Edible Offal as a Valuable Source of Nutrients in the Diet—A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Definitions of Edible Offal
4. Determinants of the Yield of Edible Offal
Animal and Additional Information | Edible Offal | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Liver | Kidneys | Heart | Tongue | Lungs | Stomachs | Spleen | Sweetbread | Pancreas | Intestines | ||
Cattle | 983 | 990 | 1053 | 1290 | nd | nd | nd | 900 | nd | nd | [85] |
Cattle (Suckler beef) Holstein–Friesian | 3094 (1.2) * | 587 (0.22) * | 1009 (0.37) * | 931 (0.35) * | nd | nd | nd | nd | nd | nd | [14] |
Calves (Veal calves) Holstein–Friesian | 1349 (2.0) * | 313 (0.45) * | 425 (0.62) * | 300 (0.44) * | nd | nd | nd | nd | nd | nd | [14] |
Sheep | 624 | 80 | 187 | 92 | 610 | 2189 | 109 | nd | nd | 1837 | [8] |
Lamb | 696 | 52 | 192 | 94 | 459 | 1130 | 72 | 2009 | [8] | ||
Australian lamb | 710 | 75 | 250 | 100 | 450 | 110 | 40 | 110 | 570 | [3] | |
Pig Polish Great White × Polish Canine; Duroc × Pietrain | 1607 (1.41) * | 334 (0.30) * | 422 (0.37) * | 295 (0.26) * | 881 (0.77) * | nd | nd | nd | nd | nd | [71] |
Pig | 1720 (1.72) * | nd | nd | nd | nd | nd | nd | nd | nd | nd | [24] |
Pig Landrace | 1270 (1.14) * | 340 | 400 (0.36) * | 250 (0.23) * | 670 (0.60) * | nd | nd | nd | nd | nd | [22] |
Pig Pulawska | 1410 (1.25) * | 380 | 390 (0.35) * | 280 (0.25) * | 710 (0.64) * | [22] | |||||
Pig Landrace × Yorkshire × Duroc | 1820 (1.35) * | 440 (0.33) * | 710 (0.53) * | 750 (0.56) * | 220 (0.16) * | 240 (0.18) * | Small 1170 (0.86) * Large 1230 (0.90) * | [20] | |||
Pig Pulawska slatted floor rearing system | 1160 (1.03) * | 340 (0.30) * | 390 (0.36) * | 250 (0.23) * | 670 (0.59) * | nd | nd | nd | nd | nd | [69] |
Pig Pulawska deep litter rearing system | 1.420 (1.27) * | 380 (0.34) * | 400 (0.35) * | 270 (0.25) * | 690 (0.62) * | nd | nd | nd | nd | nd | [69] |
Pig—genotype C/T (not susceptible to stress) | 1831 | 400 | 391 | 280 | 997 | nd | nd | nd | nd | nd | [59] |
Pig—genotype C/C (partially susceptible to stress) | 2120 | 406 | 407 | 292 | 1013 | nd | nd | nd | nd | nd | [59] |
Zebra (Equus quagga) (winter slaughter) | 3330 (1.00) * | 740 (0.30) * | 1790 (0.72) * | nd | 3850 (1.20) * with trachea | nd | 930 (0.30) * | nd | nd | nd | [39] |
Zebra (Equus quagga) (summer slaughter) | 3320 (1.20) * | 648 (0.20) * | 1730 (0.53) * | nd | 3420 (1.2) * with trachea | nd | 970 (0.30) * | nd | nd | nd | [39] |
Fallow deer (Dama dama) (summer slaughter) | 823 (1.97) * | 112 (0.27) * | 388 (0.93) * | 147 (0.35) * | nd | nd | nd | nd | nd | nd | [74] |
Fallow deer (Dama dama) (winter slaughter) | 842 (2.06) * | 119 (0.29) * | 379 (0.92) * | 158 (0.39) * | nd | nd | nd | nd | nd | nd | [74] |
Immature wild boar | 635 (2.53) * | 113 (0.49) * | 180 (0.69) * | 141 (0.55) * | nd | nd | nd | nd | nd | nd | [78] |
Juvenile wild boar | 1138 (1.93) * | 217 (0.38) * | 353 (0.59) * | 289 (0.50) * | nd | nd | nd | nd | nd | nd | [78] |
Wild boar (Sus scrofa scrofa) | 1358 (2.55) * | 305 (0.57) * | 419 (0.79) * | 230 (0.43) * | 859 (1.62) * | nd | nd | nd | nd | nd | [71] |
African ostrich (Strutio camelus var. domesticus) | 1586 | nd | 890 | nd | nd | 1088 | nd | nd | nd | nd | [36] |
Chicken organic rearing system | 44 (1.89) * | nd | 13 (0.57) * | nd | nd | 37 (1.75) * | nd | nd | nd | nd | [35] |
Chicken convectional rearing system | 42 (1.85) * | nd | 9 (0.39) * | nd | nd | 26 (1.16) * | nd | nd | nd | nd | [35] |
5. Consumption of Edible Offal
6. Nutritional Value of Edible Offal
6.1. Proteins and Amino Acids
6.2. Fat and Fatty Acid Profile
6.2.1. Saturated Fatty Acids (SFAs)
6.2.2. Unsaturated Fatty Acids (PUFAs and MUFAs)
6.3. Bioactive Substances and Vitamins
6.4. Minerals
7. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doran-Browne, N.A.; Eckard, R.J.; Behrendt, R.; Kingwell, R.S. Nutrient density as a metric for comparing greenhouse gas emissions from food production. Clim. Chang. 2015, 129, 73–87. [Google Scholar] [CrossRef]
- Damerau, K.; Waha, K.; Herrero, M. The impact of nutrient-rich food choices on agricultural water-use efficiency. Nat. Sustain. 2019, 2, 233–241. [Google Scholar] [CrossRef]
- Wingett, K.; Robyn, A. Distribution of nutrients across the edible components of a modelled typical Australian lamb: A case study. Res. Dir. One Health 2023, 1, e8. [Google Scholar] [CrossRef]
- Lafarga, T.; Hayes, M. Bioactive peptides from meat muscle and by-products: Generation, functionality, and application as functional ingredients. Meat Sci. 2014, 98, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Shin, J.T.; Kim, J.; Choi, Y.S.; Kim, Y.W. An overview of the South Korean edible insect food industry: Challenges and future pricing/promotion strategies. Entomol. Res. 2017, 47, 141–151. [Google Scholar] [CrossRef]
- Llauger, M.; Claret, A.; Bou, R.; López-Mas, L.; Guerrero, L. Consumer attitudes toward consumption of meat products containing offal and offal extracts. Foods 2021, 10, 1454. [Google Scholar] [CrossRef]
- Sabbagh, M.; Gutierrez, L.; Lai, R.; Nocella, G. Consumer intention towards buying edible beef offal and the relevance of food neophobia. Foods 2023, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
- Bester, M.; Schönfeldt, H.C.; Pretorius, B.; Hall, N. The nutrient content of selected South African lamb and mutton organ meats (offal). Food Chem. 2018, 238, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Biel, W.; Czerniawska-Piątkowska, E.; Kowalczyk, A. Offal chemical composition from veal, beef, and lamb maintained in organic production systems. Animals 2019, 9, 489. [Google Scholar] [CrossRef]
- Bearth, A.; Khunnutchanart, K.; Gasser, O.; Hasler, N. The whole beast: Consumers’ perceptions of and willingness-to-eat animal by-products. Food Qual. Prefer. 2021, 89, 104144. [Google Scholar] [CrossRef]
- Cavaleiro, A.J.; Ferreira, T.; Pereira, F.; Tommaso, G.; Alves, M.M. Biochemical methane potential of raw and pre-treated meat-processing wastes. Bioresour. Technol. 2013, 129, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Irshad, A.; Sharma, B.D. Abattoir by-product utilization for sustainable meat industry: A review. J. Anim. Prod. Adv. 2015, 6, 681–696. [Google Scholar]
- Ockerman, H.W.; Basu, L. By-Products. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Dikeman, M., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands; London, UK, 2004; pp. 104–112. [Google Scholar]
- Florek, M.; Litwińczuk, Z.; Skałecki, P.; Kędzierska-Matysek, M.; Grodzicki, T. Chemical composition and inherent properties of offal from calves maintained under two production systems. Meat Sci. 2012, 90, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.M.; Álvarez, C.; Zeugolis, D.I.; Henchion, M.; O’Neill, E.; Drummond, L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci. 2017, 132, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.; Drummond, L.; Mullen, A.M. Expanding the industrial applications of a meat co-product: Generation of low-haemoglobin content plasma by means of red cells crenation. J. Clean. Prod. 2018, 185, 805–813. [Google Scholar] [CrossRef]
- Fayemi, P.O.; Muchenje, V.; Yetim, H.; Ahhmed, A. Targeting the pains of food insecurity and malnutrition among internally displaced persons with nutrient synergy and analgesics in organ meat. Food Res. Int. 2018, 104, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in value-addition of edible meat by-products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Seong, P.N.; Park, K.M.; Cho, S.H.; Kang, S.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Ba, H.V. Characterization of edible pork by-products by means of yield and nutritional composition. Korean J. Food Sci. Anim. Resour. 2014, 34, 297–306. [Google Scholar] [CrossRef]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. Consumers’ preference and factors influencing offal consumption in Amathole District Eastern Cape, South Africa. Sustainability 2018, 10, 3323. [Google Scholar] [CrossRef]
- Babicz, M.; Kropiwiec-Domańska, K.; Skrzypczak, E.; Szyndler-Nędza, M.; Szulc, K. Analysis of technological and consumption quality of offal and offal products obtained from pulawska and polish landrace pigs. Animals 2020, 10, 964. [Google Scholar] [CrossRef] [PubMed]
- Öz, H.; Seçim, Y. Offal in turkish cuisine: Example of Adana Province. J. Tourism Gastron. Stud. 2023, 11, 317–327. [Google Scholar] [CrossRef]
- Feliu-Alsina, N.; Saguer, E. Microbiological quality and physicochemical characteristics of pork livers supplied by an industrial slaughterhouse. Pol. J. Food Natur. Sci. 2023, 73, 130–138. [Google Scholar] [CrossRef]
- Nollet, L.M.L.; Toldrá, F. Introduction—Offal meat: Definitions, regions, cultures, generalities. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: New York, NY, USA, 2011; pp. 3–11. [Google Scholar]
- Chanted, J.; Panpipat, W.; Panya, A.; Phonsatta, N.; Cheong, L.-Z.; Chaijan, M. Compositional features and nutritional value of pig brain: Potential and challenges as a sustainable source of nutrients. Foods 2021, 10, 2943. [Google Scholar] [CrossRef] [PubMed]
- Akin, A.; Akin, A.; Mutlu, H.T. Are tourists neophobic against offal meals? Int. J. Gastron. Food Sci. 2023, 31, 100684. [Google Scholar] [CrossRef]
- Estevez, M.; Ventanas, J.; Cava, R.; Puolanne, E. Characterisation of a traditional Finnish liver sausage and different types of Spanish liver pate: A comparative study. Meat Sci. 2005, 71, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Nonterah, E.W.; Enso, N.T.; Emikpe, B.O.; Asare, D.A. Consumer preference for swine offals and its health implications in Kumasi, Ghana. Anim. Res. Int. 2015, 12, 2305–2310. [Google Scholar]
- Ayroe, F.; Emikpe, B.O.; Asiamah, E.; Dankwa, K.O. Consumers’ preference and associated pathology observed in cattle and goat offals in Kumasi, Ghana. Afr. J. Infect. Dis. 2016, 10, 127–133. [Google Scholar]
- Henchion, M.; McCarthy, M.; O’Callaghan, J. Transforming beef by-products into valuable ingredients: Which spell/recipe to use? Front. Nutr. 2016, 3, 53. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Laubscher, L.L.; Leisegang, K. Nutritional value of cooked offal derived from free-range rams reared in South Africa. Meat Sci. 2013, 93, 696–702. [Google Scholar]
- Tomović, V.M.; Žlender, B.; Jokanović, M.; Tomović, M.S.; Šojić, B.; Škaljac, S.; Kevrešan, Ž.S.; Tasić, T.; Ikonić, P.; Okanović, Đ. Physical and chemical characteristics of edible offal from free-range reared Swallow-Belly Mangalica pigs. Acta Aliment. 2016, 45, 190–197. [Google Scholar] [CrossRef]
- Seong, P.N.; Cho, S.H.; Park, K.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Ba, H.V. Characterization of chicken by-products by mean of proximate and nutritional compositions. Korean J. Food Sci. Anim. Resour. 2015, 35, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, F.A.A.; Buchtova, H. Comparison of qualitative and quantitative properties of the wings, necks and offal of chicken broilers from organic and conventional production systems. Vet. Med. 2016, 61, 643–651. [Google Scholar] [CrossRef]
- Adamczak, L.; Florowski, T.; Chmiel, M.; Pietrzak, D. Chemical composition of edible ostrich offal. J. Poultry Sci. 2017, 54, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Buclaw, M.; Majewska, D.; Szczerbinska, D. Proximate composition, selected minerals, fatty acid profile and cholesterol levels in edible slaughter by-products of the emu (Dromaius novaehollandiae). Anim. Sci. Pap. Rep. 2018, 36, 205–218. [Google Scholar]
- McCrindle, C.M.E.; Siegmund-Schultze, M.; Heeb, A.W.; Zárate, A.V.; Ramrajh, S. Improving food security and safety through use of edible by-products from wild game. Environ. Dev. Sustain. 2013, 15, 1245–1257. [Google Scholar] [CrossRef]
- Myburgh, A.; Lambrechts, H.; Hoffman, L.C. A descriptive study on the carcass, muscle, and offal yields of the plains zebra (Equus quagga) harvested in two seasons. Animals 2023, 13, 50. [Google Scholar] [CrossRef]
- FAO. Food and Agricultural Organization (2022). FAOSTAT: Supply Utilization Accounts, Livestock Primary, 2020 edn, FAO. Available online: http://www.fao.org/faostat/en/#data/QL/visualize (accessed on 25 March 2024).
