Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks
Abstract
:1. Introduction
2. Data
2.1. Satellite Data
2.2. Atmospheric Profile Data
3. Methods
3.1. Data Pre-Processing
3.2. Construction of BP Neural Network
4. Retrieval Performance as Compared with ERA5
4.1. Validation of NNs-250 with ERA5
4.2. Error Variation with Height Compared with ERA5
4.3. Retrieval Performance Sensitivity to Cloud Amount
5. Retrieval Performance as Compared with Radiosonde Observations
6. Comparison between NNs-250 Retrievals and Satellite Products
6.1. Compared with FY-3D/VASS L2
6.2. Compared with Aqua/AIRS L2
7. Discussion
8. Conclusions
- Compared with NNs-220 built only by HIRAS data, the improved NNs-250 built by IR and MW measurements has a significant improvement in the inversion accuracy of atmospheric temperature at the bottom of the troposphere. The improvement of inversion accuracy is better in the cold season on land. Compared with ERA5 on land, the temperature RMSE of NNs-250 can be reduced by up to 0.45 K and 0.3 K in the cold and warm seasons, respectively. Compared with RAOBs on land, the temperature RMSE of NNs-250 can be reduced by up to 0.5 K in the cold season. The RH inversion accuracy has also been improved overall, but the improved accuracy is not as high as the temperature.
- Compared with the accuracy of FY-3D/VASS L2 products in the cold season, the RMSE of temperature in troposphere on the land and the ocean increased by 2.97 K and 1.02 K, respectively, and the RH increased by 25.58% and 17.69%. Compared with AIRS L2 products, the temperature on land and ocean in troposphere increased by 0.24 K and 0.3 K, respectively, and the relative humidity below 50 hPa increased by 2.8% and 4.2%, respectively.
- By comparing the influence of cloud coverage on the retrieval accuracy of NNs-250 with NNs-220, it is found that with the increase in cloud coverage, the retrieval accuracy of NNs-220 and NNs-250 both decrease, but NNs-220 decreases more significantly, which means that the sensitivity of the NNs-250 proposed in this study to cloud cover is weaker than that of NNs-220 and has better and more stable retrieval performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kay, J.E.; Ecuyer, T.L.; Chepfer, H.; Loeb, N.; Morrison, A.; Cesana, G. Recent Advances in Arctic Cloud and Climate Research. Curr. Clim. Chang. Rep. 2016, 2, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, F.; Sang, H.; Cressie, N. Inferring Changes in Arctic Sea Ice through a Spatio-Temporal Logistic Autoregression Fitted to Remote-Sensing Data. Remote Sens. 2022, 14, 5995. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, S.; Li, J.; Geng, T.; Xuan, Y.; Li, F. Arctic sea ice thickness variations from CryoSat-2 satelliate altimetry data. Sci. China Earth Sci. 2021, 64, 1080–1089. [Google Scholar]
- Hoffman, J.P.; Ackerman, S.A.; Liu, Y.; Key, J.R. A 20-Year Climatology of Sea Ice Leads Detected in Infrared Satellite Imagery Using a Convolutional Neural Network. Remote Sens. 2022, 14, 5763. [Google Scholar] [CrossRef]
- Mengis, N.; Martin, T.; Keller, D.P.; Oschlies, A. Assessing climate impacts and risks of ocean albedo modification in the Arctic. J. Geophys. Res. Ocean. 2016, 121, 3044–3057. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Chen, H. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms. Chin. J. Ship Res. 2017, 12, 45–53. [Google Scholar]
- Battisti, L.; Brighenti, A. Sea ice and icing risk for offshore wind turbines. In Proceedings of the OWEMES, Civitavecchia, Italy, 20–22 April 2006. [Google Scholar]
