Multi-Resolution UAV Remote Sensing for Anthropogenic Debris Detection in Complex River Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Image Acquisition
2.3. Image Preprocessing and Enhancement
2.4. The San Diego River Debris Dataset: Development and Structure
2.5. Model Development and Process
- RetinaNet is a single-stage object detector that utilizes a Feature Pyramid Network for multi-scale feature extraction and a focal loss function to address class imbalance, which occurs when there is a significant disparity between the number of positive and negative samples in the training data [34].
- Single Shot Detector (SSD) is a single-stage object detector with a Visual Geometric Group (VGG)-based architecture that predicts bounding boxes and class probabilities at multiple feature map scales [35].
- Faster R-CNN is a two-stage object detector that utilizes a region proposal network (RPN) to generate candidate object bounding boxes and a classification network to refine them [36].
- DetReg is a single-stage object detector that employs a set transformer for permutation-invariant detection, meaning it can accurately detect objects regardless of their order in an image. It utilizes deformable positional encodings for handling object rotations [37].
- The Cascade R-CNN uses multi-stage training: each stage refines detections using sampling, which adjusts bounding boxes from prior stages, creating a training set focused on difficult detections. This helps the model learn from errors and improve its ability to identify real objects from false positives [38]. We used Cascade R-CNN as implemented in the MMDetection open-source toolbox.
- Number of epochs is the number of times the model traverses the entire dataset during training. Smaller datasets often necessitate more epochs. For this study, the number of epochs varied from 100 to 1000 in intervals of 100.
- Learning Rate is the pace at which the model adjusts its internal parameters during training. The best learning rate strikes a balance between rapid learning and convergence to an optimal solution. A high rate can lead to instability and overshooting, while a low rate can result in sluggish learning and low accuracy. Hyperparameter search was performed using a range of values from 0.000001 to 0.5, with intervals defined on a logarithmic scale. The optimal value was close to 0.000005.
- The validation percentage (ranged from 10% to 30%) allocates a portion of the ground reference data for validation, enabling model performance to be assessed on independent data and safeguarding against overfitting.
2.6. Delineation of Encampments
3. Results
3.1. Classification Accuracy by Model Types
3.2. Impact of Spatial Resolution on Debris Mapping
3.3. Debris Distribution in Encampment Versus Non-Encampment Areas
4. Discussion
4.1. Model Performance and Generalizability Assessment
4.2. Technical Limitations and Environmental Constraints
4.3. Implications and Recommendations for Universal Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An Overview of the Environmental Pollution and Health Effects Associated with Waste Landfilling and Open Dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Tuholske, C.; Halpern, B.S.; Blasco, G.; Villasenor, J.C.; Frazier, M.; Caylor, K. Mapping Global Inputs and Impacts from of Human Sewage in Coastal Ecosystems. PLoS ONE 2021, 16, e0258898. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- Lincoln, S.; Andrews, B.; Birchenough, S.N.R.; Chowdhury, P.; Engelhard, G.H.; Harrod, O.; Pinnegar, J.K.; Townhill, B.L. Marine Litter and Climate Change: Inextricably Connected Threats to the World’s Oceans. Sci. Total Environ. 2022, 837, 155709. [Google Scholar] [CrossRef]