- FAO. Food and Agricultural Organization (2021). Global Livestock Environmental Assessment Model (GLEAM). Available online: http://www.fao.org/gleam/en/ (accessed on 25 March 2024).
- United States Department of Agriculture (USDA), National Nutrient Database for Standard Reference, Release 24, Composition of Foods Raw, Processed, Prepared. 2011. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/SR24/sr24_doc.pdf (accessed on 25 March 2024).
- Coşkuntuna, L.; Geçgel, Ü.; Yılmaz, İ.; Gecgel, U.; Dülger, G.Ç. Investigating fatty acid composition of samples were homogenized various meat and offal products from Turkey. J. Am. Oil Chem. Soc. 2015, 92, 659–665. [Google Scholar] [CrossRef]
- Lavranou, G.; Henchion, M.; McCarthy, M.B.; O’Reilly, S.J. Valorizing meat by-products for human consumption: Understanding consumer attitude formation processes. Front. Anim. Sci. 2023, 4, 1129241. [Google Scholar] [CrossRef]
- Oloruntoba, A.; Nathaniel, I.A. Assessment of heavy metal levels in offal meats (kidney and liver) of beef sold at Gwagwalada market, Abuja, Nigeria. Asian J. Phys. Chem. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Soladoye, P.O.; Juarez, M.; Estevez, M.; Fu, Y.; Alvarez, C. Exploring the prospects of the fifth quarter in the 21st century. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1439–1461. [Google Scholar] [CrossRef]
- Liu, R.; Xing, L.; Zhou, G.; Zhang, W. What is meat in China? Anim. Front. 2017, 7, 53–56. [Google Scholar] [CrossRef]
- Ohene-Adjei, S.; Asuming Bediako, N. What is meat in Ghana? Anim. Front. 2017, 7, 60–62. [Google Scholar] [CrossRef]
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing. OJ L 300, 14.11.2009. pp. 1–33. Available online: https://eur-lex.europa.eu/eli/reg/2009/1069/oj (accessed on 25 March 2024).
- Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002 Laying Down Health Rules Concerning Animal by-Products Not Intended for Human Consumption. OJ L 273, 10.10.2002. pp. 1–95. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32002R1774 (accessed on 25 March 2024).
- Ayman, N.; Hamdani, S.A.; Fayaz, A.; Akand, A.H.; Hai, A.; Thahaby, N. An analysis of offal meat consumption pattern: A case of Srinagar District in Jammu and Kashmir. J. Meat Sci. 2020, 15, 50–54. [Google Scholar] [CrossRef]
- Tomović, V.M.; Šojić, B.; Jokanović, M.; Škaljac, S.; Ivić, M.; Tomović, M.S.; Tomašević, I.; Stajić, S.; Martinović, A. Mineral contents in pork and edible offal from indigenous pigs. J. Eng. Process. Manag. 2019, 11, 66–72. [Google Scholar] [CrossRef]
- Di Bernardini, R.; Harnedy, P.; Bolton, D.; Kerry, J.; O’Neill, E.; Mullen, A.M.; Hayes, M. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011, 124, 1296–1307. [Google Scholar] [CrossRef]
- Spooncer, W.F. Types of offal. In Encyclopaedia of Food Science, Food Technology and Nutrition; Macrae, R., Robinson, R.K., Sadler, M.J., Eds.; Academic Press: Cambridge, MA, USA, 1993; pp. 4246–4251. [Google Scholar]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for on the Hygiene of Foodstuffs. OJ L 139, 30.4.2004. pp. 55–205. Available online: https://eur-lex.europa.eu/eli/reg/2004/853/oj (accessed on 25 March 2024).
- Wajah, A.; Emikpe, B.O.; Asare, D.A.; Asenso, T.N.; Essel-Cobbinah, D. Preference for grasscutter offal by some consumers in the Greater Accra and Ashanti regions of Ghana. Sokoto J. Vet. Sci. 2022, 20, 153–162. [Google Scholar] [CrossRef]
- Serbian Regulation. Rulebook on quality of slaughtered pigs and pork cate-gorization. Official Gazette of the SFRJ, 1985; No 2. 20–30. [Google Scholar]
- Babicz, M.; Kasprzyk, A.; Kropiwiec-Domańska, K. Influence of the sex and type of tissue on the basic chemical composition and the content of minerals in the sirloin and offal of fattener pigs. Can. J. Anim. Sci. 2018, 99, 343–348. [Google Scholar] [CrossRef]
- Kropiwiec, K.; Babicz, M.; Skrzypczak, E. Physicochemical profile of pork offal derived from fatteners with different RYR1 genotype. Zywn. Nauka Technol. Jakosc 2015, 22, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. The Potential of animal by-products in food systems: Production, prospects and challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef]
- Maysonnave, G.S.; de Oliveira Mello, R.; Vaz, F.N.; de Ávila, M.M.; Pascoal, L.L.; Trindade Rodrigues, A.C. Physicochemical characterization of by-products from beef cattle slaughter and economic feasibility of commercialization. Acta Sci. Anim. Sci. 2020, 42, e46545. [Google Scholar] [CrossRef]
- Mullen, A.M.; Álvarez, C. Offal: Types and composition. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 152–157. [Google Scholar]
- Ligarda Samanez, C.A.; Choque-Quispe, D.; Allende Allende, L.F.; Ramos Pacheco, B.S.; Peralta-Guevara, D.E. Sensory and proximal quality of canned beef tripe (Bos taurus) in yellow chili sauce (Capsicum baccatum). Cienc. Tecnol. Agropecuaria 2023, 24, e2741. [Google Scholar]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Alvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Hicks, T.M.; Verbeek, C.J.R. Protein-rich by-products: Production statistics, legislative restrictions, and management options. In Protein Byproducts; Dhillon, G.S., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. [Google Scholar]
- Juknienė, I.; Zaborskienė, G.; Jankauskienė, A.; Kabašinskienė, A.; Zakarienė, G.; Bliznikas, S. Effect of Lyophilization Process on Nutritional Value of Meat By-Products. Appl. Sci. 2022, 12, 12984. [Google Scholar] [CrossRef]
- Tayeva, A.; Satayeva, Z.; Baibolova, L.; Bulambayeva, A.; Kuzembayeva, G. Development of Technology for Obtaining Protein Hydrolysate from Camel Offal using Enzymatic Hydrolysis. Online J. Biol. Sci. 2020, 20, 284–290. [Google Scholar] [CrossRef]
- O’Flaherty, E.A.A.; Tsermoula, P.; O’Neill, E.E.; O’Brien, N.M. Co-products of beef processing enhance non-haem iron absorption in an in vitro digestion/caco-2 cell model. Int. J. Food Sci. 2018, 54, 1256–1264. [Google Scholar] [CrossRef]
- Kropiwiec-Domańska, K.; Babicz, M.; Szyndler-Nędza, M.; Tyra, M.; Skrzypczak, E. Analysis of physical parameters and chemical composition of offal from Puławska fattening pigs raised in deep litter and slatted floor housing systems. Ann. Anim. Sci. 2024, 24, 269–276. [Google Scholar] [CrossRef]
- Elefson, S.K.; Lu, N.; Chevalier, T.; Dierking, S.; Wang, D.; Monegue, H.J.; Matthews, J.C.; Jang, Y.D.; Chen, J.; Rentfrow, G.K.; et al. Assessment of visceral organ growth in pigs from birth through 150 kg. Anim. Sci. J. 2021, 99, skab249. [Google Scholar] [CrossRef] [PubMed]
- Babicz, M.; Kropiwiec-Domańska, K.; Szyndler-Nędza, M.; Grzebalska, A.M.; Łuszczewska-Sierakowska, I.; Wawrzyniak, A.; Hałabis, M. Physicochemical parameters of selected internal organs of fattening pigs and wild boars. Ann. Anim. Sci. 2018, 18, 575–591. [Google Scholar] [CrossRef]
- Devine, C.; Dikeman, M.N. The Encyclopedia of Meat Sciences; Elsevier: Cambridge, MA, USA, 2014; pp. 104–110. [Google Scholar]
- Kaswan, S.; Patel, B.H.M.; Singh, M.; Dutt, T.; Gaur, G.K.; Kamal, R.; Godara, A.S.U.S. Carcass traits of crossbred (Landrace x Desi) barrows reared with different floor space allowances under intensive system. Indian J. Anim. Sci. 2016, 86, 335–340. [Google Scholar] [CrossRef]
- Stanisz, M.; Skorupski, M.; Bykowska-Maciejewska, M.; Składanowska-Baryza, J.; Ludwiczak, A. Seasonal Variation in the Body Composition, Carcass Composition, and Offal Quality in the Wild Fallow Deer (Dama dama L.). Animals 2023, 13, 1082. [Google Scholar] [CrossRef]
- Hoffman, L.C. The Yield and carcass chemical composition of impala (Aepyceros melampus), a Southern African antelope species. J. Sci. Food Agric. 2000, 80, 752–756. [Google Scholar] [CrossRef]
- Van Zyl, L.; Ferreira, A.V. Physical and chemical carcass composition of springbok (Antidorcas marsupialis), blesbok (Damaliscus dorcas phillipsi) and impala (Aepyceros melampus). Small Rumin. Res. 2004, 53, 103–109. [Google Scholar] [CrossRef]
- Van Heerden, A.M. Profiling the Meat Quality of Blue Wildebeest (Connochaetes taurinus). Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2018. [Google Scholar]
- Ludwiczak, A.; Składanowska-Baryza, J.; Stanisz, M. Effect of age and sex on the quality of offal and meat of the wild boar (Sus scrofa). Animals 2020, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Babicz, M.; Kropiwiec, K.; Szyndler-Nędza, M.; Skrzypczak, E. The physicochemical properties of offal from puławska gilts in relation to carcass meatiness. Ann. Anim. Sci. 2018, 18, 239–249. [Google Scholar] [CrossRef]
- Razmaite, V.; Kerziene, S.; Jatkauskiene, V. Body and carcass measurements and organ weights of Lithuanian indigenous pigs and their wild boar hybrids. Anim. Sci. Pap. Rep. 2009, 27, 331–342. [Google Scholar]
- Skomorucha, I.; Muchacka, R.; Sosnowka-Czajka, E.; Herbut, E. Effects of rearing with or without outdoor access and stocking density on broiler chicken productivity. Ann. Anim. Sci. 2008, 8, 387–393. [Google Scholar]
- Adedeji, O.S.; Amao, S.R.; Oguntunde, M.M.; Dada, I.D. Evaluation of general performance and carcass qualities of organically raised broiler chickens from day old to 12 weeks of age. Int. J. Agric. Innov. Res. 2014, 2, 466–471. [Google Scholar]
- Dal Bosco, A.; Mugnai, C.; Guarino Amato, M.; Piottoli, L.; Cartoni, A.; Castellini, C. Effect of slaughtering age in different commercial chicken genotypes reared according to the organic system: 1. Welfare, carcass and meat traits. Ital. J. Anim. Sci. 2014, 13, 467–472. [Google Scholar]