- Wang, Y.; Zhang, R.; Wang, Z.; Zhu, Y. Integrated Assessment Model of Arctic Routes with Climate Change. Ocean. Dev. Manag. 2017, 34, 118–124. [Google Scholar]
- Jiang, S.; Yang, Q.H.; Liang, Y.Q.; Teng, J.H.; Lin, Z. Sea Ice And Weather Forecasting Information for Arctic Sea Routes: A Synthetic Analysis. Chin. J. Polar Res. 2017, 29, 399–413. [Google Scholar]
- Liu, D.; Ma, Y.; Wang, C.; Xing, W.; Meng, X. Developments of Arctic Passage Resources Under Global Climate Change. China Popul. Resour. Environ. 2015, 25, 6–9. [Google Scholar]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos. Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Yao, Z.-G.; Hong, J.; Cui, X.-D.; Zhao, Z.-L. A Neural Network Based Single Footprint Temperature Retrieval for Atmospheric Infrared Sounder Measurements and Its Application to Study on Stratospheric Gravity Wave. J. Trop. Meteorol. 2022, 28, 82–94. [Google Scholar]
- Zhang, C.; Gu, M.; Hu, Y.; Huang, P.; Yang, T.; Huang, S. A Study on the Retrieval of Temperature and Humidity Profiles Based on FY-3D/HIRAS Infrared Hyperspectral Data. Remote Sens. 2021, 13, 2157. [Google Scholar] [CrossRef]
- Aires, F.; Pellet, V. Estimating Retrieval Errors From Neural Network Inversion Schemes—Application to the Retrieval of Temperature Profiles From IASI. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6386–6396. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z. Application of the Deep Neural Network in Retrieving the Microwave Humidity and Temperature Sounder Onboard the Feng-Yun-3 Satellite. Sensors 2021, 21, 4673. [Google Scholar] [CrossRef]
- Feng, J.; Qin, X.; Wu, C.; Zhang, P.; Yang, L.; Shen, X. Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A’s Geostationary Interferometric Infrared Sounder (GIIRS). Atmos. Res. 2022, 280, 106391. [Google Scholar] [CrossRef]
- Xue, Q.; Guan, L.; Shi, X. One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS. Adv. Atmos. Sci. 2022, 39, 471–486. [Google Scholar] [CrossRef]
- König, N.; Wetzel, G.; Höpfner, M.; Friedl-vallon, F.; Johansson, S.; Kleinert, A.; Schneider, M.; Ertl, B.; Ungermann, J. Retrieval of Water Vapour Profiles from GLORIA Nadir Observations. Remote Sens. 2021, 13, 3675. [Google Scholar] [CrossRef]
- Giri, R.K.; Yadav, R.; Ranalkar, M.; Singh, V. Validation of INSAT-3DR sounder retrieved temperature frofile with GPS radiosonde and AIRS observations. Adv. Space Res. 2022, 69, 1100–1115. [Google Scholar] [CrossRef]
- Hu, J.; Bao, Y.; Liu, J.; Liu, H.; Petropoulos, G.P.; Katsafados, P.; Zhu, L.; Cai, X. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region. Remote Sens. 2021, 13, 1884. [Google Scholar] [CrossRef]
- Chen, Y. Research on Cloud Detection Method under Arctic Ice Environment Based on FY-3D MERSI-II. Geospat. Inf. 2020, 18, 10–15. [Google Scholar]
- Qu, J.; Yang, J.; Wang, Y. Global Clear-Sky Data Synthesis Technology Based on FY-3D MERSI-II Instrument. Meteorol. Sci. Technol. 2019, 47, 539–545. [Google Scholar]
- Eastman, R.; Warren, S.G. Interannual variations of arctic cloud types in relation to sea ice. J. Clim. 2010, 23, 4216–4232. [Google Scholar] [CrossRef]
- Wang, X.; Huang, F.; Wang, H. Seesaw Pattern of Arctic Cloud Cover Trend in Spring and Its Cloud Feedback Effect for Arctic Amplification. Period. Ocean Unive. China 2020, 50, 10–17. [Google Scholar]
