S.; Chew, B.P.; Wong, T.S. Dietary lutein absorption from marigold extract is rapid in BALB/c Mice. J. Nutr. 1998, 128, 1802–1806. [Google Scholar] [CrossRef]
- Bronte, V.; Pittet, M.J. The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806–818. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune responses in neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef]
- Park, J.S.; Chew, B.P.; Wong, T.S. Dietary lutein from marigold extract inhibits mammary tumor development in BALB/c Mice. J. Nutr. 1998, 128, 1650–1656. [Google Scholar] [CrossRef]
- Promphet, P.; Bunarsa, S.; Sutheerawattananonda, M.; Kunthalert, D. Immune enhancement activities of silk lutein extract from Bombyx mori cocoons. Biol. Res. 2014, 47, 15. [Google Scholar] [CrossRef]
- Omar, H.E.-D.M.; Saad Eldien, H.M.; Badary, M.S.; Al-Khatib, B.Y.; AbdElgaffar, S.K. The immunomodulating and antioxidant activity of fucoidan on the splenic tissue of rats treated with cyclosporine A. J. Basic Appl. Zool. 2013, 66, 243–254. [Google Scholar] [CrossRef]
- Jiang, W.; Wan, L.; Chen, P.; Lu, W. Docosahexaenoic acid activates the Nrf2 signaling pathway to alleviate impairment of spleen cellular immunity in intrauterine growth restricted rat pups. Saudi J. Biol. Sci. 2021, 28, 4987–4993. [Google Scholar] [CrossRef]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambré, C.; et al. Re-evaluation of oxidised starch (E 1404), monostarch phosphate (E 1410), distarch phosphate (E 1412), phosphated distarch phosphate (E 1413), acetylated distarch phosphate (E 1414), acetylated starch (E 1420), acetylated distarch adipate (E 1422), hydroxypropyl starch (E 1440), hydroxypropyl distarch phosphate (E 1442), starch sodium octenyl succinate (E 1450), acetylated oxidised starch (E 1451) and starch aluminium octenyl succinate (E 1452) as food additives. EFSA J. 2017, 15, e04911. [Google Scholar]
- Mahadevan, B.; Thorsrud, B.A.; Brorby, G.P.; Ferguson, H.E. A 3-week dietary safety study of octenyl succinic anhydride (OSA)-modified starch in neonatal farm piglets. Food Chem. Toxicol. 2014, 72, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Vachali, P.P.; Gorusupudi, A.; Shen, Z.; Sharifzadeh, H.; Besch, B.M.; Nelson, K.; Horvath, M.M.; Frederick, J.M.; Baehr, W.; et al. Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proc. Natl. Acad. Sci. USA 2014, 111, 10173–10178. [Google Scholar] [CrossRef]
- Arunkumar, R.; Li, B.; Addo, E.K.; Hartnett, M.E.; Bernstein, P.S. Prenatal carotenoid supplementation with lutein or zeaxanthin ameliorates oxygen-induced retinopathy (OIR) in Bco2−/− macular pigment mice. Investig. Ophthalmol. Vis. Sci. 2023, 64, 9. [Google Scholar] [CrossRef]
- Thomas, L.D.; Ramkumar, S.; Golczak, M.; von Lintig, J. Genetic deletion of Bco2 and Isx establishes a golden mouse model for carotenoid research. Mol. Metab. 2023, 73, 101742. [Google Scholar] [CrossRef]
Purified Diet 1 | ||
---|---|---|
Macronutrients | g% 2 | kcal% |
Fat | 12 | 25 |
Carbohydrate | 57 | 55 |
Protein | 21 | 20 |
Total | - | 100 |
kcal/g | 4.2 | - |
Ingredient | g | kcal |
Lutein | 0 | 0 |
Casein | 200 | 800 |
L-Cystine | 3 | 12 |
Corn Starch | 353.8 | 1415 |
Maltodextrin 10 | 125 | 500 |
Sucrose | 68.8 | 275 |