- Dou, T.C.; Shi, S.R.; Sun, H.J.; Wang, K.H. Growth rate, carcass traits and meat quality of slow-growing chicken grown according to three raising systems. Anim. Sci. Pap. Rep. 2009, 27, 361–369. [Google Scholar]
- Purchas, R.W.; Wilkinson, B.H.P.; Carruthers, F.; Jackson, F. A comparison of the trans fatty acid content of uncooked and cooked lean meat, edible offal and adipose tissue from New Zealand beef and lamb. J. Food Compos. Anal. 2015, 41, 151–156. [Google Scholar] [CrossRef]
- Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Razmaitė, V.; Pileckas, V.; Šiukščius, A.; Juškienė, V. Fatty acid composition of meat and edible offal from free-living red deer (Cervus elaphus). Foods 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Raju, D.T.; Suryanarayana, M.V.A.N. Meat consumption in Prakasam district of Andhra Pradesh: An analysis. Livestock Res. Rural Dev. 2005, 17, 130. [Google Scholar]
- Geeroms, N.; Verbeke, W.; Van Kenhove, P. Consumers’ health-related motive orientations and ready meal consumption behaviour. Appetite 2008, 51, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.A.; Hanawa Peterson, H. Risks and implications of bovine spongiform encephalopathy for the United States: Insights from other countries. Food Policy 2004, 29, 45–60. [Google Scholar] [CrossRef]
- Forte, G.; Bocca, B. Quantification of cadmium and lead in offal by SF-ICP-MS: Method development and uncertainty estimate. Food Chem. 2007, 105, 1591–1598. [Google Scholar] [CrossRef]
- Fuster, M. Food and Class. In Encyclopedia of Food and Agricultural Ethics; Thompson, P.B., Kaplan, D.M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–7. [Google Scholar]
- Henchion, M.; McCarthy, M. Facilitators and Barriers for Foods Containing Meat Coproducts. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–250. [Google Scholar]
- Ojewola, G.S.; Onwuka, G.I. Evaluation of the organoleptic properties of “suya” produced from various sources of meat. Nig. J. Anim. Prod. 2001, 28, 199–201. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Front-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Ribas-Barba, L.; Serra-Majem, L.; Salvador, G.; Castell, C.; Cabezas, C.; Salleras, L.; Plasencia, A. Trends in dietary habits and food consumption in Catalonia, Spain (1992–2003). Public Health Nutr. 2007, 10, 1340–1353. [Google Scholar] [CrossRef]
- GUS, Statistical Yearbook of the Republic of Poland 2023. 2024. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-the-republic-of-poland-2023,2,25.html (accessed on 25 March 2024).
- MAPA. Agricultura, Pesca y Alimentación. Informe del Consumo Alimentario en España; MAPA Publishing: Madrid, Spain, 2018; Available online: https://www.mapa.gob.es/images/es/20190807_informedeconsumo2018pdf_tcm30-512256.pdf (accessed on 25 March 2024).
- De Lourdes Samaniego-Vaesken, M.; Partearroyo, T.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Iron intake and dietary sources in the spanish population: Findings from the ANIBES Study. Nutrients 2017, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Martins, Y.; Pliner, P. Human food choices: An examination of the factors underlying acceptance/rejection of novel and familiar animal and non-animal foods. Appetite 2005, 45, 212–224. [Google Scholar] [CrossRef] [PubMed]
- EFSA: Use of the EFSA comprehensive European food consumption database in exposure assessment. EFSA J. 2011, 9, 2097.
- Pietron, W.J.; Warenik-Bany, M. Terrestrial animal livers as a source of PCDD/Fs, PCBs and PBDEs in the diet. Sci. Total Environ. 2023, 867, 161508. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, S.W.; Hoffman, L.C. What Is Meat in South Africa? Anim. Front. 2017, 7, 71. [Google Scholar] [CrossRef]
- Schenck, M.; Nsame-Effa, E.; Starkey, M.; Wilkie, D.; Abernethy, K.; Telfer, P.; Godoy, R.; Treves, A. Why people eat bushmeat: Results from two-choice, taste tests in Gabon. Cent. Africa. Hum. Ecol. 2006, 34, 433–445. [Google Scholar] [CrossRef]
- Van Vliet, N.; Mbazza, P. Recognizing the multiple reasons for bushmeat consumption in urban areas: A necessary step toward the sustainable use of wildlife for food in Central Africa. Hum. Dimens. Wildl. 2011, 16, 45–54. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Perceived naturalness, disgust, trust and food neophobia as predictors of cultured meat acceptance in ten countries. Appetite 2020, 155, 104814. [Google Scholar] [CrossRef]
- Baker, M.A.; Shin, J.T.; Kim, Y.W. An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intention. Psychol. Market. 2016, 33, 94–112. [Google Scholar] [CrossRef]
- Jones, K.; Haley, M.; Melton, A. Per Capita red Meat and Poultry Disappearance: Insights Into its Steady Growth. In Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America; USDA: Washington, DC, USA, 2018. Available online: https://www.ers.usda.gov/amber-waves/2018/june/per-capita-red-meat-and-poultry-disappearance-insights-into-its-steady-growth/ (accessed on 25 March 2024).
- Schaefer, D.; Arp, T. Importance of variety meat utilization to the meat industry. Anim. Front. 2017, 7, 25–28. [Google Scholar] [CrossRef]
- Marti, D.L.; Johnson, R.J.; Mathews, K.H. Where’s the (Not) Meat? Byproducts from Beef and Pork Production. United States Department of Agriculture 2011. Available online: https://www.ers.usda.gov/webdocs/outlooks/37427/8801_ldpm20901.pdf?v=8915.5 (accessed on 25 March 2024).
- Cai, C.H.; Ding, A.; Legendre, T.S. Exploring persuasive sales techniques to improve customer acceptance of sustainable but unfamiliar menu in restaurants. Int. J. Contemp. Hosp. Manag. 2021, 33, 3093–3114. [Google Scholar] [CrossRef]
- Spooncer, W.F. Organs and Glands as Human Food. In Edible Meat By-Products, Advances in Meat Research; Pearson, A.M., Dutson, T.R., Eds.; Elsevier Science Publishers Ltd.: London, UK, 1988; pp. 197–217. [Google Scholar]
- Ognjanović, A.; Karan-Đurić, S.; Radovanović, R.; Perić, V. Technology of the By-Products from the Meat Industry; University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, 1985. [Google Scholar]
- Majewska, D.; Szczerbińska, D.; Ligocki, M.; Bucław, M.; Sammel, A.; Tarasewicz, Z.; Romaniszyn, K.; Majewski, J. Comparison of the mineral and fatty acid profiles of ostrich, turkey and broiler chicken livers. Br. Poult. Sci. 2016, 57, 193–200. [Google Scholar] [CrossRef]
- Pestana, J.; Alfaia, C.; Alves, S.; Madeira, M.; Santos-Silva, J.; Moreira, O.; Rui, B.; Toldrá, V.F.; Prates, J.A.M. Total lipid content and fatty acid composition in edible offal from pigs. J. Food Saf. Food Qual. 2019, 70, 60–65. [Google Scholar]
- Pretorius, B.; Schönfeldt, H.C. Cholesterol, fatty acids profile and the indices of atherogenicity and thrombogenicity of raw lamb and mutton offal. Food Chem. 2021, 345, 128868. [Google Scholar] [CrossRef]
- Tomović, V.M.; Petrović, L.S.; Tomović, M.S.; Kevrešan, Ž.S.; Džinić, N.R. Determination of mineral contents of semimembranosus muscle and liver from pure and crossbred pigs in Vojvodina (northern Serbia). Food Chem. 2011, 124, 342–348. [Google Scholar] [CrossRef]
- Daimari, R.; Narzari, S.; Sarmah, J. Composition of chemical elements in edible offal and muscle of semi-extensively reared indigenous doom pig breed of Northeast India and its correlation with feed and environment. J. Adv. Vet. Res. 2022, 12, 568–572. [Google Scholar]
- Ahmed, N.I.H.; Ahmed, A.M.; Abdel-Wahab, M.A. Hygienic, Pathological and Economic Impacts of Liver Lesions at some Slaughterhouses in Suez Canal Region, Egypt. J. Adv. Vet. Res. 2023, 13, 1017–1021. [Google Scholar]
- Li, R.R.; Yu, Q.L.; Han, L.; Cao, H. Nutritional characteristics and active components in liver from Wagyu×Qinchuan cattle. Korean J. Food Sci. Anim. Resour. 2014, 34, 214–220. [Google Scholar] [CrossRef]
- Kaneko, K.; Aoyagi, Y.; Fukuuchi, T.; Inazawa, K.; Yamaoka, N. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biol. Pharm. Bull. 2014, 37, 709–721. [Google Scholar] [CrossRef]
- Johnson, R.J.; Nakagawa, T.; Sánchez-Lozada, L.G.; Lanaspa, M.A.; Tamura, Y.; Tanabe, K.; Ishimoto, T.; Thomas, J.; Inaba, S.; Kitagawa, W.; et al. Umami: The taste that drives purine intake. J. Rheumatol. 2013, 40, 1794–1796. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Janicki, B.; Buzała, M. Effect of collagen on technological quality of meat. Food Sci. Technol. Qual. 2013, 2, 19–29. [Google Scholar] [CrossRef]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Aristoy, M.C.; Toldrá, F. Essential amino acids. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 123–135. [Google Scholar]
- Shao, S.S.; Zhao, Y.F.; Song, Y.F.; Xu, C.; Yang, J.M.; Xuan, S.M.; Yan, H.L.; Yu, C.X.; Zhao, M.; Xu, J.; et al. Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats. Acta. Pharm. Sin. 2014, 35, 1411–1420. [Google Scholar] [CrossRef]
- Burlingame, B.; Nishida, C.; Uauy, R.; Weisell, R. Fats and fatty acids in human nutrition (Report of a joint FAO/WHO Export Consultation, November, 2008). Ann. Nutr. Metab. 2009, 55, 5–7. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Madeira, M.S.; Pestana, J.; Coelho, D.; Lopes, P.A.; Toldrá, F.; Prates, J.A.M. Pork Byproducts. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; Benjamin, K., Simpson, A.N.A., Aryee, F., Toldrá, F., Eds.; John Wiley Sons Ltd.: Chichester, UK, 2019; pp. 19–41. [Google Scholar]
- Jiménez Torres, R.; Medina Domenzáin, R.; Ruiz Castañeda, G.; Gutiérrez Vargas, M.E. Quality of Pork Meat and Its Nutritional Value. Veterinaria Digital. 2013. Available online: https://www.veterinariadigital.com/en/articulos/quality-of-pork-meat-and-its-nutritional-value/ (accessed on 25 March 2024).
