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Abstract: Newborns’ eyes and brains are prone to oxidative stress. Lutein has antioxidant properties
and is the main component of macular pigment essential for protecting the retina, but has low
bioavailability, thereby limiting its potential as a nutritional supplement. Oil-in-water emulsions have
been used as lutein delivery systems. In particular, octenylsuccinated (OS) starch is a biopolymer-
derived emulsifier safe to use in infant foods, while exhibiting superior emulsifying capacity. This
study determined the effects of an OS starch-stabilized lutein emulsion on lutein bioavailability in
Sprague-Dawley neonatal rats. In an acute study, 10-day-old pups received a single oral dose of free
lutein or lutein emulsion, with subsequent blood sampling over 24 h to analyze pharmacokinetics.
The lutein emulsion group had a 2.12- and 1.91-fold higher maximum serum lutein concentration and
area under the curve, respectively, compared to the free lutein group. In two daily dosing studies, oral
lutein was given from postnatal day 5 to 18. Blood and tissue lutein concentrations were measured.
The results indicated that the daily intake of lutein emulsion led to a higher lutein concentration in
circulation and key tissues compared to free lutein. The OS starch-stabilized emulsion could be an
effective and safe lutein delivery system for newborns.
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1. Introduction

Optimizing early-life health and development are crucial for lifelong wellness. During
infancy, a particularly vulnerable period in the life-span, newborns are exposed to elevated
oxidative stress and free radical toxicity due to their high susceptibility to environmental
perturbation [1]. Oxidative stress results from an imbalance between antioxidants and the
production of free radicals. At birth, infants transition from the hypoxic uterine environ-
ment, i.e., 20–25 mmHg PO2, to a relatively hyperoxic environment, i.e., 100 mmHg PO2.
Such elevated oxygen levels may cause oxidative stress and escalate free radical production,
potentially damaging cells and tissues. This harm can lead to conditions such as respiratory
distress syndrome, bronchopulmonary dysplasia, brain injury, and retinopathy of prematu-
rity (ROP), known collectively as “oxygen radical disease of neonatology” [2]. Additionally,
the dynamic immune changes of infants and reduced proinflammatory responses in the first
months increase their susceptibility to infection [3,4]. Recent studies link pro-inflammatory
cytokines to various newborn diseases, including pulmonary issues, ROP, perinatal brain
injury, and immune dysfunction [5–7]. Thus, optimizing newborn and infant nutrition, par-
ticularly through bioactive compounds with antioxidant and anti-inflammatory properties,
has emerged as a key strategy for promoting their health and development.

Lutein is a hydrophobic xanthophyll carotenoid. It is found abundantly in green leafy
vegetables, yellow-orange fruits and vegetables, marigold flowers, and egg yoks in a free
or esterified form [8,9]. As humans cannot synthesize lutein, it must be obtained through
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diet. In the body, lutein has antioxidant properties due to its conjugated double bonds [10],
and is concentrated in the retina’s macular region. It forms the main component of macular
pigment, filtering blue light and protecting against oxidative damage [11]. Lutein and its
isomer zeaxanthin are the primary carotenoids in human milk [12]. Newborns, with their
retinas being more permeable to blue light than adults, particularly benefit from lutein for
visual health [13]. Lutein also possesses anti-inflammatory effects and is the most abundant
carotenoid in the infant brain [14,15]. It is worth noting that certain at-risk infant groups
have compromised lutein status. Preterm infants, who are highly susceptible to oxidative
stress and related newborn diseases, were reported to have significantly lower serum and
brain lutein concentrations than full-term infants [16,17]. Additionally, formula-fed infants
were found to have lower serum lutein concentrations than breastfed infants [18,19]. A
previous study reported that lutein/zeaxanthin concentration increased from 48 µg/L at
birth to 96 µg/L at one month in breastfed newborns, while it decreased from 49 µg/L to
33 µg/L in infants fed with a formula that was not fortified with lutein [19]. Therefore,
increasing lutein intake through supplementation or fortification could benefit infants,
especially those at risk.

However, the potential of lutein as a nutritional intervention is hindered by its low
stability, poor water solubility, and low oral bioavailability [20]. As a lipophilic compound,
lutein depends on the formation of micelles with lipids and bile acids in the small intestine
for absorption, resulting in a lower absorption rate as compared to water-soluble sub-
stances [21]. Lutein in supplements is generally in the esterified form, as it is extracted
from marigold flowers [8,9]. Lutein ester is known to be even less bioavailable than the
free form because esterified lutein requires an additional ester hydrolysis step in the small
intestine [9,22]. The susceptibility of lutein to degradation by heat, light, and oxygen further
compromises its potential as a nutritional supplement or fortification. It has been shown
that compared to breast-fed infants, infants consuming lutein-fortified formula needed to
consume four-fold higher lutein dose to possess the same serum lutein level as of breast-fed
infants [18].

Encapsulation systems, such as oil-in-water (O/W) emulsion, have shown promise in
enhancing lutein stability and bioavailability in adult human and rodent models [20,23].
An O/W emulsion contains oil droplets carrying the lipophilic compound and dispersed
in a continuous water phase, stabilized by emulsifiers. The emulsion system may enhance
the absorption of a bioactive compound through reducing droplet size, protecting the
compound from degradation in the acidic stomach environment, assisting in its incor-
poration into mixed micelles, and enhancing its intestinal permeability [24–26]. When
developing infant foods, it is important to carefully choose emulsifiers, as some synthetic
emulsifiers may raise health-related concerns [27,28]. Recent studies have explored the use
of emulsifiers derived from food-grade biopolymers, such as proteins and polysaccharides,
including octenylsuccinated (OS) starch [29–31].