- Gerrity, D.; Papp, K.; Dickenson, E.; Ejjada, M.; Marti, E.; Quinones, O.; Sarria, M.; Thompson, K.; Trenholm, R.A. Characterizing the Chemical and Microbial Fingerprint of Unsheltered Homelessness in an Urban Watershed. Sci. Total Environ. 2022, 840, 156714. [Google Scholar] [CrossRef]
- Marie, A. An Assessment of Mitigation Strategies to Address Environmental Impacts of Homeless Encampments. Master’s Thesis, California State University, Long Beach, CA, USA, 2019. [Google Scholar]
- Langat, P.K.; Kumar, L.; Koech, R. Monitoring River Channel Dynamics Using Remote Sensing and GIS Techniques. Geomorphology 2019, 325, 92–102. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Ballesteros, M.A. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying Floating Plastic Marine Debris Using a Deep Learning Approach. Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [Google Scholar] [CrossRef]
- Benali Amjoud, A.; Amrouch, M. Convolutional Neural Networks Backbones for Object Detection. In Image and Signal Processing, Proceedings of the 9th International Conference, ICISP 2020, Marrakesh, Morocco, 4–6 June 2020; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2020; Volume 12119 LNCS, pp. 282–289. [Google Scholar]
- Zhang, C.; Zhang, X.; Tu, D.; Wang, Y. Small Object Detection Using Deep Convolutional Networks: Applied to Garbage Detection System. J. Electron. Imaging 2021, 30, 043013. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Mittal, G.; Yagnik, K.B.; Garg, M.; Krishnan, N.C. SpotGarbage: Smartphone App to Detect Garbage Using Deep Learning. In Proceedings of the UbiComp 2016—Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12 September 2016; Association for Computing Machinery, Inc.: New York, NY, USA; pp. 940–945. [Google Scholar]
- Chai, B.; Nie, X.; Zhou, Q.; Zhou, X. Enhanced Cascade R-CNN for Multi-Scale Object Detection in Dense Scenes from SAR Images. IEEE Sens. J. 2024, 24, 20143–20153. [Google Scholar] [CrossRef]
- Li, M.T.; Lee, S.H. A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model. Comput. Mater. Contin. 2022, 72, 6155–6165. [Google Scholar] [CrossRef]
- Cai, Q.; Pan, Y.; Yao, T.; Mei, T. 3D Cascade RCNN: High Quality Object Detection in Point Clouds. IEEE Trans. Image Process. 2022, 31, 5706–5719. [Google Scholar] [CrossRef]
- Wu, L.; Chen, S.; Liang, C. Target Detection of Marine Ships Based on a Cascade RCNN. In Proceedings of the 2021 International Conference on Advanced Technologies and Applications of Modern Industry (ATAMI 2021), Wuhan, China, 19–21 November 2021; IOP Publishing Ltd.: Bristol, UK, 2022; Volume 2185. [Google Scholar]
- Li, P.; Tao, H.; Zhou, H.; Zhou, P.; Deng, Y. Enhanced Multiview Attention Network with Random Interpolation Resize for Few-Shot Surface Defect Detection. Multimed. Syst. 2025, 31, 36. [Google Scholar] [CrossRef]
- Chen, X.; Tao, H.; Zhou, H.; Zhou, P.; Deng, Y. Hierarchical and Progressive Learning with Key Point Sensitive Loss for Sonar Image Classification. Multimed. Syst. 2024, 30, 380. [Google Scholar] [CrossRef]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef]