- Zheng, M.; Huang, Y.; Ji, J.; Xiao, S.; Ma, J.; Huang, L. Effects of breeds, tissues and genders on purine contents in pork and the relationships between purine content and other meat quality traits. Meat Sci. 2018, 143, 81–86. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ivanova, A.; Hadzhinikolova, L. Evaluation of nutritional quality of common carp (Cyprinus carpio L.) lipids through fatty acid ratios and lipid indices. Bulg. J. Agric. Sci. 2015, 21 (Suppl. S1), 180–185. Available online: https://www.agrojournal.org/21/01s-27.pdf (accessed on 21 May 2024).
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand, Including Recommended Dietary Intakes. Canberra, Department of Health and Ageing, National Health and Medical Research Council. 2006. Available online: https://www.nhmrc.gov.au/sites/default/files/images/nutrient-refererence-dietary-intakes.pdf (accessed on 25 March 2024).
- Australian Dietary Guidelines, National Health and Medical Research Council. 2013. Available online: https://www.eatforhealth.gov.au/sites/default/files/2022-09/n55a_australian_dietary_guidelines_summary_131014_1.pdf (accessed on 25 March 2024).
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef]
- Poławska, E.; Tolik, D.; Horbańczuk, O.K.; Ciepłoch, A.; Raes, K.; De Smet, S. The effect of dietary oil seeds on the fatty acid profile and metabolism in ostrich liver. Anim. Sci. Pap. Rep. 2016, 34, 173–180. [Google Scholar]
- Zhang, X.H.; Wang, B.W.; Wang, L.; Long, F.Y.; Yang, Z.G.; Yu, S.H.; Wang, Y.C.; Wei, X.X.; Jing, L.Z.; Liu, G.L. Effect of dietary conjugate linoleic acid (CLA) on the growth and lipid metabolism of geese and fatty acid composition of their tissues. S. Afr. J. Anim. Sci. 2008, 38, 12–20. [Google Scholar] [CrossRef]
- Zouari, N.; Fakhfakh, N.; Amara-Dali, W.B.; Sellami, M.; Msaddak, L.; Ayadi, M.A. Turkey liver: Physicochemical characteristics and functional properties of protein fractions. Food Bioprod. Process. 2011, 89, 142–148. [Google Scholar] [CrossRef]
- Ouf, S.A.; Alsarrani, A.Q.; Al-Adly, A.A.; Ibrahim, M.K. Evaluation of lowintensity laser radiation on stimulating the cholesterol degrading activity: Part I. Microorganisms isolated from cholesterol-rich materials. Saudi J. Biol. Sci. 2012, 19, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Department of Health; Committee on Medical Aspects of Food Policy. Nutritional Aspects of Cardiovascular Disease; Report on Health and Social Subjects No. 46; Her Majesty’s Stationery Office: London, UK, 1994. [Google Scholar]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef]
- den Hartigh, L.J. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef]
- Terés, S.; Barceló-Coblijn, G.; Benet, M.; Álvarez, R.; Bressani, R.; Halver, J.E.; Escribá, P.V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Honikel, K.O. Composition and calories. In Handbook of Analysis of Edible Animal by-Products; Nollet, L.M.L., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 105–121. [Google Scholar]
- Madeira, M.S.; Pires, V.M.R.; Alfaia, C.M.; Luxton, R.; Doran, O.; Bessa, R.J.B.; Prates, J.A.M. Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs. Br. J. Nutr. 2014, 111, 1521–1535. [Google Scholar] [CrossRef]
- Prates, J.A.M.; Alfaia, C.M.; Alves, S.P.; Bessa, R.J.B. Fatty acids. In Handbook of Analysis of Edible Animal by-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 137–159. [Google Scholar]
- Alonso, V.; Najes, L.M.; Provincial, L.; Guillén, E.; Gil, M.; Roncalés, P.; Beltran, J.A. Influence of dietary fat on pork eating quality. Meat Sci. 2012, 92, 366–373. [Google Scholar] [CrossRef]
- Mas, G.; Llavall, M.; Coll, D.; Roca, R.; Díaz, I.; Oliver, M.A.; Gispert, M.; Realini, C.E. Effect of an elevated monounsaturated fat diet on pork carcass and meat quality traits and tissue fatty acid composition from York-crossed barrows and gilts. Meat Sci. 2011, 89, 419–425. [Google Scholar] [CrossRef]
- Brugiapaglia, A.; Lussiana, C.; Destefanis, G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci. 2014, 96, 568–573. [Google Scholar] [CrossRef]
- Dalkilic, B.; Ciftci, M.; Guler, T.; Cerci, I.H.; Ertas, O.N.; Guvenc, M. Influence of dietary cinnamon oil supplementation on fatty acid composition of liver and abdominal fat in broiler chicken. J. Appl. Anim. Res. 2009, 35, 173–176. [Google Scholar] [CrossRef]
- Kartikasari, L.R.; Hughes, R.J.; Geier, M.S.; Makrides, M.; Gibson, R.A. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. Prostaglandins Leukot. Essent. Fatty Acids 2012, 87, 103–109. [Google Scholar] [CrossRef]
- Aziza, A.E.; Quezada, N.; Cherian, G. Feeding Camelina sativa meal to meat-type chickens: Effect on production performance and tissue fatty acid composition. J. Appl. Poult. Res. 2010, 19, 157–168. [Google Scholar] [CrossRef]
- Bodkowski, R.; Patkowska-Sokoła, B.; Nowakowski, P.; Jamroz, D.; Janczak, M. Products of animal origin (coming from ruminants)—The most important L-carnitine source in human diet. Prz. Hod. 2011, 79, 22–25. [Google Scholar]
- Roseiro, L.C.; Santos, C. Carnitines (Including L-Carnitine Acetyl-Carnitine and Proprionyl-Carnitine). In Nonvitamin and Nonmineral Nutritional Supplements; Mohammad, N.S., Sanches, S.A., Eds.; Elsevier: Cambridge, MA, USA, 2019; pp. 45–52. [Google Scholar]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H.P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Ercan, P.; El, S.N. Changes in content of coenzyme Q10 in beef muscle, beef liver and beef heart with cooking and in vitro digestion. J. Food Compos. Anal. 2011, 24, 1136–1140. [Google Scholar] [CrossRef]
- Kiliś-Pstrusińska, K. Karnozyna i karnozynaza a choroby nerek. Postep. Hig. Med. Dosw. 2012, 66, 215–221. (In Polish) [Google Scholar] [CrossRef]
- Jones, D.P.; Coates, R.J.; Flagg, E.W.; Eley, J.W.; Block, G.; Greenberg, R.S.; Gunter, E.W.; Jackson, B. Glutathione in foods listed in the National Cancer Institute’s health habits and history food frequency questionnaire. Nutr. Cancer. 1992, 17, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Florek, M.; Drozd, L. Związki bioaktywne w mięsie jeleniowatych. Med. Weter. 2013, 69, 535–539. (In Polish) [Google Scholar]
- Ahhmed, A.M.; Muguruma, M. A review of meat protein hydrolysates and hypertension. Meat Sci. 2010, 86, 110–118. [Google Scholar] [CrossRef]
- Ur Rahman, U.; Sahar, A.; Khan, M.A. Recovery and utilization of effluents from meat processing industries. Food Res. Int. 2014, 65, 322–328. [Google Scholar] [CrossRef]
- Baltić, M.Ž.; Bošković, M.; Ivanović, J.; Dokmanović, M.; Janjić, J.; Marković, R.; Baltić, T. Bioactive peptides from meat and their influence on human health. Sci. J. “Meat Technol.&Quot” 2014, 55, 8–21. [Google Scholar]
- Prasow, M.; Domaradzki, P.; Litwińczuk, A.; Kowalczyk, M. Związki bioaktywne w mięsie i ich znaczenie w żywieniu człowieka. Med. Ogólna Nauki Zdr. 2019, 25, 170–180. (In Polish) [Google Scholar] [CrossRef]
- Siemieniuk, E.; Skrzydlewska, E. Koenzym Q10—Biosynteza i znaczenie biologiczne w organizmach zwierząt i człowieka. Postep. Hig. Med. Dosw. 2005, 59, 150–159. (In Polish) [Google Scholar]
- Kubo, H.; Fuji, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Matilla, P.; Kumpulainen, J. Coenzymes Q9 and Q10: Contents in foods and dietary intake. J. Food Compos. Anal. 2001, 14, 409–417. [Google Scholar] [CrossRef]
- Pravst, I.; Žmitek, K.; Žmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, H.; Devi, P.; Mohan, V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol. Ther. 2009, 124, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Sousa, G.T.D.; Lira, F.S.; Rosa, J.C.; de Oliveira, E.P.; Oyama, L.M.; Santos, R.V.; Pimentel, G.D. Dietary whey protein lessens several risk factors for metabolic diseases: A review. Lipids Health Dis. 2012, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, L.; Hebert, E.M.; Minahk, C.; Ferranti, P. An overview of “omic” analytical methods applied in bioactive peptide studies. Food Res. Int. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Howard, A. Meat proteome as source of functional biopeptides. Int. Food Res. J. 2013, 54, 1021–1032. [Google Scholar] [CrossRef]
- Mars, M.; Stafleu, A.; de Graaf, C. Use of satiety peptides in assessing the satiating capacity of foods. Physiol. Behav. 2012, 105, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Cardenia, V.; Massimini, M.; Poerio, A.; Venturini, M.C.; Rodriguez-Estrada, M.T.; Vecchia, P.; Larcker, G. Effect of dietary supplementation on lipid photooxidation in beef meat, during storage under commercial retail conditions. Meat Sci. 2015, 105, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.N. Vitamins. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 161–182. [Google Scholar]
- Czarnowska-Kujawska, M.; Gujska, E.; Michalak, J. Folate determination in livers of different animal species. Czech J. Food Sci. 2020, 38, 43–48. [Google Scholar] [CrossRef]
- Vahteristo, L.T.; Lehikoinen, K.E.; Ollilainen, V.; Koivistoinen, P.E.; Varo, P. Oven-baking and frozen storage affect folate vitamer retention. LWT Food Sci. Technol. 1998, 31, 329–333. [Google Scholar] [CrossRef]
- Müller, H. Determination of folic acid content in foods of animal origin by means of high-performance liquid chromatography (HPLC). Z. Lebensm. Unters. Forsch. 1993, 196, 518–521. [Google Scholar] [CrossRef]
- Holland, B.; Welch, A.A.; Unwin, I.D.; Buss, D.H.; Paul, A.A.; Southgate, D.A.T. Meat and meat products. In McCance and Widdowson’s The Composition of Foods; The Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food; Richard Clay Ltd.: Bungay, UK, 1991; pp. 174–249. [Google Scholar]
- Okholm-Hansen, B.; Brogren, C.H. Contents of Folacin in Foods; Levnedsmiddelstyrelsen: Copenhagen, Denmark, 1991; p. 206. (In Danish) [Google Scholar]
- Rychlik, M. Revised folate content of foods determined by stable isotope dilution assays. J. Food Compos. Anal. 2004, 17, 475–483. [Google Scholar] [CrossRef]
- Indyk, H.E.; Woollard, D.C. Single laboratory validation of an optical biosensor method for the determination of folate in foods. J. Food Compos. Anal. 2013, 29, 87–93. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Ahuja, J.K.; Wu, X.; Khan, M.; Somanchi, M.; Nickle, M.S.; Nguyen, Q.A.; Roseland, J.M.; Williams, J.R.; Patterson, K.; et al. USDA National Nutrient Database for Standard Reference, Legacy. USDA National Nutrient Database for Standard Reference 2018. Available online: http://www/nea/bhnrc/ndl (accessed on 25 March 2024).