The current study uses octenylsuccinated (OS) starch as the emulsifier in the lutein
emulsion. OS starches are cost-effective, commercially available biopolymers that have been
approved to be used in infant foods at the maximum level of 20,000 mg/kg per day [32].
They are derived from natural sources and are commonly used as emulsifiers in food and
beverage products [33]. In our latest research, we reported the effectiveness of 3 types
of OS starch on the droplet aggregation, storage stability, and in vitro bioaccessibility of
lutein [34]. Of the 3 emulsifiers, Capsule TA (CTA)-stabilized lutein emulsion exhibited the
overall best performance in droplet size, physical stability, chemical stability, and in vitro
release; therefore, it was selected for the current in vivo research [34]. The aim of the present
study was to determine if the CTA-stabilized lutein emulsion could improve the lutein
bioavailability and tissue lutein status, especially in the eye and the brain, in neonatal
Sprague-Dawley rats.
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2. Materials and Methods
2.1. Chemicals and Materials

Lutein ester (Xangold® 30% OLV) was generously provided by BASF Inc. (Florham
Park, NJ, USA). This sample contains 284.0 mg/g of mixed lutein esters, mainly lutein
dipalmitate, and 14.5 mg/g of zeaxanthin esters isolated from marigold flowers (Tagetes
erecta). Extra virgin olive oil (Badia Spices, Doral, FL, USA) was purchased from a local
grocery store. OS starch (CTA) was kindly provided by Ingredion (Westchester, IL, USA).
Tetrahydrofuran (THF) and other reagents of analytical grade were purchased from VWR
International Inc. (Radnor, PA, USA).

2.2. Preparation of CTA-Based Lutein Emulsion

The organic phase was prepared by dissolving lutein ester in olive oil. The aqueous
phase was prepared by adding 3 g of CTA into 10 mL of deionized water and stirring
overnight until fully dispersed. The CTA-stabilized lutein emulsion was obtained by
mixing the biopolymer dispersion and lutein oil at a ratio of 30:70 (i.e., 70% oil volume
fraction) using a mechanical homogenizer (VWR 200, Radnor, PA, USA) at 20,000 rpm for
2 min [31].

2.2.1. Microstructure

The microstructure of CTA- stabilized lutein emulsion was observed using confocal
laser scanning microscope (CLSM). Specifically, 1 mL of lutein emulsion was combined
with 10 µL of Nile blue staining solution (1 mg/mL) and thoroughly mixed for 30 to 60 s
using a vortex mixer, ensuring even distribution of the dye throughout the emulsion. Then,
the mixture was incubated for one hour in a dark room. For microscopic examination, a
drop of the dye-stained lutein emulsion was carefully applied to a microscope slide and
covered with a cover slip. The dye-stained emulsion was then observed using a CLSM
(Nikon C2, Melville, NY, USA) equipped with a LUN4 4 Line Solid State Laser System
(Nikon, Melville, NY, USA). The 60× oil immerse objective lenses were used, and the
excitation wavelength was set at 488 nm for lutein and 640 nm for Nile blue. Images from
two representative regions of the emulsion sample were captured and were measured for
number-weighted mean droplet size using Image J2 2.3.0 software (Bethesda, MD, USA).

2.2.2. Encapsulation Efficiency

Encapsulation efficiency is the amount of lutein completely encapsulated in the O/W
emulsion instead of floating on the surface of the emulsion. Lutein content in the CTA-
stabilized lutein emulsion was determined through solvent extraction and spectropho-
tometry. A quantity of 0.1 g of emulsion sample was combined with 4.99 mL of THF and
subjected to disruption using a homogenizer (VWR 200, Radnor, PA, USA) at a speed
of 10,000 rpm for a duration of 30 s. The resultant mixture underwent centrifugation at
3000× g for 15 min, and subsequently, the supernatant was gathered. The lutein concen-
tration within the supernatant was determined by measuring absorbance at 452 nm using
UV/vis spectrophotometry (Mettler Toledo, OH, USA) [35]. A standard calibration curve
for lutein in THF was generated using Xangold® 30% OLV. The calibration curve (range of
0.05 to 0.003125 µg/mL) displayed remarkable linear correlation with a strong coefficient
(r2 = 0.9997). The encapsulation efficiency was computed using a formula adapted from a
previous study [35]:

Encapsulation efficiency (%) =
Amount o f lutein detected by UV − vis

Amount o f lutein loaded in the emulsion
× 100%

2.3. Acute Dosing Study—Pharmacokinetic Parameters and Bioavailability of Lutein
2.3.1. Animal Experiment

To determine the bioavailability of lutein in neonatal Sprague-Dawley rats, an acute
dosing study was conducted. The procedure was approved by the Institutional Animal
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Care and Use Committee of the University of Alabama (Number: 21-08-4864, 23 September
2021). The schematic diagram of the study design is shown in Figure 1A. On postnatal day
10 (P10), neonatal rats were randomly selected from litters and received a single dose of
either free lutein (i.e., lutein ester dissolved in olive oil) or lutein emulsion, both containing
10 mg/kg body weight of lutein. The dose was administered to the pup’s mouth via a
pipette. The concentration of lutein ester in the oil phase was 0.004 g/mL. The lutein
dosage was selected based on our pilot study and previous studies [36,37]. It is higher than
the dosage used in human newborns but is considered acceptable and safe to be used in
pharmacokinetic studies in rodent models [20]. At 0.5 h, 1 h, 2 h, 4 h, 6 h, 12 h, and 24 h after
dosing, pups (n = 3/time point/group) were euthanized, and blood, liver, spleen, brain,
and eye were collected. Serum was obtained by centrifuging blood samples and tissues
were stored at −80 ◦C until time of analysis. A group of rat pups (n = 3) not receiving
treatments were used to measure the baseline lutein concentrations. Throughout the study,
maternal rats consumed a purified diet with no lutein (D19120501, Research Diets Inc, New
Brunswick, NJ, USA) (Table 1).
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Table 1. Diet composition of the purified diet with no lutein. Formulation details are provided in
grams, g, and kilocalories, kcal.

