You are currently viewing a new version of our website. To view the old version click .
Remote Sensing
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

28 November 2025

MAIENet: Multi-Modality Adaptive Interaction Enhancement Network for SAR Object Detection

,
,
,
and
College of Computer Science and Engineering, Northeastern University, Shenyang 110000, China
*
Author to whom correspondence should be addressed.
Remote Sens.2025, 17(23), 3866;https://doi.org/10.3390/rs17233866 
(registering DOI)

Abstract

Syntheticaperture radar (SAR) object detection offers significant advantages in remote sensing applications, particularly under adverse weather conditions or low-light environments. However, single-modal SAR image object detection encounters numerous challenges, including speckle noise, limited texture information, and interference from complex backgrounds. To address these issues, we present Modality-Aware Adaptive Interaction Enhancement Network (MAIENet), a multimodal detection framework designed to effectively extract complementary information from both SAR and optical images, thereby enhancing object detection performance. MAIENet comprises three primary components: batch-wise splitting and channel-wise concatenation (BSCC) module, modality-aware adaptive interaction enhancement (MAIE) module, and multi-directional focus (MF) module. The BSCC module extracts and reorganizes features from each modality to preserve their distinct characteristics. The MAIE module component facilitates deeper cross-modal fusion through channel reweighting, deformable convolutions, atrous convolution, and attention mechanisms, enabling the network to emphasize critical modal information while reducing interference. By integrating features from various spatial directions, the MF module expands the receptive field, allowing the model to adapt more effectively to complex scenes. The MAIENet framework is end-to-end trainable and can be seamlessly integrated into existing detection networks with minimal modifications. Experimental results on the publicly available OGSOD-1.0 dataset demonstrate that MAIENet achieves superior performance compared with existing methods, achieving 90.8%mAP50.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.