- Ortigues-Marty, I.; Micol, D.; Prache, S.; Dozias, D.; Girard, C.L. Nutritional value of meat: The influence of nutrition and physical activity on vitamin B12 concentrations in ruminant tissues. Reprod. Nutr. Dev. 2005, 45, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Takenaka, S.; Abe, K.; Tamura, Y.; Nakano, Y. Comparison of a microbiological assay and a fully automated chemiluminescent system for the determination of vitamin B12 in food. J. Agric. Food Chem. 1998, 46, 1433–1436. [Google Scholar] [CrossRef]
- Koshy, K.T.; VanDerSlik, A.L. High-performance liquid chromatographic method for the determination of 25-hydroxycholecalciferol in the bovine liver, kidney, and muscle. J. Agric. Food Chem. 1977, 25, 1246–1249. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Carr, M.A.; Kerth, C.R.; Hilton, G.G.; Price, B.P.; Galyean, M.L.; Horst, R.L.; Miller, M.F. Effect of vitamin D3 supplementation level on the postmortem tenderization of beef from steers. J. Anim. Sci. 2002, 80, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Foote, M.R.; Horst, R.L.; Huff-Lonergan, E.J.; Trenkle, A.H.; Parrish, F.C.; Beitz, D.C. The use of vitamin D3 and its metabolites to improve beef tenderness. J. Anim. Sci. 2004, 82, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.H.; Piironen, V.I.; Uusi-Rauva, E.J.; Koivistoinen, P.E. Contents of cholecalciferol, ergocalciferol, and their 25- hydroxylated metabolites in milk products and raw meat and liver as determined by HPLC. J. Agric. Food Chem. 1995, 43, 2394–2399. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Parrish, F.C.; Beitz, D.C.; Horst, R.L.; Huff-Lonergan, E.J.; Trenkle, A.H. The use of vitamin D3 to improve beef tenderness. J. Anim. Sci. 2000, 78, 2615–2621. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Blanton, J.R.; Horst, R.L.; Galyean, M.L.; Morrow, K.J.; Wester, D.B.; Miller, M.F. Effects of biological type of beef steers on vitamin D, calcium, and phosphorus status. J. Anim. Sci. 2004, 82, 2043–2049. [Google Scholar] [CrossRef]
- Montgomery, J.L.; King, M.B.; Gentry, J.G.; Barham, A.R.; Barham, B.L.; Hilton, G.G.; Blanton, J.R.; Horst, R.L.; Galyean, M.L.; Morrow, K.J., Jr.; et al. Supplemental vitamin D3 concentration and biological type of steers. II. Tenderness, quality, and residues of beef. J. Anim. Sci. 2004, 82, 2092–2104. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takeuchi, A.; Okano, T. Vitamin D contents in various kinds of Japanese foods. In Nutritional Aspects of Osteoporosis 9‘4; Burckhardt, P., Heaney, R.P., Eds.; Ares-Serono Symposia Publications: Rome, Italy, 1995; pp. 345–349. [Google Scholar]
- Lebiedzinska, A.; Szefer, P. Vitamins B in grain and cereal-grain food, soy-products and seeds. Food Chem. 2006, 95, 116–122. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th Revised and Extended Edition; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–114. [Google Scholar]
- Fennema, O.R. Food Chemistry, 3rd ed.; Marcel Dekker, CRC Press: Boca Raton, NY, USA, 1996; p. 1069. [Google Scholar]
- Ebara, S. The nutritional role of folate. Congenit. Anom. 2017, 57, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.E.; Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, V.; Alonso-Aperte, E.; Varela-Moreiras, G. Total folate content in ready-to-eat vegetable meals from the Spanish market. J. Food Compos. Anal. 2017, 64, 223–231. [Google Scholar] [CrossRef]
- EFSA: Scientific Opinion on dietary reference values for folate. Panel on dietetic products, nutrition and allergies. EFSA J. 2014, 12, 3893–3952.
- Bailey, L.B. Evaluation of a new recommended dietary allowances for folate. J. Am. Diet. Assoc. 1992, 92, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Winkels, R.M.; Brouwer, I.A.; Siebelink, E.; Katan, M.B.; Verhoef, P. Bioavailability of food folates is 80% of that of folic acid. Am. J. Clin. Nutr. 2007, 85, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; James, P.S.; Raj, S.; Cullum-Dugan, D.; Lucus, D. Understanding vitamin B12. Am. J. Lifestyle Med. 2013, 7, 60–65. [Google Scholar] [CrossRef]
- Fedosov, S.N. Physiological and molecular aspects of cobalamin transport. In Water Soluble Vitamins. Subcellular Biochemistry; Stanger, O., Ed.; Springer: London, UK, 2012; pp. 347–367. [Google Scholar]
- EFSA: Scientific Opinion on dietary reference values for cobalamin (vitamin B12). Panel on dietetic products, nutrition and allergies. EFSA J. 2015, 13, 4150.
- Schmid, A.; Walther, B. Natural vitamin D content in animal products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D: Dietary requirements and food fortification as a means of helping achieve adequate vitamin D status. J. Steroid. Biochem. Mal. Biol. 2015, 148, 19–26. [Google Scholar] [CrossRef]
- Rosbotham, E.J.; Gill, C.I.R.; McDonald, E.J.; McRoberts, W.C.; Rainey, N.; Loy, R.; Neill, H.R.; O’Neill, U.; Smyth, S.; Burns, A.; et al. Vitamin D-enrichment of sausages by pork offal: Is it acceptable to consumers? Proc. Nutr. Soc. 2023, 82, E267. [Google Scholar] [CrossRef]
- EFSA: Scientific opinion on the tolerable upper intake level of vitamin D. Panel on dietetic products, nutrition and allergies. EFSA J. 2012, 10, 2813–2857.
- Ziaei, S.; Zakeri, M.; Kazemnejad, A. A randomised controlled trial of vitamin E in the treatment of primary dysmenorrhoea. BJOG 2005, 112, 466–469. [Google Scholar]
- Pruthi, S.; Wahner-Roedler, D.L.; Torkelson, C.J.; Cha, S.S.; Thicke, L.A.; Hazelton, J.H.; Bauer, B.A. Vitamin E and Evening Primrose Oil for Management of Cyclical Mastalgia: A Randomized Pilot Study. Altern. Med. Rev. 2010, 15, 59–67. [Google Scholar] [PubMed]
- Połtowicz, K.; Doktor, J. Macromineral Concentration and Technological Properties of Poultry Meat Depending on Slaughter Age of Broiler Chickens of Uniform Body Weight. Anim. Sci. Pap. Rep. 2013, 31, 249–259. [Google Scholar]
- Greenfield, H.; Southgate, D.A.T. Review of Methods of Analysis. In Food Composition Data: Production, Management, and Use; FAO: Rome, Italy, 2003. [Google Scholar]
- Grüngreiff, K.; Reinhold, D.; Wedemeyer, H. The role of zinc in liver cirrhosis. Ann. Hepatol. 2016, 15, 7–16. [Google Scholar] [CrossRef]
- Wyness, L.; Weichselbaum, E.; O’Connor, A.; Williams, E.B.; Benelam, B.; Riley, H.; Stanner, S. Red meat in the diet: An update. Nutr. Bull. 2011, 36, 34–77. [Google Scholar] [CrossRef]
- Wojtasik, A.; Jarosz, M.; Stoś, K. Składniki mineralne. In Normy Żywienia dla Populacji Polski I ich Zastosowanie; Molska, K., Gajowiak, R., Eds.; Instytut Żywności i Żywienia: Warszawa, Polska, 2017; pp. 203–228. Available online: https://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf (accessed on 25 March 2024). (In Polish)
- Jarosz, M. Nutrition Standards for the Polish Population. Available online: https://ncez.pzh.gov.pl/wp-content/uploads/2021/03/normy_zywienia-2017125.pdf (accessed on 25 March 2024). (In Polish)
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- ATSDR. Agency for Toxic Substances and Diseases Registry, Division of Toxicology. Available online: http://www.atsdr.cdc.gov/toxprofiles/ (accessed on 25 March 2024).