Cellulose, BW200 | 50 | 0 |
Soybean Oil | 25 | 225 |
Lard | 87.7 | 789 |
Mineral Mix S10026 | 10 | 0 |
DiCalcium Phosphate | 13 | 0 |
Calcium Carbonate | 5.5 | 0 |
Potassium Citrate, 1 H2O | 16.5 | 0 |
Vitamin Mix V10001 | 10 | 40 |
Choline Bitartrate | 2 | 0 |
Food Color | 0.05 | 0 |
Mean Droplet Diameter ± SD (μm) | Minimum Droplet Diameter (μm) | Maximum Droplet Diameter (μm) | Encapsulation Efficiency (%) |
---|---|---|---|
1.73 ± 1.14 | 0.08 | 4.99 | 0.89 ± 0.014 |
Parameters | Lutein Emulsion | Free Lutein |
---|---|---|
Cmax (nmol/L) 1 | 308.03 ± 59.22 * | 145.00 ± 49.00 |
Tmax (h) | 6 | 4 |
AUC0–24 (nmol/L∗h) | 3804 ± 606.50 * | 1987 ± 247.90 |
Relative bioavailability% 2 | 195.79 |
Purified Diet with No Lutein | Standard Chow Diet Containing Lutein | ||||
---|---|---|---|---|---|
Lutein Concentration (nmol/L) or (nmol/g) | Free Lutein Group | Lutein Emulsion Group | Olive Oil Group | Free Lutein Group | Lutein Emulsion Group |
Serum | 112.42 ± 34.60 a | 195.76 ± 105.28 a | 2.33 ± 2.77 c | 17.61 ± 4.39 b | 26.54 ± 8.74 b |
Liver | 2.52 ± 1.29 b | 4.29 ± 1.59 a | 0.12 ± 0.03 c | 1.23 ± 0.38 bc | 1.78 ± 0.51 b |
Eye | 0.04 ± 0.01 a | 0.02 ± 0.007 a | Below LOD * | 0.01 ± 0.003 c | 0.015 ± 0.002 b |
Spleen | 0.66 ± 0.18 a | 1.07 ± 0.39 a | 0.14 ± 0.03 c | 0.58 ± 0.29 b | 1.17 ± 0.62 a |
Kidney | 0.12± 0.04 b | 0.21 ± 0.10 a | 0.016 ± 0.005 c | 0.12 ± 0.03 b | 0.10 ± 0.04 b |
Lung | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.002 ± 0.004 b | 0.043 ± 0.007 a | 0.06 ± 0.02 a |
Brain | 0.04 ± 0.01 b | 0.06 ± 0.02 a | 0.007 ± 0.01 b | 0.06 ± 0.04 ab | 0.12 ± 0.05 a |
WAT | 0.08 ± 0.04 a | 0.05 ± 0.01 a | 0.001 ± 0.002 b | 0.34 ± 0.23 a | 0.31 ± 0.26 a |
BAT | 0.02 ± 0.002 a | 0.03 ± 0.009 a | Below LOD | 0.026 ± 0.014 a | 0.03 ± 0.004 a |
Tmax (h) | ||||
---|---|---|---|---|
Author (Year of Publication) | Encapsulation Techniques | Animal Model | Encapsulated Lutein | Free Lutein |
Arunkumar et al. (2015) [42] | Polymer | Mice | 4 | 4 |
Ranganathan et al. (2019) [57] | Polymer | Mice | 4 | 4 |
Zhang et al. (2015) [58] | Nanoparticles | Sprague-Dawley rats | 4.7 ± 3.0 | 6 ± 2.2 |
Wu et al. (2019) [54] | Nanoparticles | Sprague-Dawley rats | 0.25 | 2 |
Liu et al. (2017) [37] | Nanoparticles | Sprague-Dawley rats | 0.25 | 2 |
Chang et al. (2018) [59] | Nanoparticles | Sprague-Dawley rats | 3 | 3 |
Sato et al. (2018) [55] | Nanoparticle | Wistar rats | 2 | NA |
Sato et al. (2018) [55] | Emulsion | Wistar rats | 4 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kong, L.; Lawrence, J.C.; Tan, L. Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats. Nutrients 2024, 16, 422. https://doi.org/10.3390/nu16030422
Zhang Y, Kong L, Lawrence JC, Tan L. Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats. Nutrients. 2024; 16(3):422. https://doi.org/10.3390/nu16030422
Chicago/Turabian StyleZhang, Yanqi, Lingyan Kong, Jeannine C. Lawrence, and Libo Tan. 2024. "Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats" Nutrients 16, no. 3: 422. https://doi.org/10.3390/nu16030422
APA StyleZhang, Y., Kong, L., Lawrence, J. C., & Tan, L. (2024). Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats. Nutrients, 16(3), 422. https://doi.org/10.3390/nu16030422