Purified Diet 1

Macronutrients g% 2 kcal%

Fat 12 25
Carbohydrate 57 55

Protein 21 20
Total - 100

kcal/g 4.2 -

Ingredient g kcal

Lutein 0 0
Casein 200 800

L-Cystine 3 12
Corn Starch 353.8 1415

Maltodextrin 10 125 500
Sucrose 68.8 275

Cellulose, BW200 50 0
Soybean Oil 25 225

Lard 87.7 789
Mineral Mix S10026 10 0

DiCalcium Phosphate 13 0
Calcium Carbonate 5.5 0

Potassium Citrate, 1 H2O 16.5 0
Vitamin Mix V10001 10 40

Choline Bitartrate 2 0
Food Color 0.05 0

1 Research Diets, Inc (D19120501), purified diet with no lutein. 2 The number of grams of the nutrient is given by
per 100 g of the total diet.

2.3.2. Analysis of Lutein Concentration in Serum, Liver, Spleen, Brain, and Eye

Serum and tissue lutein concentration was determined using an ultra-performance
liquid chromatography (UPLC) system (Waters, Milford, MA, USA) equipped with a photo-
diode array detector (PDA)/MS/MS, according to our well-established methods with slight
modification [38]. As for the serum, 100 µL of the sample was incubated with 2 mL of 100%
ethanol at room temperature for an hour for lipid extraction. For the tissues, ~0.1 g of the
sample was weighed, homogenized, and incubated with 2 mL of 100% ethanol at room
temperature for an hour. An amount of 1 mL of 5% (w/v) potassium hydroxide was added
to the sample and incubated in a water bath at 60 ◦C for 45 min for saponification. Upon
saponification, samples were allowed to cool for about 15 min, and then an addition of 4 mL
of hexane containing 0.1% butylated hydroxytoluene (w/v) and 2 mL of deionized water
was added. The mixture was vortexed for 20 s and centrifuged at 1600 rpm at 25 ◦C for
15 min. The upper layer was collected following centrifugation and dried under nitrogen
at 37 ◦C. The dried sample was then rinsed twice with hexane, dried, and reconstituted
with 100 µL of acetonitrile-methanol. The reconstituted sample was centrifuged for 2 min
to remove any possible precipitation. For UPLC analysis, 10 µL of the sample was injected
into the Waters Acquity UPLC HSS T3 column. Solvent A was acetonitrile: methanol (50:50,
v/v), and solvent B was 100% isopropanol. The mobile phase was made up of solvent A
and solvent B in a volume ratio of 95:5 (v/v). The flow rate was set as 0.5 mL/min, and the
column temperature was maintained at 35 ◦C. The detection wavelength was set at 446 nm.
Retinyl acetate (Sigma-Aldrich, St. Louis, MO, USA) was used as the internal standard [39].

2.3.3. Bioavailability Analysis

Bioavailability is defined as the rate and range of the active compound to the systemic
circulation through a single oral administration [40,41]. It can be evaluated by pharma-
cokinetic parameters derived from the compound kinetic curve (serum concentration vs.
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time). In the acute dosing study, pharmacokinetic parameters, including maximum lutein
concentration (Cmax), time to reach Cmax (Tmax), and area under the time-concentration
curve (AUC0–24) were determined. Cmax and Tmax were read directly from the serum
lutein kinetic curve. The area under the time-concentration curve (AUC0–24) was calculated
by trapezoid rule with linear interpolation using GraphPad Prism 8.0 (San Diego, CA,
USA) [42]. The relative bioavailability of lutein emulsion to free lutein was calculated using
the following equation [37]:

Relative bioavailability (%) =
AUCexperiment

AUCcontrol
× 100

2.4. Daily Dosing Studies in Neonatal Rats
2.4.1. Animal Experiments

To determine the effects of daily consumption of CTA-stabilized lutein emulsion on
tissue lutein status, two daily dosing studies were conducted. The procedures were ap-
proved by the Institutional Animal Care and Use Committee of the University of Alabama
(Number: 21-02-4373, 4 February 2021). The schematic diagram is shown in Figure 1B,C. For
daily dosing study 1 (Figure 1B), on P5, rat pups (n = 8–9/group) were randomly selected
from the litters and received an oral dose of either free lutein (i.e., lutein ester dissolved in
olive oil) or lutein emulsion both containing 2 mg/kg body weight of lutein. Our previous
data indicated that when maternal rats were fed a diet devoid of lutein, lutein was not
detected in the offspring; therefore, a negative control group was not included. Dosing
was repeated daily until P18. The dosage was determined from previous research in both
rodent and human newborns and was also established as an Acceptable Daily Intake for
lutein by the Joint Food and Agricultural Organization/World Health Organization [43–46].
On P19, pups were euthanized. Rats are known to wean between P19 and P21 [47]. Blood
from vena cava, liver, spleen, brain, eye, kidney, lung, white adipose tissue (WAT), and
brown adipose tissue (BAT) were collected. Blood samples were centrifuged to obtain
serum. Serum and collected tissues were frozen at −80 ◦C until analysis.