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wong, C. Iron deficiency anaemia. J. Paediatr. Child Health. 2017, 27, 527–529. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Bilandžić, N.; Dokić, M.; Sedak, M.; Varenina, I.; Kolanović, B.S.; Oraić, D.; Zrnčić, S. Determination of copper in food of animal origin and fish in Croatia. Food Control 2012, 27, 284–288. [Google Scholar] [CrossRef]
- Nardi, E.P.; Evengelista, F.S.; Tormen, L.; Saint’Pierre, T.D.; Curtius, A.J.; de Souza, S.S.; Barbarosa, F., Jr. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009, 112, 727–732. [Google Scholar] [CrossRef]
- Wen, H.Y.; Davis, R.L.; Shi, B.; Chen, J.J.; Chen, L.; Boylan, M.; Spallholz, J.E. Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, na, selenomethionine and sodium selenite assessed in selenium-deficient rats. Biol. Trace. Elem. Res. 1997, 58, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Priyadarsini, K.I. Selenium nutrition: How important is it? Biomed. Prev. Nutr. 2014, 4, 333–341. [Google Scholar] [CrossRef]
- Nriagu, J.; Boughanen, M.; Linder, A.; Howe, A.; Grant, C.; Rattray, R.; Vutchkov, M.; Lalor, G. Levels of As, Cd, Pb, Cu, Se, and Zn in bovine kidneys and livers in Jamaica. Ecotoxicol. Environ. Saf. 2009, 72, 564–571. [Google Scholar] [CrossRef]
- Pšenková, M.; Toman, R. Essential and toxic element concentrations in animal tissues of sheep from two different regions of Slovakia. Acta Fytotechn. Zootechn. 2020, 23, 217–223. [Google Scholar] [CrossRef]
- Tomović, V.M.; Mastanjević, K.; Kovačević, D.; Jokanović, M.; Kevrešan, Ž.S.; Škaljac, S.; Šojić, B.; Lukač, D.; Škrobot, D.; Despotović, A. Proximate and mineral composition and cadmium content of main anatomical parts and offal from semi-outdoor reared Black Slavonian pigs. Agro Food Industry Hi-Tech 2016, 27, 39–42. [Google Scholar]
- Despotović, A.; Tomović, V.; Stanišić, N.; Jokanović, M.; Šojić, B.; Škaljac, S.; Kocić-Tanackov, S.; Tomašević, I.; Stajić, S.; Martinović, A.; et al. Qualität essbarer innereien von Swallow-Belly Mangalica-schweinen aus intensivproduktion –untersuchungen an schweinen, die mit 100 kg lebendgewicht geschlachtet wurden. Fleischwirtschaft 2018, 12, 103–108. [Google Scholar]
- Stasiak, K.; Roślewska, A.; Stanek, M.; Cygan-Szczegielniak, D.; Janicki, B. The content of selected minerals determined in the liver, kidney and meat of pigs. J. Elem. 2017, 22, 1475–1483. [Google Scholar] [CrossRef]
- Navarro-Alcaron, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Steen, L.; Glorieux, S.; Goemaere, O.; Brijs, K.; Paelinck, H.; Foubert, I.; Fraeye, I. Functional properties of pork liver protein fractions. Food Bioprocess Technol. 2016, 9, 970–980. [Google Scholar] [CrossRef]
- Pereira, N.R.; Muniz, E.C.; Matsushita, M.; De Souza, N.E. Cholesterol and fatty acids profile of Brazilian commercial chicken giblets. Arch. Latinoam. Nutr. 2002, 52, 203–206. [Google Scholar]
- Jokanović, M.R.; Tomović, V.M.; Jović, M.T.; Škaljac, S.B.; Šojić, B.V.; Ikonić, P.M.; Tasić, T.A. Proximate and Mineral Composition of Chicken Giblets from Vojvodina (northern Serbia). Int. J. Nutr. Food Eng. 2014, 8, 943–946. [Google Scholar]
- Mulvihill, B. Micronutrients in Meat. In Encyclopedia of Meat Sciences; Dikeman, M., Devine, C., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 124–129. [Google Scholar]
- Garcia-Llatas, G.; Alegria, A.; Barbera, R.; Farre, R. Minerals and trace elements. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 183–203. [Google Scholar]
- Ambushe, A.A.; Hlongwane, M.M.; McCrindle, R.I.; McCrindle, C.N. Assessment of levels of V, Cr, Mn, Sr, Cd, Pb and U in bovine meat. S. Afr. J. Chem. 2012, 65, 159–164. [Google Scholar]
- Akan, J.C.; Abdulrahman, F.I.; Sodipo, O.A.; Chiroma, Y.A. Distribution of heavy metalls in the liver, kidney and meat of beef, mutton, caprine and chicken from Kasuwan Shan Market in Maiduguri Metropolis, Borno State, Nigeria. Res. J. Appl. Sci. 2010, 2, 743–748. [Google Scholar]
- Nikolic, D.; Djinovic-Stojanovic, J.; Jankovic, S.; Stanisic, N.; Radovic, C.; Pezo, L.; Lausevic, M. Mineral composition and toxic element levels of muscle, liver and kidney of intensive (Swedish Landrace) and extensive (Mangulica) pigs from Serbia. Food Addit. Contam. Part A 2017, 34, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Santé-Lhoutellier, V. Meat and Human Diet: Facts and Myths. In Encyclopedia of Meat Sciences, 2nd ed.; Dikeman, M., Devine, C., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 118–123. [Google Scholar]
- Nishito, Y.; Kambe, T. Absorption mechanisms of iron, copper, and zinc: An overview. J. Nutr. Sci. Vitaminol. 2018, 64, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Amici, A.; Danieli, P.P.; Russo, C.; Primi, R.; Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus strofa) organs and tissues in different areas of the Province of Viterbo, Central Italy. Ital. J. Anim. Sci. 2012, 11, 354–362. [Google Scholar] [CrossRef]
- Keller, S. The Copper Recycling Pathway through Bile. Pig Progress. 2019. Available online: https://www.pigprogress.net/health-nutrition/the-copper-recycling--pathway-through-bile/ (accessed on 25 March 2024).
- Aoyagi, S.; Hiney, K.M.; Baker, D.H. Estimates of zinc and iron bioavailability in pork liver and the effect of sex of pig on the bioavailability of copper in pork liver fed to male and female chicks. Anim. Sci. J. 1995, 73, 793–798. [Google Scholar] [CrossRef]
- Aoyagi, S.; Baker, D.H.; Wedekind, K.J. Estimates of copper bioavailability from liver of different animal species and from feed ingredients derived from plants and animals. Poult. Sci. 1993, 72, 1746–1755. [Google Scholar] [CrossRef]
Animals | Edible Offal | Moisture | Minerals | Protein | Lipids | Collagen | References |
---|---|---|---|---|---|---|---|
Cattle | Liver | 70.0–74.7 | 1.30–1.71 | 19.50–21.12 | 2.54–4.05 | nd | [9,14,61,68] |
Heart | 76.3–79.3 | 1.00–1.56 | 17.25–19.9 | 1.05–3.95 | nd | ||
Kidney | 74.4–79.04 | 1.20–1.81 | 15.5–18.1 | 1.51–6.09 | nd | ||
Tongue | 71.5–77.0 | 0.92–1.19 | 17.3–19.05 | 3.22–10.3 | nd | ||
Lung | 79.8 | 1.05 | 17.3–21.12 | 1.82 | nd | ||
Brain | 76.29 | 1.10 | 10.86 | 10.3 | nd | ||
Calves | Liver | 70.59–70.73 | 1.35–1.52 | 19.36–22.11 | 3.14–4.75 | nd | [9,14] |
Heart | 77.0–78.52 | 1.10–1.23 | 17.15–18.74 | 1.51–3.95 | nd | ||
Kidney | 79.0–79.03 | 1.10–1.35 | 15.7–17.53 | 1.89–3.12 | nd | ||
Tongue | 74.5–75.14 | 1.00–1.02 | 17.15–17.22 | 5.32–5.45 | nd | ||
Brain | 80 | 1.3 | 10.15 | 5.15 | nd | ||
Sheep | Liver | 66.7–69.9 | 1.6–1.9 | 18.8–20.9 | 4.3–11.8 | nd | [8,32,66] |
Heart | 66.8–70.3 | 0.9–1.1 | 13.5–17.2 | 11.7–16.4 | nd | ||
Kidney | 76.7–80.5 | 1.03–1.7 | 14.9–16.2 | 1.1–5.2 | nd | ||
Tongue | 64.1–66.2 | 0.61–0.9 | 12.9–15.2 | 11.8–21.7 | nd | ||
Lung | 77.9–79.3 | 1.08–1.1 | 15.1–17.6 | 1.79–4.6 | nd | ||
Spleen | 77.2–75.3 | 1.34–1.7 | 16.1–20.4 | 2.86–4.3 | nd | ||
Stomach | 70.9–82.7 | 0.39–0.9 | 10.3–15.5 | 1.70–18.5 | nd | ||
Intestines | 64.5 | 0.28 | 6.96 | 28.6 | nd | ||