- Cardiel-Ortega, J.J.; Baeza-Serrato, R. Failure Mode and Effect Analysis with a Fuzzy Logic Approach. Systems 2023, 11, 348. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of Unmanned Aerial Vehicles for Efficient Beach Litter Monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef]
- Castellanos-Galindo, G.A.; Casella, E.; Mejía-Rentería, J.C.; Rovere, A. Habitat Mapping of Remote Coasts: Evaluating the Usefulness of Lightweight Unmanned Aerial Vehicles for Conservation and Monitoring. Biol. Conserv. 2019, 239, 108282. [Google Scholar] [CrossRef]
- Andriolo, U.; Topouzelis, K.; van Emmerik, T.H.M.; Papakonstantinou, A.; Monteiro, J.G.; Isobe, A.; Hidaka, M.; Kako, S.; Kataoka, T.; Gonçalves, G. Drones for Litter Monitoring on Coasts and Rivers: Suitable Flight Altitude and Image Resolution. Mar. Pollut. Bull. 2023, 195, 115521. [Google Scholar] [CrossRef]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris Assessment with Unmanned Aerial Vehicle Imagery and Deep Learning: A Case Study along the Beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Maharjan, N.; Miyazaki, H.; Pati, B.M.; Dailey, M.N.; Shrestha, S.; Nakamura, T. Detection of River Plastic Using UAV Sensor Data and Deep Learning. Remote Sens. 2022, 14, 3049. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Monleón-Getino, T.; López-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M. Automatic Detection and Quantification of Floating Marine Macro-Litter in Aerial Images: Introducing a Novel Deep Learning Approach Connected to a Web Application in R. Environ. Pollut. 2021, 273, 116490. [Google Scholar] [CrossRef]
- Wu, Z.; Yi, L.; Zhang, G. Uncertainty Analysis of Object Location in Multi-Source Remote Sensing Imagery Classification. Int. J. Remote Sens. 2009, 30, 5473–5487. [Google Scholar] [CrossRef]
- He, L.; Valocchi, A.J.; Duarte, C.A. A Transient Global-Local Generalized FEM for Parabolic and Hyperbolic PDEs with Multi-Space/Time Scales. J. Comput. Phys. 2023, 488, 112179. [Google Scholar] [CrossRef]
- Stein, T.; Peelen, M.V. Object Detection in Natural Scenes: Independent Effects of Spatial and Category-Based Attention. Atten. Percept. Psychophys. 2017, 79, 738–752. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric Rivers, Floods and the Water Resources of California. Water Switz. 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Ahn, J.H.; Grant, S.B.; Surbeck, C.Q.; Digiacomo, P.M.; Nezlin, N.P.; Jiang, S. Coastal Water Quality Impact of Stormwater Runoff from an Urban Watershed in Southern California. Environ. Sci. Technol. 2005, 39, 5940–5953. [Google Scholar] [CrossRef]
- Kamel, O.; Aboelenien, N.; Amin, K.; Semary, N. An Automated Contrast Enhancement Technique for Remote Sensed Images. Int. J. Comput. Inf. 2024, 11, 1–16. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 December 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; Volume 2017, pp. 2999–3007. [Google Scholar]
- Li, Y.; He, L.; Zhang, M.; Cheng, Z.; Liu, W.; Wu, Z. Improving the Performance of the Single Shot Multibox Detector for Steel Surface Defects with Context Fusion and Feature Refinement. Electron. Switz. 2023, 12, 2440. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Feng, Y.; You, Y.; Tian, J.; Meng, G. OEGR-DETR: A Novel Detection Transformer Based on Orientation Enhancement and Group Relations for SAR Object Detection. Remote Sens. 2024, 16, 106. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE Computer Society: Washington, DC, USA, 2018; pp. 6154–6162. [Google Scholar]