To mimic the human dietary intake of lutein, daily dosing study 2 was conducted
(Figure 1C). In this study, maternal rats consumed a standard rodent chow diet containing
lutein from ingredients (i.e., ground corn) during pregnancy and lactation (Figure S2). The
study design was similar to that of daily dosing study 1, except that a negative control
group, in which rat pups were given olive oil from P5 to P18, was included in this study.

2.4.2. Analysis of Lutein Concentration in Serum and Tissues

Serum and tissue lutein concentrations were analyzed using the methods described in
Section 2.3.2.

2.5. Statistical Analysis

Data are reported as mean ± standard deviation (SD). Data is normally distributed.
Differences between two groups were determined using Student’s t-test, while those among
groups of more than two were assessed using one-way ANOVA followed by a Bonferroni
posttest. Statistical significance was set as P < 0.05. Data were analyzed in GraphPad
Prism 8.0 (San Diego, CA, USA).

3. Results
3.1. Microstructure of Lutein Emulsion Stabilized by 30% (w/v) CTA

The photo and the micrographs of CTA-stabilized lutein emulsion were shown in
Figure 2. CTA-stabilized lutein emulsion had no phase separation and was self-standing
and immobile after putting the bottle upside down, indicating the formation of “emulsion
gel” [31]. The green fluorescence field (Figure 2B), purple fluorescence field (Figure 2C), and
overlap fluorescence filed (Figure 2D) were shown in the CLSM images of CTA-stabilized
lutein emulsion, which correspond to exciting natural lutein fluorescence, Nile blue staining,
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and both, respectively. As can be seen, the lutein oil droplets were homogenized and close-
packed. The aqueous phase was located at the surface of the droplets and encapsulated the
oil droplets in between, indicating the successful formation of the O/W emulsion.

B C DA

Figure 2. Photo (A) and the confocal laser scanning microscopy images of the oil phase florescence
filed (B), aqueous phase fluorescence field (C), and overlap fluorescence field (D) of the lutein
emulsion stabilized by 30% w/v capsule TA® (CTA). Lutein in oil phase was naturally fluorescent
and was excited at 488 nm in green; CTA was stained with Nile blue and excited at 633 nm in purple;
bar is 10 µm, using 60× oil immerse objective lens.

The mean droplet diameter, minimum droplet diameter, and maximum droplet diam-
eter of the lutein emulsion was 1.73 ± 1.14 µm, 0.08 µm, and 4.99 µm, respectively (Table 2).
The encapsulation efficiency was 0.89 ± 0.014%.

Table 2. Mean, minimum, and maximum droplet diameter of the lutein emulsion stabilized by 30%
w/v capsule TA® (CTA).

Mean Droplet
Diameter ± SD (µm)

Minimum Droplet
Diameter (µm)

Maximum Droplet
Diameter (µm)

Encapsulation
Efficiency (%)

1.73 ± 1.14 0.08 4.99 0.89 ± 0.014

3.2. Acute Dosing Study—Serum Lutein Kinetics

The serum concentration of lutein after a one-time oral dosing was plotted versus
time (Figure 3). The serum lutein concentration of the three rats that did not receive lutein
was used as the baseline. Lutein was not detected in the serum and tissues of the baseline
rats. At 0.5 h, the serum concentration of lutein in the free lutein group was undetectable,
while the concentration in the lutein emulsion group was remarkably high (84.11 ± 23.80
vs. 0.00 ± 0.00 nmol/L, P < 0.01). At 4 h, the serum lutein concentration in the free lutein
group reached peak value. At 6 h, the lutein emulsion group reached the peak serum
lutein concentration and exhibited a significantly higher value than that of the free lutein
group (308.03 ± 59.22 vs. 132.91 ± 64.96 nmol/L, P < 0.05). At 24 h, the serum lutein
concentration in the emulsion group was significantly higher than that of the free lutein
group (118.60 ± 49.16 vs. 43.16 ± 8.53 nmol/L, P < 0.05).

3.3. Acute Dosing Study—Pharmacokinetic Parameters and Bioavailability of Lutein

The key pharmacokinetic parameters of lutein in the neonatal Sprague-Dawley rats,
including Cmax, AUC, and Tmax, were derived from the serum lutein kinetic curve in
Figure 3 and summarized in Table 3. The lutein emulsion group showed a significantly
2.12- and 1.91- fold higher serum lutein Cmax and AUC than that of the free lutein group,
respectively (P < 0.05). The serum Tmax was 6 h and 4 h in the lutein emulsion group and
the free lutein group, respectively. The relative bioavailability of lutein in the emulsion as
to the free lutein was 195.79%.
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Figure 3. Serum concentration-time curve of lutein of rat pups after either a single dose of free lutein
or CTA-stabilized lutein emulsion both containing 10 mg/kg body weight of lutein at postnatal day
10. Statistically significant difference between groups at each time point was indicated by *, P < 0.05;
**, P < 0.01. Mean ± SD, n = 3/time point/group.

Table 3. Pharmacokinetic parameters of lutein in rat pups after received either a single dose of
free lutein or CTA-stabilized lutein emulsion both containing 10 mg/kg body weight of lutein
(n = 3/groups/time).

Parameters Lutein Emulsion Free Lutein

Cmax (nmol/L) 1 308.03 ± 59.22 * 145.00 ± 49.00

Tmax (h) 6 4

AUC0–24 (nmol/L∗h) 3804 ± 606.50 * 1987 ± 247.90

Relative bioavailability% 2 195.79
1 Cmax, maximum lutein concentration; Tmax, time to reach Cmax; AUC0–24, area under the concentration-time
curve to terminal time. * indicates statistically significant difference between groups (P < 0.05). 2 Relative
bioavailability (%) = AUCexperiment

AUCcontrol × 100.