Brain | 77.8–78.0 | 2.0 | 8.70–10.10 | 10.10–11.9 | nd | ||
Lamb | Liver | 61.2–71 | 1.4 | 18.5–20.4 | 5.2–8.9 | nd | [8,9] |
Heart | 65.1–76 | 0.87–1.1 | 16.27–17.2 | 5.68–11.8 | nd | ||
Kidney | 63.8–79 | 1.1–1.3 | 15.2–15.5 | 2.85–3.2 | nd | ||
Tongue | 55.5–63.7 | 0.83–0.9 | 16.0–15.5 | 17.15–17.7 | nd | ||
Lung | 74.1 | 1.05 | 17.3 | 2.5 | nd | ||
Spleen | 67.1–79.5 | 1.18–1.2 | 7.91–10.5 | 2.00–8.58 | nd | ||
Stomach | 49.6 | 0.43 | 10.0 | 15.7 | nd | ||
Intestines | 55.2 | 0.46 | 7.01 | 26.5 | nd | ||
Pig | Liver | 63.3–74.5 | 1.3–1.67 | 16.60–26.31 | 1.76–8.11 | 0.7–1.77 | [20,22,24,33,58,59,66,69] |
Heart | 69.93–75.94 | 0.81–1.02 | 15.7–17.62 | 2.69–8.40 | 2.13–2.22 | ||
Kidney | 73.8–80.15 | 1.08–1.2 | 13.47–18.87 | 3.12–4.93 | 1.46–1.86 | ||
Tongue | 63.55–69.25 | 0.79–1.01 | 14.79–17.06 | 11.18–20.49 | 2.73–2.81 | ||
Lung | 74.9–81.67 | 0.76–1.12 | 12.97–21.16 | 1.79–6.11 | 2.81–3.3 | ||
Spleen | 78.58–79.37 | 1.12–1.36 | 17.15–17.79 | 0.97–1.80 | nd | ||
Stomach | 77.63 | 0.31 | 17.07 | 4.05 | nd | ||
Small intestine | 82.48 | 0.3 | 11.99 | 1.16 | nd | ||
Large intestine | 69.73 | 0.15 | 8.45 | 19.54 | nd | ||
Pancreas | 72.2 | 1.26 | 20.98 | 7.18 | nd | ||
Brain | 76.46 | 1.43 | 10.71 | 8.71 | nd | ||
Wild animals: wild boar, fallow deer | Liver | 58.1–79.23 | 1.31–1.33 | 17.79–29.86 | 1.38–7.82 | 1.47 | [58,74,78] |
Heart | 72.06–72.73 | 1.11–1.13 | 19.06–20.8 | 1.47–3.05 | 1.69 | ||
Kidney | 70.33–80.95 | 1.26–1.29 | 15.97–20.19 | 1.07–4.84 | 1.64 | ||
Tongue | 67.46–68.42 | 1.01–1.04 | 15.25–16.66 | 12.56–14.77 | 2.71 | ||
Lungs | 66.32 | 25.08 | 6.65 | 2.33 | |||
Birds: ostrich, emu, turkey, chicken | Liver | 64.2–75.44 | 1.10–1.74 | 16.6–19.95 | 1.7–14.3 | nd | [35,36,37] |
Heart | 74.56–79.61 | 0.98–1.2 | 13.77–18.5 | 0.7–6.97 | nd | ||
Stomach | 77.7–80.23 | 0.88–1.1 | 17.1–19.0 | 0.74–3.2 | nd |
Animal | Edible Offal | Methionine | Threonine | Valine | Isoleucine | Leucine | Phenylalanine | Lysine | Histidine | References |
---|---|---|---|---|---|---|---|---|---|---|
Pig * | Liver | 0.36–0.91 | 0.45–0.70 | 1.12–2.01 | 0.91–1.02 | 1.05–1.61 | 0.91–1.29 | 1.06–1.33 | 0.69–1.10 | [20,66] |
Heart | 0.21–0.46 | 0.39–0.55 | 0.69–1.52 | 0.53–0.76 | 0.10–0.71 | 0.55–0.94 | 0.90–1.05 | 0.56–0.72 | ||
Kidney | 0.48 | 0.48 | 0.66 | 0.49 | 0.92 | 0.52 | 0.64 | 0.49 | ||
Lung | 0.20–0.40 | 0.22–0.46 | 0.73–1.31 | 0.42–0.61 | 0.72–0.89 | 0.50–1.61 | 0.72–1.17 | 0.54–0.79 | ||
Spleen | 0.23 | 0.32 | 1.54 | 0.75 | 0.80 | 1.07 | 1.05 | 0.79 | ||
Stomach | 0.21 | 0.33 | 1.42 | 0.71 | 0.80 | 1.63 | 1.06 | 0.66 | ||
Sheep * | Liver | 0.77 | 0.59 | 0.94 | 0.64 | 1.21 | 0.71 | 0.77 | 0.60 | [66] |
Heart | 0.70 | 0.62 | 0.79 | 0.34 | 1.19 | 0.62 | 1.13 | 0.65 | ||
Kidney | 0.44 | 0.46 | 0.66 | 0.51 | 1.07 | 0.54 | 0.68 | 0.46 | ||
Lung | 0.42 | 0.43 | 0.65 | 0.39 | 0.88 | 0.49 | 0.60 | 0.46 | ||
Sheep ** | Liver | 1.3–1.4 | 3.0–3.3 | 3.4–3.7 | 2.8–3.2 | 7.4–8.2 | 3.7–4.1 | 5.3–5.6 | 2.1–2.2 | [32] |
Heart | 1.1–1.2 | 2.2–2.5 | 2.1–2.4 | 1.8–2.1 | 5.3–4.7 | 1.9–2.1 | 3.5–4.0 | 1.3–1.4 | ||
Kidney | 1.4–1.5 | 2.1–3.3 | 3.3–3.6 | 2.6–2.9 | 6.9–7.7 | 3.1–3.5 | 4.3–5.0 | 1.6–2.0 | ||
Tongue | 1.1–1.2 | 2.3 | 2.3–2.5 | 1.9 | 5.2 | 2.1–2.3 | 4.9–5.1 | 1.2 | ||
Lung | 1.2–1.3 | 3.0–3.5 | 3.6–3.9 | 2.0–2.2 | 7.4–8.2 | 3.1–3.4 | 5.6–5.9 | 2.1–2.5 | ||
Spleen | 1.3 | 2.8 | 3.4–3.5 | 2.2–2.5 | 7.3 | 3.3–3.4 | 5.3–5.4 | 2.1–2.3 | ||
Stomach | 1.2–1.3 | 2.6–2.8 | 2.6–2.8 | 2.0–2.2 | 5.8 | 2.4 | 5.0–5.1 | 1.2–1.3 |
Animal | Edible Offal | SFA (%) | MUFA (%) | PUFA (%) | MUFA:SFA | PUFA: SFA | h/H * | n-6/n-3 | AI | TI | Cholesterol (mg/100 g) | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cattle * | Liver | 49.87 | 18.71 | 31.42 | 0.38 | 0.63 | 2.98 | nd | nd | nd | 335.7 | [14,61] |
Heart | 33.09 | 22.03 | 44.88 | 0.67 | 1.41 | 4.42 | nd | nd | nd | 170.1 | ||
Kidney | 39.66 | 23.60 | 36.74 | 0.59 | 0.93 | 2.68 | nd | nd | nd | 502.3 | ||
Tongue | 42.91 | 46.82 | 10.25 | 1.09 | 0.24 | 1.62 | nd | nd | nd | 728.6 | ||
Lung | nd | nd | nd | nd | nd | nd | nd | nd | nd | 603.9 | ||
Calves * | Liver | 51.44 | 24.86 | 23.69 | 0.48 | 0.46 | 1.67 | nd | nd | nd | nd | [14] |
Heart | 37.57 | 29.83 | 32.59 | 0.80 | 0.90 | 2.83 | nd | nd | nd | nd | ||
Kidneys | 49.97 | 30.11 | 19.92 | 0.60 | 0.44 | 1.59 | nd | nd | nd | nd | ||
Tongue | 49.69 | 40.04 | 6.27 | 0.89 | 0.13 | 1.12 | nd | nd | nd | nd | ||
Sheep * | Liver | 47.2–51.0 | 24.1–33.0 | 18.9–24.0 | nd | 0.4–0.5 | nd | 6.0–7.3 | nd | nd | 168.2–205.5 | [32] |
Heart | 68.2–70.0 | 21.1–26.8 | 1.8–7.3 | nd | 0.0–0.1 | nd | 9.0–20.4 | nd | nd | 48.6–56.5 | ||
Kidney | 45.4–46.5 | 30.2–31.8 | 20.2–21.2 | nd | 0.5 | nd | 10.2–11.4 | nd | nd | 155.6–228.2 | ||
Tongue | 44.5–51.9 | 43.5–50.6 | 2.2–3.7 | nd | 0.0–0.1 | nd | 7.8–18.9 | nd | nd | 46.6–51.3 | ||
Lung | 47.7–51.9 | 27.7–28.7 | 18.1–21.5 | nd | 0.4–0.5 | nd | 4.1 | nd | nd | 175.7–201.2 | ||
Spleen | 52.3–53.9 | 28.2–30.6 | 14.6–14.9 | nd | 0.3 | nd | 7.4–7.5 | nd | nd | 177.4–188.2 | ||
Stomach | 50.2–51.5 | 37.6–38.9 | 8.0–8.4 | nd | 0.2 | nd | 9.5–13.4 | nd | nd | 30.9–35.8 | ||
Sheep ** | Liver | 2.68 | 1.18 | 0.27 | nd | 0.11 | nd | 12.50 | 0.82 | 2.85 | 26 | [117] |
Heart | 8.32 | 3.20 | 0.58 | nd | 0.08 | nd | 9.66 | 1.15 | 3.65 | 786 | ||
Tongue | 9.68 | 9.84 | 1.17 | nd | 0.12 | nd | 3.89 | 0.54 | 1.45 | 1791 | ||
Lung | 1.43 | 0.70 | 0.12 | nd | 0.08 | nd | 9.77 | 1.09 | 2.45 | 17 | ||
Stomach | 11.83 | 5.25 | 0.52 | nd | 0.04 | nd | 4.65 | 1.42 | 3.39 | nd | ||
Lamb ** | Heart | 7.45 | 3.09 | 0.71 | nd | 0.09 | nd | 6.83 | 0.03 | 2.92 | 590 | [117] |
Liver | 5.17 | 2.87 | 0.48 | nd | 0.10 | nd | 8.75 | 0.81 | 2.72 | 152 | ||
Lung | 1.51 | 0.79 | 0.11 | nd | 0.07 | nd | 8.06 | 1.10 | 2.29 | 12 | ||
Tongue | 8.10 | 7.57 | 0.96 | nd | 0.12 | nd | 7.17 | 0.72 | 1.62 | 809 | ||
Stomach | 9.99 | 4.51 | 0.46 | nd | 0.05 | nd | 4.41 | 1.83 | 3.17 | nd | ||
Pig * | Heart | 40.47 | 30.06 | 29.47 | 0.74 | 0.77 | nd | 35.97 | nd | nd | nd | [20] |
Liver | 43.87 | 15.73 | 40.40 | 0.36 | 0.92 | nd | 8.57 | nd | nd | nd | ||
Lung | 49.49 | 28.65 | 21.86 | 0.58 | 0.44 | nd | 63.55 | nd | nd | nd | ||
Spleen | 48.85 | 20.99 | 30.16 | 0.43 | 0.62 | nd | 90.62 | nd | nd | nd | ||
Stomach | 43.15 | 38.61 | 18.24 | 0.90 | 0.43 | nd | 40.86 | nd | nd | nd | ||
Pork * | Liver | 48.07 | 20.37 | 31.56 | 0.43 | 0.66 | nd | 22.05 | 0.41 | 1.59 | nd | [58] |
Heart | 48.41 | 40.66 | 10.51 | 0.84 | 0.22 | nd | 18.13 | 0.64 | 1.78 | nd | ||
Kidney | 45.46 | 43.50 | 11.04 | 0.96 | 0.24 | nd | 17.59 | 0.57 | 1.59 | nd | ||
Tongue | 40.22 | 48.01 | 11.78 | 1.20 | 0.29 | nd | 12.31 | 0.53 | 1.25 | nd | ||
Lungs | 54.32 | 26.09 | 19.60 | 0.48 | 0.36 | nd | 32.22 | 1.00 | 2.26 | nd | ||
Wild board * | Liver | 46.65 | 34.76 | 18.59 | 0.75 | 0.40 | nd | 49.71 | 0.42 | 1.62 | nd | [58] |
Heart | 40.09 | 36.20 | 25.60 | 0.90 | 0.64 | nd | 39.05 | 0.49 | 1.38 | nd | ||
Kidney | 43.85 | 34.32 | 21.81 | 0.78 | 0.50 | nd | 30.52 | 0.62 | 1.68 | nd | ||
Tongue | 37.04 | 51.27 | 11.59 | 1.39 | 0.31 | nd | 15.28 | 0.49 | 1.10 | nd | ||