- Hu, H.; Weng, F. Progress in Satellite Microwave Remote Sensing of Atmospheric Temperature and Moisture Profiles and Their Applications. Adv. Met S&T 2021, 11, 40–47. [Google Scholar]
- Milstein, A.B.; Blackwell, W.J. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. J. Geophys. Res. Atmos. 2015, 121, 1414–1430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, S.; Wang, Z.; Jiang, J.; Li, J. Technology Development of Atmospheric Humidity Sounding of FY-3 Satellite. Shanghai Aerosp. 2017, 34, 52–61. [Google Scholar] [CrossRef]
- Hou, X.; Han, Y.; Hu, X.; Weng, F. Verification of Fengyun-3D MWTS and MWHS Calibration Accuracy Using GPS Radio Occultation Data. J. Meteorol. Res. 2019, 33, 695–704. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Wu, C.; Qi, C.; Hu, X.; Gu, M.; Yang, T.; Xu, H.; Lee, L.; Yang, Z.; Zhang, P. FY-3D HIRAS Radiometric Calibration and Accuracy Assessment. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3965–3976. [Google Scholar] [CrossRef]
- Wang, X.; Zou, X. Quality Assessments of Chinese FengYun-3B Microwave Temperature. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4875–4884. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Dong, P.; Weng, F.; Huang, W. Impact of Assimilating FY-3D MWTS-2 Upper Air Sounding Data on Forecasting Typhoon Lekima (2019). Remote Sens. 2021, 13, 1841. [Google Scholar] [CrossRef]
- Lin, K.; Xiao, S.; Zhou, A.; Liu, H. Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel. Renew. Energy 2020, 159, 1199–1214. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Hu, H.; Dong, P. Retrieval of Oceanic Total Precipitable Water Vapor and Cloud Liquid Water from Fengyun-3D Microwave Sounding Instruments. J. Meteorol. Res. 2021, 35, 371–383. [Google Scholar] [CrossRef]
- Space, N. Assimilation of FY-3D MWHS-2 Radiances with WRF Hybrid-3DVAR System for the Forecast of Heavy Rainfall Evolution Associated with Typhoon Ampil. Mon. Weather. Rev. 2021, 149, 1419–1437. [Google Scholar] [CrossRef]
- Vessey, A.F.; Hodges, K.I.; Shaffrey, L.C.; Day, J.J. An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Clim. Dyn. 2020, 54, 2777–2795. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.; Knudsen, B.M.; Pommereau, J.; Letrenne, G.; Hertzog, A. Evaluation of ECMWF ERA-40 temperature and wind in the lower tropical stratosphere since 1988 from past long-duration balloon measurements. Atmos. Chem. Phys. 2007, 7, 3423–3450. [Google Scholar] [CrossRef] [Green Version]
- Reanalyses, N. Surface Heat Fluxes over the Northern Arabian Gulf and the Northern Red Sea: Evaluation of ECMWF-ERA5 and NASA-MERRA2 reanalyses. Atmosphere 2019, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tremblay, D.; Zhang, B.; Han, Y. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with Cross-track Infrared Sounder. Remote Sens. 2016, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L. A method and its retrieval application for collocating the FY-3 microwave and VIS/IR data. Sci. China Press 2016, 61, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M. Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys. 2007, 45, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Hecht-nielsen, R. Theory of the Backpropagation Neural Network. In Proceedings of the International 1989 Joint Conference on Neural Networks, Washington, DC, USA, 1989; pp. 593–605. [Google Scholar]
- Cai, X.; Bao, Y.; Petropoulos, G.P.; Lu, F.; Lu, Q.; Zhu, L.; Wu, Y. Temperature and humidity profile retrieval from FY4-GIIRS hyperspectral data using artificial neural networks. Remote Sens. 2020, 12, 1872. [Google Scholar] [CrossRef]