3.4. Acute Dosing Study—Tissue Lutein Profiles

The liver lutein concentration versus time points is shown in Figure 4. The liver
lutein concentration in both groups continuously increased in the first 12 h. After 12 h, the
liver lutein concentration in the free lutein group started to decrease, while the concen-
tration in the lutein emulsion groups kept increasing. At 24 h, the lutein emulsion group
showed a significantly higher lutein concentration than the free lutein group (6.96 ± 2.51
vs. 1.02 ± 1.18 nmol/g, P < 0.05).

The lutein concentrations in spleen, brain, and eye after a single dose are shown in
Figure 5. The earliest time point for lutein to be detectable in these three organs was 6 h,
12 h, and 24 h, respectively, and therefore only these time points were included in the plot.
At 24 h, a significantly higher lutein concentration was found in the spleen (0.53 ± 0.19 vs.
0.19 ± 0.10 nmol/g, P < 0.05) and eye (0.017 ± 0.002 vs. 0.011 ± 0.00005 nmol/g, P < 0.05)
in the emulsion group.
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Figure 5. Lutein concentration in the spleen (A), brain (B), and eye (C) of rat pups at different
time points after receiving either a single dose of free lutein or CTA-stabilized lutein emulsion both
containing 10 mg/kg body weight of lutein. * indicates statistically significant difference between
groups, P < 0.05, n = 3/time point/group.

3.5. Daily Dosing Studies—Serum and Tissue Lutein Concentrations

To assess the effects of daily consumption of CTA-stabilized lutein emulsion on the
tissue lutein status in neonatal rats, two daily dosing studies were conducted. Neither
study showed significant differences in body or tissue weights among groups, and daily
oral lutein administration caused no observable illness in the pups (Table S1).

In daily dosing study 1, in which maternal rats consumed a purified diet with no lutein,
after two weeks of oral dosing, rat pups in the emulsion group showed a significantly higher
lutein concentration in the serum (195.76 ± 105.28 vs. 112.42 ± 34.60 nmol/L, P < 0.05),
liver (4.29 ± 1.59 vs. 2.52 ± 1.29 nmol/g, P < 0.05), spleen (1.07 ± 0.39 vs. 0.66 ± 0.18,
P < 0.05), kidney (0.21 ± 0.10 vs. 0.12 ± 0.04 nmol/g, P < 0.05), lung (0.07 ± 0.01 vs.
0.06 ± 0.01 nmol/g, P < 0.05), brain (0.06 ± 0.02 vs. 0.04 ± 0.01 nmol/g, P < 0.05), eye
(0.04 ± 0.01 vs. 0.02 ± 0.007 nmol/g, P < 0.05), and BAT (0.03 ± 0.009 vs. 0.02 ± 0.002 nmol/g,
P < 0.05), than the free lutein group (Figure 6).
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Figure 6. Concentration of lutein in the serum (A), liver (B), spleen (C), kidney (D), lung (E), white
adipose tissue (WAT) (F), brain (G), eye (H), and brown adipose tissue (BAT) (I) of rat pups after
receiving either free lutein or CTA-stabilized lutein emulsion both containing 2 mg/kg BW of lutein
from postnatal day 5 to postnatal day 18. Rat pups were reared by mothers fed a purified diet with no
lutein. * indicates statistically significant difference between groups, P < 0.05, n = 8–9/group. Graphs
are ordered based on lutein concentration in the free lutein group from the highest to the lowest.

In daily dosing study 2, in which maternal rats consumed a lutein-containing standard
chow diet, compared to the olive oil group, rat pups in the free lutein group had significantly
higher lutein concentrations in all the analyzed organs, including the serum (17.61 ± 4.39
vs. 2.33 ± 2.77 nmol/g, P < 0.05), liver (1.23 ± 0.38 vs. 0.12 ± 0.03 nmol/g, P < 0.05), spleen
(0.58 ± 0.29 vs. 0.14 ± 0.03 nmol/g, P < 0.05), WAT (0.34 ± 0.23 vs. 0.001 ± 0.002 nmol/g,
P < 0.05), kidney (0.12 ± 0.03 vs. 0.016 ± 0.005 nmol/g, P < 0.05), brain (0.06 ± 0.04 vs.
0.007 ± 0.01 nmol/g, P < 0.05), lung (0.043 ± 0.007 vs. 0.002 ± 0.004 nmol/g, P < 0.05), BAT
(0.026± 0.014 vs. 0.00 ± 0.00 nmol/g, P < 0.05), and eye (0.01 ± 0.003 vs. 0.00 ± 0.00 nmol/g,
P < 0.05) (Figure 7). Compared to the free lutein group, the lutein emulsion group exhibited
significantly higher lutein concentration in the serum (26.54 ± 8.74 vs. 17.61 ± 4.39 nmol/g,
P < 0.05), liver (1.78 ± 0.51 vs. 1.23 ± 0.38 nmol/g, P < 0.05), spleen (1.17 ± 0.62 vs.
0.14 ± 0.03 nmol/g, P < 0.05), brain (0.12 ± 0.05 vs. 0.06 ± 0.04 nmol/g, P < 0.05), lung
(0.06 ± 0.02 vs. 0.043± 0.007 nmol/g, P < 0.05), and eye (0.015± 0.002 vs. 0.01 ± 0.003 nmol/g,
P < 0.05).