Lungs | 52.42 | 39.06 | 8.52 | 0.75 | 0.16 | nd | 22.25 | 0.94 | 2.25 | nd | ||
Red deer * | Liver | 44.61 | 13.95 | 38.56 | 0.31 | 0.87 | 3.31 | 1.55 | 0.32 | 0.54 | nd | [87] |
Heart | 29.15 | 11.34 | 41.68 | 0.39 | 1.51 | 4.68 | 3.80 | 0.28 | 0.58 | nd | ||
Kidney | 33.57 | 16.95 | 42.52 | 0.50 | 1.27 | 3.76 | 3.16 | 0.27 | 0.56 | nd | ||
Emu * | Liver | 42.38 | 27.80 | 29.82 | 0.66 | 0.70 | nd | 5.40 | nd | nd | 547.83 | [37] |
Heart | 37.65 | 28.53 | 33.82 | 0.76 | 0.90 | nd | 28.15 | nd | nd | 159.60 | ||
Gizzard | 38.64 | 33.68 | 27.68 | 0.87 | 0.96 | nd | 19.06 | nd | nd | 332.84 |
Vitamin | Animal | Edible Offal | Content | References |
---|---|---|---|---|
Retinol; vitamin A (µg RE/100 g) | Pig | Heart | 2.56 | [20] |
Liver | 57.41 | |||
Lung | 13.37 | |||
Stomach | 17.43 | |||
Thiamine; vitamin B1 (mg/100 g) | Pig | Heart | 0.16 | [20] |
Liver | 0.13 | |||
Lung | 0.11 | |||
Stomach | 0.12 | |||
Niacin; vitamin B3 (mg/100 g) | Pig | Heart | 30.96 | [20] |
Liver | 28.12 | |||
Lung | 0.49 | |||
Stomach | 0.39 | |||
Pantothenic acid, vitamin B5 (mg/100 g) | Pig | Heart | 2.95 | [20] |
Liver | 3.05 | |||
Lung | 3.69 | |||
Stomach | 1.59 | |||
Folates; vitamin B9; (µg/100 g fresh weight) | Cattle | Liver | 296–1310 | [180,181,182,183,184,185,186,187] |
Pig | Liver | 110–1470 | [180,182,183,184] | |
Chicken | Liver | 588–2700 | [180,183,184,187] | |
Turkey | Liver | 677–1137 | [180,187] | |
Cobalamin; vitamin B12 (ng/g) | Cattle | Liver | 54.1–78.2 | [188,189] |
Cholecalciferol; vitamin D3 (µg/kg) | Cattle | Liver | <0.5–14.2 (0.7–7.7) * | [190,191,192,193,194,195,196] |
Cattle | Kidney | 1.3–27.1 (1.6–9.8) * | [190,191,194,195,196] | |
Pig | Liver | 4.0–12.5 (4.4) * | [193,197] | |
Chicken | Liver | 2.0 | [197] |
Animal | Edible Offal | Microelements | Macroelements | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Zn | Mn | Cu | Se | Na | K | Ca | Mg | |||
Cattle | Liver | 29.3–119.5 | 29.5–57.0 | 2.9–5.8 | 26.8–96.6 | 39.0–43.2 | 0.68–0.75 | 2.81–3.12 | 0.05–0.06 | 0.18–0.23 | [8,9,14,45,68,231] |
Heart | 29.3–101.6 | 15.3–17.0 | 2.9 | 2.7–4.0 | 21 | 0.77–0.97 | 2.69–2.85 | 0.05–0.08 | 0.20–0.24 | ||
Kidney | 23.7–279.5 | 19.5–47.8 | 1.4–10.0 | 4.1–4.3 | 139.0 | 1.30–1.85 | 2.56–2.63 | 0.07–0.13 | 0.17–0.20 | ||
Tongue | 14.8–21.5 | 23.2–53.2 | 0.2–1.0 | 0.7 | 12.0 | 0.69–0.73 | 2.78–3.15 | 0.06–0.43 | 0.16–0.23 | ||
Lung | 201.4 | nd | nd | nd | nd | nd | nd | nd | nd | ||
Brain | 25.5 | 10.2 | 0.4 | 2.0 | 7.55 | 1.26 | 2.74 | nd | 0.13 | ||
Calves | Liver | 29.3–64.0 | 50.5–120.0 | 2.6–3.5 | 26.8–117.7 | 22.6 | 0.68–0.75 | 3.06–3.10 | 0.03–0.05 | 0.20–0.23 | [9,14] |
Heart | 26.4–42.5 | 12.7–32.8 | 3.5–4.7 | 3.5–3.9 | 32.0 | 0.69–0.75 | 2.87–7.61 | 0.03–0.05 | 0.18–0.28 | ||
Kidney | 23.5–34.0 | 19.5–34.0 | 0.7–1.9 | 3.4–5.0 | 80.0 | 1.53–1.75 | 2.32–2.72 | 0.05–0.10 | 0.16–0.20 | ||
Tongue | 17.8–27.0 | 26.5–52.4 | 0.3–3.4 | 1.5–1.7 | 6.0 | 0.80–0.82 | 2.67–2.70 | 0.04–0.07 | 0.15–0.22 | ||
Brain | 21.5 | 11.5 | 0.4 | 2.3 | 10.0 | 1.25 | 3.12 | 0.01 | 0.14 | ||
Sheep | Livers | 80.1–153.0 | 14.0–40.2 | 2.8 | 11.8–179.6 | 0.12–0.33 | 0.63 | 3.34 | 0.06–0.09 | 0.12–0.27 | [8,232] |
Hearts | 34.7 | 17.1 | 0.3 | nd | nd | 1.09 | 2.56 | 0.08 | 0.23 | ||
Kidneys | 29.7–64.1 | 9.4–18.8 | 0.9 | 1.8–14.8 | 0.85–1.42 | 1.50 | 2.49 | 0.09–0.13 | 0.13–0.20 | ||
Tongues | 15.2 | 16.5 | 0.1 | nd | nd | 1.02 | 2.18 | 0.07 | 0.20 | ||
Lungs | 77.6 | 17.0 | 0.1 | nd | nd | 1.49 | 2.85 | 0.08 | 0.17 | ||
Spleen | 974.0 | 26.9 | 0.2 | nd | nd | 1.06 | 4.64 | 0.07 | 0.25 | ||
Stomachs | 41.0 | 15.7 | 7.8 | nd | nd | 0.53 | 1.34 | 0.27 | 0.16 | ||
Intestines | 12.9 | 9.2 | 0.4 | nd | nd | 0.40 | 0.88 | 0.11 | 0.15 | ||
Lamb | Liver | 51.5–72.5 | 30.2–45.5 | 1.5–1.8 | 68.8 | 82 | 0.67–0.71 | 3.10–3.12 | 0.06–0.07 | 0.21–0.19 | [8,9] |
Heart | 39.3–40.6 | 17.7–18.3 | 0.0–0.5 | 3.5 | 33 | 0.89–1.18 | 2.80–3.16 | 0.05–0.06 | 0.17–0.23 | ||
Kidney | 34.2–63.5 | 20.6–22.5 | 0.9–1.2 | 4.6 | 125 | 1.55 | 2.69–2.75 | 0.06–0.13 | 0.17–0.18 | ||
Tongue | 17.7–26.0 | 19.9–23.5 | 0.4–0.5 | 2.0 | 15.0 | 0.75–1.12 | 2.57–2.98 | 0.07–0.09 | 0.21–0.24 | ||
Lung | 158.0 | 17.7 | 0.2 | nd | nd | 1.66 | 2.52 | 0.07 | 0.16 | ||
Spleen | 197.0 | 24.1 | 0.2 | nd | nd | 0.95 | 4.03 | 0.04 | 0.20 | ||
Stomachs | 22.7 | 14.8 | 0.5 | nd | nd | 0.58 | 1.29 | 0.12 | 0.12 | ||
Intestines | 13.7 | 10.0 | 0.8 | nd | nd | 0.43 | 0.94 | 0.09 | 0.11 | ||
Brain | 16.5 | 11.5 | 0.5 | 2.5 | 9.0 | 1.15 | 2.95 | 0.09 | 0.12 | ||
Pig | Liver | 0.5–1444.8 | 1.9–98.2 | 0.22–3.5 | 0.2–44 | 0.01–80 | 0.08–1.27 | 0.10–3.59 | 0.008–0.20 | 0.005–0.29 | [20,24,33,58,69,118,119,233,234,235,236] |
Heart | 2.6–68.1 | 0.3–28.3 | 0.4 | 0.1–4.1 | 0.01 | 0.03–1.33 | 0.05–2.93 | 0.002–0.09 | 0.003–0.25 | ||
Kidney | 0.1–93.3 | 1.7–37.4 | 0.7–2.3 | 0.6–9.5 | 0.06 | 0.10–1.57 | 0.08–2.81 | 0.004–0.14 | 0.003–0.26 | ||
Tongue | 2.4–29.8 | 19.9–24.1 | 0.4–0.8 | 2.0–2.6 | nd | 0.72–0.92 | 2.46–2.72 | 0.10–0.13 | 0.17–0.19 | ||
Lung | 63.0–89.6 | 1.5–20.9 | 0.2–0.4 | 1.2–1.9 | nd | 0.61–1.58 | 1.89–2.51 | 0.08–0.21 | 0.12–0.15 | ||
Spleen | 9.6–274.9 | 0.7–33.2 | 0.4–0.5 | 0.04–2.1 | nd | 0.12–0.95 | 0.06–4.64 | 0.006–0.07 | 0.003–0.21 | ||
Stomach | 11.1 | 1.8 | 0.8 | 1.4 | nd | 1.21 | 1.39 | 0.13 | 0.18 | ||
Small intestine | 2.6 | 1.7 | 15.6 | 0.1 | 0.01 | 0.03 | 0.03 | 0.006 | 0.004 | ||
Large intestine | 0.9 | 0.7 | 2.9 | 0.01 | 0.01 | 0.03 | 0.03 | 0.005 | 0.002 | ||
Pancreas | 38.0 | 3.8 | 2.0 | 1.6 | nd | 0.85 | 3.15 | 0.22 | 0.23 | ||
Brain | 2.5–38.2 | 15.6–39.7 | 0.5 | 3.2–4.4 | nd | 1.23–1.42 | 2.53–3.88 | 0.008–0.19 | 0.10–0.15 | ||
Wild boar | Liver | 300.2 | 50.1 | 3.0 | 4.0 | nd | 0.74 | 2.90 | 0.16 | 0.18 | [58] |
Heart | 51.1 | 17.5 | 0.5 | 10.1 | nd | 0.63 | 2.71 | 0.05 | 0.23 | ||
Kidneys | 137.4 | 22.5 | 1.1 | 6.7 | nd | 1.00 | 1.99 | 0.09 | 0.24 | ||
Tongue | 25.9 | 23.5 | 0.9 | 2.0 | nd | 0.83 | 2.43 | 0.26 | 0.17 | ||
Lungs | 68.5 | 18.3 | 0.3 | 0.8 | nd | 0.88 | 2.54 | 0.12 | 0.15 | ||
Emu | Liver | 2880.9 | 41.5 | 0.1 | 4.4 | nd | 0.74 | 3.38 | 0.05 | 0.20 | [37] |
Heart | 59.7 | 34.6 | 0.03 | 3.9 | nd | 0.81 | 3.28 | 0.05 | 0.22 | ||
Gizzard | 11.8 | 31.4 | 0.02 | 0.6 | nd | 0.81 | 3.73 | 0.05 | 0.16 | ||
Chicken | Liver | 79.3 | 29.9 | 3.7 | nd | nd | nd | nd | nd | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latoch, A.; Stasiak, D.M.; Siczek, P. Edible Offal as a Valuable Source of Nutrients in the Diet—A Review. Nutrients 2024, 16, 1609. https://doi.org/10.3390/nu16111609
Latoch A, Stasiak DM, Siczek P. Edible Offal as a Valuable Source of Nutrients in the Diet—A Review. Nutrients. 2024; 16(11):1609. https://doi.org/10.3390/nu16111609
Chicago/Turabian StyleLatoch, Agnieszka, Dariusz Mirosław Stasiak, and Patryk Siczek. 2024. "Edible Offal as a Valuable Source of Nutrients in the Diet—A Review" Nutrients 16, no. 11: 1609. https://doi.org/10.3390/nu16111609
APA StyleLatoch, A., Stasiak, D. M., & Siczek, P. (2024). Edible Offal as a Valuable Source of Nutrients in the Diet—A Review. Nutrients, 16(11), 1609. https://doi.org/10.3390/nu16111609