- Bao, Y.; Cai, X.; Qian, C.; Min, J.; Lu, Q.; Zuo, Q. 0–10 km temperature and humidity profiles retrieval from ground-based microwave radiometer. J. Trop. Meteorol. 2018, 24, 223–252. [Google Scholar]
- Sai Gowtam, V.; Tulasi Ram, S. An Artificial Neural Network-Based Ionospheric Model to Predict NmF2 and hmF2 Using Long-Term Data Set of FORMOSAT-3/COSMIC Radio Occultation Observations: Preliminary Results. J. Geophys. Res. Space Phys. 2017, 122, 11743–11755. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, J.; Li, X.; Zhou, L.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. Using artificial neural network ensembles with crogging resampling technique to retrieve sea surface temperature from HY-2A scanning microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 985–1000. [Google Scholar] [CrossRef]
- Jiao, B.; Ye, M. Determination of Hidden Unit Number in a BP Neural Network. J. Shanghai Dianji Univ. 2013, 16, 113–117. [Google Scholar]
- Cheng, G.; Gao, Z.; Zheng, Y.; Dai, C.; Zhou, M. A Study on Low-level Jets and Temperature Inversion over the Arctic Ocean by using SHEBA Data. Clim. Environ. Res. 2013, 18, 23–31. (In Chinese) [Google Scholar] [CrossRef]
- Kahl, J.; Schnell, R. Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data. J. Clim. 1992, 5, 615–629. [Google Scholar]
- Keernik, H.; Jakobson, E. Evaluating reanalyses performance in the Baltic Sea region by using assimilated radiosonde data. Int. J. Climatol. 2018, 38, 1820–1832. [Google Scholar] [CrossRef]
NNs | Building Data | Testing Data |
---|---|---|
Warm land | 17,696 | 4777 |
Warm ocean | 18,490 | 9255 |
Cold land | 12,653 | 3181 |
Cold ocean | 17,673 | 4424 |
Season | T Number | RH Number |
---|---|---|
Warm season | 1511 | 1510 |
Cold season | 422 | 426 |
Level | P | Level | P | Level | P | Level | P | Level | P | Level | P |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 985.88 | 8 | 702.73 | 15 | 396.81 | 22 | 167.95 | 29 | 45.29 | 36 | 5.00 |
2 | 957.44 | 9 | 656.43 | 16 | 358.28 | 23 | 143.84 | 30 | 35.51 | 37 | 4.20 |
3 | 922.46 | 10 | 610.60 | 17 | 321.50 | 24 | 122.04 | 31 | 27.26 | 38 | 3.50 |
4 | 882.80 | 11 | 565.54 | 18 | 286.60 | 25 | 102.05 | 32 | 20.40 | 39 | 2.70 |
5 | 839.95 | 12 | 521.46 | 19 | 253.71 | 26 | 85.18 | 33 | 14.81 | 40 | 2.20 |
6 | 795.09 | 13 | 478.54 | 20 | 222.94 | 27 | 69.97 | 34 | 10.37 | 41 | 1.60 |
7 | 749.12 | 14 | 436.95 | 21 | 194.36 | 28 | 56.73 | 35 | 6.95 | 42 | 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wu, J.; Petropoulos, G.P.; Bao, Y.; Liu, J.; Lu, Q.; Wang, F.; Zhang, H.; Liu, H. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks. Remote Sens. 2023, 15, 1648. https://doi.org/10.3390/rs15061648
Hu J, Wu J, Petropoulos GP, Bao Y, Liu J, Lu Q, Wang F, Zhang H, Liu H. Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks. Remote Sensing. 2023; 15(6):1648. https://doi.org/10.3390/rs15061648
Chicago/Turabian StyleHu, Jingjing, Jie Wu, George P. Petropoulos, Yansong Bao, Jian Liu, Qifeng Lu, Fu Wang, Heng Zhang, and Hui Liu. 2023. "Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks" Remote Sensing 15, no. 6: 1648. https://doi.org/10.3390/rs15061648
APA StyleHu, J., Wu, J., Petropoulos, G. P., Bao, Y., Liu, J., Lu, Q., Wang, F., Zhang, H., & Liu, H. (2023). Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/VASS in the Arctic Region Using Neural Networks. Remote Sensing, 15(6), 1648. https://doi.org/10.3390/rs15061648