Comparing data of the two studies, it is interesting to note that upon receiving lutein,
offspring of mothers consuming the no-lutein diet had higher lutein concentrations than
those consuming the diet containing some lutein (Table 4). Specifically, the lutein concen-
trations in the serum, liver, and eye of the lutein emulsion group and the free lutein group
were 7.37- and 6.38-, 2.41- and 2.04-, and 2.85- and 2.00-fold higher, respectively.
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Figure 7. Concentration of lutein in the serum (A), liver (B), spleen (C), white adipose tissue
(WAT) (D), kidney (E), brain (F), lung (G), brown adipose tissue (BAT) (H), and eye (I) of rat pups
after receiving either free lutein or CTA-stabilized lutein emulsion both containing 2 mg/kg BW of
lutein from postnatal day 5 to postnatal day 18. Rat pups were reared by mothers fed a standard chow
diet containing lutein. Different letters indicate statistically significant difference among three groups,
a > b > c, P < 0.05, n = 8–9/group. Graphs are ordered based on lutein concentration in the free lutein
group from the highest to the lowest.

Table 4. Lutein concentration in the serum and tissues of rat pups reared by mothers fed with a
purified diet with no lutein and a standard chow diet containing lutein.

Purified Diet with No Lutein Standard Chow Diet Containing Lutein

Lutein Concentration
(nmol/L) or (nmol/g)

Free Lutein
Group

Lutein Emulsion
Group Olive Oil Group Free Lutein

Group
Lutein Emulsion

Group

Serum 112.42 ± 34.60 a 195.76 ± 105.28 a 2.33 ± 2.77 c 17.61 ± 4.39 b 26.54 ± 8.74 b

Liver 2.52 ± 1.29 b 4.29 ± 1.59 a 0.12 ± 0.03 c 1.23 ± 0.38 bc 1.78 ± 0.51 b

Eye 0.04 ± 0.01 a 0.02 ± 0.007 a Below LOD * 0.01 ± 0.003 c 0.015 ± 0.002 b

Spleen 0.66 ± 0.18 a 1.07 ± 0.39 a 0.14 ± 0.03 c 0.58 ± 0.29 b 1.17 ± 0.62 a

Kidney 0.12± 0.04 b 0.21 ± 0.10 a 0.016 ± 0.005 c 0.12 ± 0.03 b 0.10 ± 0.04 b

Lung 0.06 ± 0.01 a 0.07 ± 0.01 a 0.002 ± 0.004 b 0.043 ± 0.007 a 0.06 ± 0.02 a

Brain 0.04 ± 0.01 b 0.06 ± 0.02 a 0.007 ± 0.01 b 0.06 ± 0.04 ab 0.12 ± 0.05 a

WAT 0.08 ± 0.04 a 0.05 ± 0.01 a 0.001 ± 0.002 b 0.34 ± 0.23 a 0.31 ± 0.26 a

BAT 0.02 ± 0.002 a 0.03 ± 0.009 a Below LOD 0.026 ± 0.014 a 0.03 ± 0.004 a

* LOD, limit of detection. WAT, white adipose tissue; BAT, brown adipose tissue. Data represent Mean ± SD,
different letters indicate statistically significant difference among five groups in each organ, a > b > c, P < 0.05.
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4. Discussion

To the best of the authors’ knowledge, this is the first study to evaluate the effects of an
encapsulation technique on the bioavailability of lutein in a neonatal model. The findings
reveal that CTA-stabilized lutein emulsion significantly enhances lutein bioavailability and
its presence in key functional organs like the eye and brain.

4.1. Innovation and Advantages of the CTA-Stabilized Emulsion

Three delivery systems, including polymer nanoparticles, lutein nanoparticles, and
lutein emulsions, are commonly used for lutein encapsulation [20]. Among these, lutein
emulsion stands out as the most promising for infant food development due to its com-
position and texture being similar to breastmilk and its structural resemblance to milk-fat
globules in breast milk. Milk-fat globules are tiny droplets of fat present in breast milk,
surrounded in breast milk by a three-layer membrane comprising proteins, lipids, and
carbohydrates, which act as natural emulsifiers to disperse the fat and aid in its hydrolysis
and absorption by infants [48,49]. Evidence supports the concept that the unique struc-
ture of milk-fat globules might improve lutein bioavailability, potentially explaining the
higher lutein levels in breastfed infants compared to those formula-fed [50]. Such similarity
suggests that lutein emulsion might similarly enhance lutein absorption in infants.

In this study, the food-grade biopolymer CTA was utilized as an emulsifier to develop
lutein emulsions. This emulsifier offers advantages over synthetic emulsifiers, which is not
as label friendly for infant food preparation [51]. Biopolymers, including proteins like soy
protein and casein, and polysaccharides such as starch and carboxymethyl cellulose, are not
only food-grade colloids but also function as effective stabilizers in O/W emulsions [52].
Among these, plant-derived polysaccharides, particularly starch, are often preferred to
being used. Their advantages include the absence of food allergy concerns when used in
infant products, along with their cost-effectiveness due to low price and wide availability.
Furthermore, native starches can be chemically modified to enhance their functionality.
For instance, OS starches are a type of modified starch. These starches are produced
by reacting corn, potato, or other starches with octenylsuccinic anhydride, which adds
carboxylate groups to the starch molecules. The resulting water-soluble starch, possessing
both hydrophilic and lipophilic properties, is an effective emulsifier for O/W emulsions as
compared to native starch [51].