- Wang, L.; Zeng, X.; Yang, H.; Lv, X.; Guo, F.; Shi, Y.; Hanif, A. Investigation and Application of Fractal Theory in Cement-Based Materials: A Review. Fractal Fract. 2021, 5, 247. [Google Scholar] [CrossRef]
- Kraft, M.; Piechocki, M.; Ptak, B.; Walas, K. Autonomous, Onboard Vision-Based Trash and Litter Detection in Low Altitude Aerial Images Collected by an Unmanned Aerial Vehicle. Remote Sens. 2021, 13, 965. [Google Scholar] [CrossRef]
- Morgan, G.R.; Wang, C.; Li, Z.; Schill, S.R.; Morgan, D.R. Deep Learning of High-Resolution Aerial Imagery for Coastal Marsh Change Detection: A Comparative Study. ISPRS Int. J. Geo-Inf. 2022, 11, 100. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Britt, K.; Liu, T. Deep Learning Classification of High-Resolution Drone Images Using the ArcGIS Pro Software. EDIS 2021, 2021. [Google Scholar] [CrossRef]
- Hennig, S. Orchard Meadow Trees: Tree Detection Using Deep Learning in ArcGIS Pro. GI_Forum 2021, 9, 82–93. [Google Scholar] [CrossRef]
- Khalid, N.; Shahrol, N.A. Evaluation the Accuracy of Oil Palm Tree Detection Using Deep Learning and Support Vector Machine Classifiers. In Proceedings of the 8th International Conference on Geomatics and Geospatial Technology (GGT 2022), Online, 25–26 May 2022; Institute of Physics: London, UK, 2022; Volume 1051. [Google Scholar]
- Majchrowska, S.; Mikołajczyk, A.; Ferlin, M.; Klawikowska, Z.; Plantykow, M.A.; Kwasigroch, A.; Majek, K. Deep Learning-Based Waste Detection in Natural and Urban Environments. Waste Manag. 2022, 138, 274–284. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Z.; Fan, H.; Fu, S.; Tang, Y. Unsupervised Person Re-Identification Based on Adaptive Information Supplementation and Foreground Enhancement. IET Image Process. 2024, 18, 4680–4694. [Google Scholar] [CrossRef]
- Verbyla, M.E.; Calderon, J.S.; Flanigan, S.; Garcia, M.; Gersberg, R.; Kinoshita, A.M.; Mladenov, N.; Pinongcos, F.; Welsh, M. An Assessment of Ambient Water Quality and Challenges with Access to Water and Sanitation Services for Individuals Experiencing Homelessness in Riverine Encampments. Environ. Eng. Sci. 2021, 38, 389–401. [Google Scholar] [CrossRef]
- Singhal, P.; Walambe, R.; Ramanna, S.; Kotecha, K. Domain Adaptation: Challenges, Methods, Datasets, and Applications. IEEE Access 2023, 11, 6973–7020. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble Deep Learning: A Review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- Aguilar, E.; Sousa, D.; Uhrin, A.; Gudino-Elizondo, N.; Biggs, T. Mapping terrestrial macroplastics and polymer-coated materials in an urban watershed using WorldView-3 and laboratory reflectance spectroscopy. Environ. Monit. Assess. 2025, in press. [CrossRef]
Platform | Acquisition Date | Location | Height (m) | Resolution (cm) |
---|---|---|---|---|
Matrice | 18 February 2022 | MVP | 30.5 | 0.40 |
Matrice | 29 October 2022 | MVP | 30.5 | 0.40 |
Matrice | 14 November 2023 | AC | 30.5 61.0 91.4 121.9 | 0.40 0.80 1.20 1.60 |
Mini | 15 November 2023 | AC | 30.5 61.0 91.4 121.9 | 1.10 2.20 3.30 4.40 |
Plots | Acquisition Date | Location | Debris Sizes | Debris Distribution | Dominant Trash Type | Vegetation Cover |
---|---|---|---|---|---|---|
Encampment | 29 October 2022 | MVP | Various | Concentrated | Plastic, Fabric, Paper | Palm trees, Dense woody vegetation, Grass |