4.2. Characteristics of the CTA-Stabilized Lutein Emulsion

The CTA-stabilized lutein emulsion showed homogenized droplets according to the
confocal images. CTA at the oil/water interface resulted in the formation of a dense layer
surrounding the surface of the spherical oil droplets, preventing droplet coalescence and
potentially enhancing the stability of the emulsion. This observation also corresponds to the
visual appearance of the gel-like emulsion. Emulsion gels are structurally stable under long-
term storage and could serve as delivery carriers for lipophilic bioactive compounds [31].
The mean droplet size of the emulsion, which is 1.73 ± 1.14 µm, was within the range of
conventional emulsion (i.e., 100 nm to 100 µm) [53]. This relatively small droplet size is
crucial for lutein bioavailability, as it increases the surface area available for gastrointestinal
interactions [24].

4.3. CTA-Stabilized Lutein Emulsion Enhanced Lutein Bioavailability in Neonatal Rats

AUC0–24, which is the area under the plot of serum concentration of the biocompound
versus time after a single dosing, reflects the bioavailability of the compound [54]. In the
acute dosing study, it was found that the relative bioavailability of lutein from the emulsion
as to free lutein was 195.57%, calculated as the ratio of AUC0–24 of the emulsion group
to the free lutein group, indicating an almost two-fold higher bioavailability. This aligns
with a previous study where oral fast-dissolving lutein nanocrystals achieved a relative
bioavailability of 207.67% [37]. The serum Tmax, or time to serum peak concentration, was
4 h for free lutein and 6 h for the emulsion group, which were both within the previously
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reported range of 0.25 to 6 h (Table 5). Polymer, nanoparticles, and emulsion are the main
lutein delivery systems [20], with nanoparticles typically shortening Tmax. However, in this
study, the Tmax of the lutein emulsion group was 2 h later than the free lutein group. Sato
et al. found a similar delay in Tmax for lutein in an emulsion gel compared to a powder-like
encapsulated lutein (Table 5) [55]. This delay may be due to the polysaccharides in the
gel state, which can prolong gastric emptying, increasing retention in the stomach and
small intestine compared to free lutein [37]. Gelation of the emulsion might also delay the
diffusion of digestive enzymes, controlling the release of lutein [56].

Table 5. Summary of earlier studies reporting the serum Tmax of free lutein and lutein in different
encapsulation systems.

Tmax (h)

Author (Year of
Publication)

Encapsulation
Techniques Animal Model Encapsulated

Lutein
Free

Lutein

Arunkumar et al.
(2015) [42] Polymer Mice 4 4

Ranganathan et al.
(2019) [57] Polymer Mice 4 4

Zhang et al. (2015) [58] Nanoparticles Sprague-Dawley rats 4.7 ± 3.0 6 ± 2.2
Wu et al. (2019) [54] Nanoparticles Sprague-Dawley rats 0.25 2
Liu et al. (2017) [37] Nanoparticles Sprague-Dawley rats 0.25 2

Chang et al. (2018) [59] Nanoparticles Sprague-Dawley rats 3 3
Sato et al. (2018) [55] Nanoparticle Wistar rats 2 NA
Sato et al. (2018) [55] Emulsion Wistar rats 4 NA

NA, not available.

It was noted that serum lutein concentration in the emulsion group rapidly increased
and then decreased 0.5 h post administration (Figure 2), a pattern also observed in other
studies with encapsulated lutein [36,55]. It could be due to different absorption mecha-
nisms between free lutein and lutein emulsion. Lutein forms mixed micelles in the small
intestine, is absorbed via passive diffusion, packed into chylomicrons, and secreted into the
mesenteric lymph stream, and then follows chylomicron metabolism, eventually entering
the bloodstream in lipoproteins [60,61]. Free lutein consumption, under normal conditions,
results in a gradual increase in the serum level, as seen in the free lutein group. In contrast,
the emulsion may alter lutein absorption; its water solubility could increase, enhancing
transport across intestinal epithelial cells and directly to the liver via the hepatic portal
vein [60,62]. This could explain the initial small peak in blood lutein concentration at 0.5 h in
the emulsion group. Subsequently, lutein stored in the liver regulates serum concentrations,
normalizing levels over time.

Lutein concentration in the liver, spleen, and eye were found to be significantly higher
in the lutein emulsion group than that of the free lutein group at 24 h. These results align
with the findings of Sato et al., Arunkumar et al., and Wu et al., who observed increased
lutein concentrations in the liver and/or eyes with lutein delivery systems in mouse models
4 to 24 h after a single dosing [54,55,63].

4.4. CTA-Stabilized Lutein Emulsion Improved Tissue Lutein Status

A daily feeding or dosing study would provide insight into the tissue distribution or
physiologic stores of a bio-compound. We conducted two daily dosing studies, in which
maternal rats consumed a no-lutein or a lutein-containing diet. With the maternal diet
containing no lutein, it would eliminate the potential impact of dietary lutein on the effect
of the lutein emulsion. With the lutein-containing diet, it would more mimic human dietary
lutein consumption. It was found that, regardless of the maternal diet, lutein emulsion
significantly increased the lutein concentration in many tissues, including the eye and
the brain.
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As a lipophilic bio-compound, lutein accumulates in fatty tissues, i.e., the liver and
WAT, for long-term storage. Once taken up by the liver, lutein can either be stored or
redistributed to peripheral tissues via very low-density lipoproteins [64]. The current study
showed that liver had the highest lutein concentrations among all organs in both free
lutein and lutein emulsion groups, but the emulsion group had 1.44 to 1.91-fold higher
concentrations than the free lutein group. Elevated liver lutein concentration may suggest a
greater availability of lutein for utilization in target tissues when required [12]. Interestingly,
in both studies, no significant difference was found in WAT lutein concentration between
the free lutein and lutein emulsion group. Similar findings were reported by Murillo et al.
in Guinea pigs [65]. WAT lutein concentration, a long-term dietary lutein indicator, was
suggested to have a negative correlation with macular pigment optical density (MPOD)
in adults, indicating a competitive relationship between adipose tissue and the retina for
serum lutein [66]. Studies indicated that individuals with higher body fat or obesity had
lower MPOD [67,68], implying that WAT might sequester lutein, reducing its availability to
target organs. Notably, our results suggest that lutein emulsion selectively enhances lutein
delivery to functional organs without increasing WAT storage in neonatal rats [46].