Bike Path | 18 February and 29 October 2022 | MVP | Various | Scattered | Plastic, Fabric | Herbaceous Vegetation, Grass |
Trolley | 18 February and 29 October 2022 | MVP | Various | Scattered | Plastic | Bare soil, Herbaceous vegetation, Grass |
Small Floodplain | 29 October 2022 | MVP | Small | Scattered | Plastic | Herbaceous Vegetation, Bare soil |
Big Floodplain | 29 October 2022 | MVP | Organic | Scattered | Organic Debris | Herbaceous Vegetation, Bare soil |
5 m by 5 m (n = 3) | 29 October 2022 | MVP | Various, Organic | Scattered | Plastic, Fabric | Bare soil, Grass, Herbaceous Vegetation |
5 m by 5 m (n = 2) | 18 February 2022 | MVP | Various | Scattered | Plastic | Bare soil, Grass, Herbaceous Vegetation |
5 m by 3 m | 14 November 2023 | AC | Various, Organic | Scattered | Plastic, Organic Debris | Bare soil, Grass, Herbaceous Vegetation |
5 m by 5 m | 14 November 2023 | AC | Various | Scattered | Plastic | Bare soil, Grass, Herbaceous Vegetation |
Model | Suboptimal Config | Optimal Config | Accuracy Improvement | F1 Improvement |
---|---|---|---|---|
DetReg | LR = 0.000001, E = 90 | LR = 0.5, E = 900 | 0.01 → 0.20 | 0.078 → 0.15 +92% |
SSD | LR = 0.000001, E = 90 | LR = 0.1, E = 500 | 0.10 → 0.14 | 0.24 → 0.26 +8% |
RetinaNet | LR = 0.000001, E = 90 | LR = 0.1, E = 500 | 0.001 → 0.33 | 0.002 → 0.001 −55% |
Faster R-CNN | LR = 0.000001, E = 90 | LR = 0.5, E = 900 | 0.30 → 0.50 | 0.20 → 0.56 +180% |
Cascade R-CNN | LR = 0.000001, E = 90 | LR = 0.5, E = 900 | 0.63 → 0.92 | 0.77 → 0.73 −5% |
Dataset | Environment | Spatial Resolution | Object Count | Debris Type | Special Features |
---|---|---|---|---|---|
San Diego River Debris (This study) | Urban floodplain, Riparian zone | 0.4–4.4 cm | 2321 objects | Plastic, Fabric, Paper, Metal, Wood, Rubber | Multiple resolutions, Varied vegetation backgrounds, Encampment association |
Beach Litter Dataset (Martin et al., 2018 [22]) | Beach environments | 0.5–2 cm | ~2000 objects | Plastic litter, Consumer waste | Homogeneous sand backgrounds, Limited vegetation complexity |
Floating Debris (Kylili et al., 2019 [9]) | Marine surface | >2 cm | 2800 objects | Marine macro-litter | Primarily floating objects, Uniform water backgrounds |
Waste Net (Kraft et al., 2021 [40]) | Urban areas | 1–3 cm | 4000 objects | Plastic litter, Consumer waste | Limited vegetation complexity, primarily unobscured objects |
Model | Precision | Recall | F1 Score | Accuracy | TP | FP | FN |
---|---|---|---|---|---|---|---|
MVP, February 2022 N = 2.5 × 5 m plots, 162 debris objects | |||||||
DetReg | 0.09 | 0.27 | 0.14 | 0.083 | 44 | 368 | 118 |
SSD | 0.24 | 0.24 | 0.20 | 0.12 | 37 | 155 | 125 |
RetinaNet | 0.0017 | 0.006 | 0.0013 | 0.00016 | 1 | 580 | 161 |
Faster R-CNN | 0.185 | 0.030 | 0.03 | 0.033 | 5 | 22 | 157 |
Cascade R-CNN | 0.95 | 0.65 | 0.39 | 0.63 | 106 | 5 | 56 |
MVP, October 2022 N = 3.5 × 5 m plots, 425 debris objects | |||||||
DetReg | 0.39 | 0.20 | 0.26 | 0.15 | 85 | 131 | 340 |
SSD | 0.61 | 0.38 | 0.47 | 0.30 | 162 | 100 | 263 |
RetinaNet | 0.68 | 0.57 | 0.62 | 0.45 | 243 | 111 | 182 |
Faster R-CNN | 0.85 | 0.78 | 0.81 | 0.69 | 332 | 56 | 93 |
Cascade R-CNN | 0.95 | 0.97 | 0.96 | 0.93 | 414 | 20 | 11 |
AC, November 2023 N = 1.5 × 5 m plot, N = 1.5 × 3 m plot, 152 debris objects | |||||||
DetReg | 0.26 | 0.75 | 0.39 | 0.24 | 29 | 81 | 123 |
SSD | 0.64 | 0.64 | 0.63 | 0.47 | 97 | 55 | 55 |
RetinaNet | 0.53 | 0.42 | 0.47 | 0.31 | 64 | 56 | 88 |
Faster R-CNN | 0.38 | 0.65 | 0.48 | 0.32 | 59 | 31 | 93 |
Cascade R-CNN | 0.78 | 0.71 | 0.37 | 0.80 | 109 | 31 | 43 |
Model | Training Time (Hours) | GPU Memory Usage (GB) | Accuracy |
---|---|---|---|
Learning rate 0.000001, 90 Epochs, Validation 10% | |||
DetReg | 4.2 | 5.8 | 0.01 |
SSD | 2.5 | 4.2 | 0.1 |
RetinaNet | 3.8 | 6.4 | 0.001 |
Faster R-CNN | 4.3 | 7.8 | 0.30 |
Cascade R-CNN | 1.8 | 3.2 | 0.63 |
Learning rate 0.09, 300 Epochs, Validation 15% | |||
DetReg | 9.7 | 6.2 | 0.03 |
SSD | 8.1 | 4.6 | 0.1 |
RetinaNet | 12.5 | 7.7 | 0.35 |
Faster R-CNN | 14.2 | 8.1 | 0.47 |
Cascade R-CNN | 6.2 | 5.5 | 0.62 |
Learning rate 0.1, 500 Epochs, Validation 20% | |||
DetReg | 15.3 | 7.4 | 0.25 |
SSD | 13.5 | 4.6 | 0.14 |
RetinaNet | 21.4 | 8.9 | 0.33 |
Faster R-CNN | 23.8 | 8.1 | 0.35 |
Cascade R-CNN | 10.5 | 5.8 | 0.40 |
Learning rate 0.3, 700 Epochs, Validation 25% | |||
DetReg | 21.8 | 7.9 | 0.03 |
SSD | 18.7 | 4.9 | 0.1 |
RetinaNet | 29.8 | 8.1 | 0.000 |
Faster R-CNN | 33.5 | 8.4 | 0.4 |
Cascade R-CNN | 15.2 | 6.1 | 0.41 |
Learning rate 0.5, 900 Epochs, Validation 30% | |||
DetReg | 27.5 | 8.5 | 0.2 |
SSD | 24.2 | 5.1 | 0.01 |
RetinaNet | 30.2 | 9.4 | 0.01 |
Faster R-CNN | 42.8 | 8.5 | 0.5 |
Cascade R-CNN | 19.8 | 6.5 | 0.92 |
Learning Rate | Epoch | Validation % | Accuracy | F1 Score | Precision | Recall |
---|---|---|---|---|---|---|
0.000001 | 90 | 10 | 0.63 | 0.77 | 0.65 | 0.95 |
0.09 | 300 | 15 | 0.62 | 0.60 | 0.68 | 0.54 |
0.1 | 500 | 20 | 0.40 | 0.40 | 0.32 | 0.54 |
0.3 | 700 | 25 | 0.41 | 0.43 | 0.49 | 0.39 |
0.5 | 900 | 30 | 0.92 | 0.73 | 0.69 | 0.78 |
Equipment Type | Altitude (m) | Spatial Resolution (cm) | Accuracy | TP | FP | FN |
---|---|---|---|---|---|---|
Matrice | 30.5 | 0.40 | 0.80 | 11 | 0 | 3 |
61.0 | 0.80 | 0.78 | 15 | 1 | 3 | |
91.4 | 1.20 | 0.72 | 12 | 9 | 4 | |
121.9 | 1.60 | 0.71 | 10 | 2 | 2 | |
Mini | 30.5 | 1.10 | 0.71 | 8 | 0 | 3 |
61.0 | 2.20 | 0.69 | 8 | 0 | 4 | |
91.4 | 3.30 | 0.65 | 7 | 0 | 4 | |
121.9 | 4.40 | 0.36 | 6 | 0 | 10 |
Land Use Types | Debris Area (m2) | Debris Area as Percentage of Total Area Surveyed (%) | Total Percentage of Mapped Trash (%) | Average Accuracy (%) |
---|---|---|---|---|
Encampment Areas | 28.70 | 1.32 | 51 | 53.6 |
Non-Encampment Areas | 27.96 | 1.29 | 49 | 61.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jack, P.; Biggs, T.; Sousa, D.; Coulter, L.; Hutmacher, S.; McMillan, H. Multi-Resolution UAV Remote Sensing for Anthropogenic Debris Detection in Complex River Environments. Remote Sens. 2025, 17, 2172. https://doi.org/10.3390/rs17132172
Jack P, Biggs T, Sousa D, Coulter L, Hutmacher S, McMillan H. Multi-Resolution UAV Remote Sensing for Anthropogenic Debris Detection in Complex River Environments. Remote Sensing. 2025; 17(13):2172. https://doi.org/10.3390/rs17132172
Chicago/Turabian StyleJack, Peaceibisia, Trent Biggs, Daniel Sousa, Lloyd Coulter, Sarah Hutmacher, and Hilary McMillan. 2025. "Multi-Resolution UAV Remote Sensing for Anthropogenic Debris Detection in Complex River Environments" Remote Sensing 17, no. 13: 2172. https://doi.org/10.3390/rs17132172
APA StyleJack, P., Biggs, T., Sousa, D., Coulter, L., Hutmacher, S., & McMillan, H. (2025). Multi-Resolution UAV Remote Sensing for Anthropogenic Debris Detection in Complex River Environments. Remote Sensing, 17(13), 2172. https://doi.org/10.3390/rs17132172