It was exciting to find that the two major target organs of lutein, i.e., the eye and
brain, exhibited higher lutein concentration in the lutein emulsion group. Lutein and
zeaxanthin are the only dietary carotenoids that cross the blood-retina barrier [15]. They act
as antioxidants, anti-inflammatory agents, and the main component of macular pigment in
the human eye. Jeon et al. found that lutein predominantly accumulates in the occipital
cortex, the region of the human brain identified as the primary visual cortex, which plays a
key role in processing visual information [69]. Increased lutein concentrations in the eye
and brain may benefit visual and cognitive developments during infancy, particularly for
at-risk infants.

Furthermore, the lutein emulsion group showed significantly higher lutein concen-
tration in the lung. Human lung development, critical from embryonic stages through
early childhood, is susceptible to changes due to early oxidative stress exposure. This
is particularly relevant for preterm infants prone to neonatal respiratory conditions [70].
Studies in adults have shown lutein’s positive impact on lung function, with correlations
observed between lutein levels and reduced severity of emphysema and improved lung
function in smokers [71,72]. Lutein supplementation has also been noted to decrease lung
inflammation and oxidative stress in pollution-exposed mice [73]. The potential role of
lutein in lung health might be linked to its interaction with retinoic acid receptors (RARs),
crucial in alveolar development [74]. Our findings suggest the potential benefit of lutein
emulsion in early lung development, but further research is required to fully understand
the roles of lutein in lung development in neonates.

A high lutein concentration was noted in the neonatal spleen, which possessed the
second highest concentration among all organs, and lutein emulsion further increased
the concentration. Studies in adult rodents and infant nonhuman primates also show
substantial spleen accumulation of lutein [54,69,75]. For instance, Jeon et al. found the
spleen to have the third-highest lutein concentration in infant Rhesus Macaques, after the
liver and retina [69]. The roles of spleen in neonates include immune system regulation, red
blood cell production, and cell removal [76]. Given that infants, particularly preterm ones,
have immature immune systems and are vulnerable to oxidative stress, the effectiveness of
lutein in immune stimulation and tumor growth inhibition in mice is noteworthy [77,78].
Lutein supplementation has shown dose-dependent enhancements in adult mice’s immune
functions, such as increased natural killer cell activity and lymphoproliferative response in
the spleen [79]. While the specific functions of lutein in the neonatal spleen remain unclear,
it may aid spleen development and immunomodulation [80,81]. In this study, the lutein
emulsion group displayed higher spleen lutein concentration, potentially benefiting spleen
development and neonatal rat immunity.
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4.5. Strengths and Limitations of the Study

The current study had several advantages. First, we utilized a food-grade biopolymer,
OS starch, which is an approved food additive in infant foods, as the emulsifier [32].
Previous reports suggested that there is no safety concerns for the usage of OS starch
within the range reported in clinical studies [32,82,83]. In this study, we used OS starch at
levels (based on the body weight of rat pups) well below those reported in clinical studies.
Secondly, the study encompassed both acute and daily dosing evaluations to assess the
effects of lutein emulsion. Thirdly, the 2 mg/kg body weight dosage employed in the daily
dosing studies, derived from human infant studies and established as an Acceptable Daily
Intake for lutein, enhances the translational relevance of the current research to human
clinical trials [43–45].

While the Sprague-Dawley rat is a commonly employed model for investigating lutein
metabolism and function, it is important to recognize that there are notable differences
in lutein metabolism between rodents and humans. This discrepancy is attributed to
the high activity of the xanthophyll cleavage enzyme beta-carotene oxygenase 2 (BCO2)
in rodents, which is inactive in humans. Consequently, rodents experience much lower
lutein accumulation in their eyes [84]. To better mimic human lutein metabolism, a BCO2
knockout (BCO2-/-) mouse model has emerged in recent years [85,86].

Nevertheless, the data obtained from the current model remains valuable, clearly
demonstrating the efficacy of CTA-stabilized lutein emulsion in enhancing lutein bioavail-
ability. In our future studies, we will use the BCO2-/- model to further refine our under-
standing of the in vivo effect of the lutein emulsion in a system that more closely mimics
human physiology.

5. Conclusions and Future Directions

A biopolymer-stabilized emulsion was shown to be an efficient and safe system for
enhancing the bioavailability of lutein in a neonatal rat model. This emulsion system holds
promise as a cost-effective fortification in infant formula and other baby foods, optimizing
the bioavailability of lutein and thereby promoting early-life health and development.
Furthermore, future research should investigate the impact of the lutein emulsion in
diverse neonatal disease models, including conditions such as retinopathy of prematurity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu16030422/s1, Figure S1: A representative UPLC chromatogram
of lutein in the liver of a rat pup 24 h after a single dose of lutein emulsion. Figure S2: Diet composition
of the standard chow diet. Table S1: Body weight and tissue weights of rat pups among groups at
postnatal day 19.
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