Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo
Abstract
:1. Introduction
2. Methods
2.1. Ionosphere-Free PPP Observation Model
- and represent the observed minus calculated values of ionosphere-free code and carrier-phase observables, respectively;
- the superscript corresponds to G, C, or E, which indicate the satellite systems GPS, BDS-3, or Galileo;
- stands for the geometric distance between the receiver and the satellite; is the speed of light; and denote the receiver clock offset and satellite clock offset, respectively;
- is the tropospheric delay;
- and are the uncalibrated code hardware delays (UCDs) by the receiver and satellite, respectively;
- and represent the total of code and carrier-phase observation measurement noise and multi-path errors, respectively;
- is the carrier-phase ambiguity, which consists of the ionosphere-free combined receiver and satellite UCDs ( and ), the receiver and satellite uncalibrated phase hardware delays (UPDs) ( and ), the ionosphere-free wavelength (), and the ionosphere-free combined integer-phase ambiguity ().
2.2. Data Sets and Processing Strategies
2.3. Availability Analysis of GNSS Constellations
3. Results
3.1. Positioning Performance of the Single Systems
3.2. Geographical Distribution of the Single Systems
3.3. Positioning Performance of the Dual Systems
3.4. Positioning Performance of the Single System with Different Types of Precise Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Kouba, J.; Héroux, P. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Geng, J.; Bock, Y.; Melgar, D.; Crowell, B.W.; Haase, J.S. A New Seismogeodetic Approach Applied to GPS and Accelerometer Observations of the 2012 Brawley Seismic Swarm: Implications for Earthquake Early Warning. Geochem. Geophys. Geosyst. 2013, 14, 2124–2142. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Li, M.; Qu, L.; Hu, Z.; Shi, C.; Liu, J. Initial Results of Precise Orbit and Clock Determination for COMPASS Navigation Satellite System. J. Geod. 2013, 87, 475–486. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea Ice Remote Sensing Using GNSS-R: A Review. Remote Sens. 2019, 11, 2565. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Li, X.; Liu, M.; Ding, X. Application of carrier phase smoothing pseudorange in city location. J. Nav. Posit. 2021, 9, 130–134. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Xi, C.; Yang, L.; Gao, S. Accuracy analysis of BDS in railway engineering survey. J. Nav. Posit. 2022, 10, 138–144. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Kouba, J.; Street, B. A Guide to Using International Gnss Service (Igs) Products; Geodetic Survey Division, Natural Resources Canada: Ottawa, ON, Canada, 2015; p. 34. [Google Scholar]
- Tegedor, J.; Ovstedal, O.; Vigen, E. Precise Orbit Determination and Point Positioning Using GPS, Glonass, Galileo and BeiDou. J. Geod. Sci. 2014, 4, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, Prospects and Challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s New Solar Radiation Pressure Model for GNSS Orbit Determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, H.; Gao, Y.; Yao, Y.; Xu, C. Evaluation and Analysis of Real-Time Precise Orbits and Clocks Products from Different IGS Analysis Centers. Adv. Space Res. 2018, 61, 2942–2954. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S.; Perosanz, F.; Prange, L.; Dach, R.; Uhlemann, M.; Gendt, G.; Montenbruck, O. Galileo Orbit and Clock Quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. The Contribution of Multi-GNSS Experiment (MGEX) to Precise Point Positioning. Adv. Space Res. 2017, 59, 2714–2725. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, R.; Gao, Y.; Liu, N.; Zhang, R. Evaluation of Carrier-Phase Precise Time and Frequency Transfer Using Different Analysis Centre Products for GNSSs. Meas. Sci. Technol. 2019, 30, 5003. [Google Scholar] [CrossRef]
- Zhou, F.; Cao, X.; Ge, Y.; Li, W. Assessment of the Positioning Performance and Tropospheric Delay Retrieval with Precise Point Positioning Using Products from Different Analysis Centers. GPS Solut. 2020, 24, 12. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, G.; Chang, G.; Xu, T.; Yang, L. Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers. Remote Sens. 2021, 13, 3266. [Google Scholar] [CrossRef]
- Cai, C.; Gao, Y. Precise Point Positioning Using Combined GPS and GLONASS Observations. J. Glob. Position. Syst. 2007, 6, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Gao, Y. Modeling and Assessment of Combined GPS/GLONASS Precise Point Positioning. GPS Solut. 2013, 17, 223–236. [Google Scholar] [CrossRef]
- Shi, C.; Yi, W.; Song, W.; Lou, Y.; Yao, Y.; Zhang, R. GLONASS Pseudorange Inter-Channel Biases and Their Effects on Combined GPS/GLONASS Precise Point Positioning. GPS Solut. 2013, 17, 439–451. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, P.; Zhang, Y.; Wu, B. GPS/GLONASS System Bias Estimation and Application in GPS/GLONASS Combined Positioning. In China Satellite Navigation Conference (CSNC) 2013 Proceedings; Sun, J., Jiao, W., Wu, H., Shi, C., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 244, pp. 323–333. ISBN 978-3-642-37403-6. [Google Scholar]
- Li, W.; Teunissen, P.; Zhang, B.; Verhagen, S. Precise Point Positioning Using GPS and Compass Observations. In China Satellite Navigation Conference (CSNC) 2013 Proceedings; Sun, J., Jiao, W., Wu, H., Shi, C., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 244, pp. 367–378. ISBN 978-3-642-37403-6. [Google Scholar]
- Li, M.; Qu, L.; Zhao, Q.; Guo, J.; Su, X.; Li, X. Precise Point Positioning with the BeiDou Navigation Satellite System. Sensors 2014, 14, 927–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.; Zhao, Q.; Li, M.; Guo, J.; Su, X.; Liu, J. Precise Point Positioning Using Combined Beidou and GPS Observations. In China Satellite Navigation Conference (CSNC) 2013 Proceedings; Sun, J., Jiao, W., Wu, H., Shi, C., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 245, pp. 241–252. ISBN 978-3-642-37406-7. [Google Scholar]
- Li, Z.; Chen, W.; Ruan, R.; Liu, X. Evaluation of PPP-RTK Based on BDS-3/BDS-2/GPS Observations: A Case Study in Europe. GPS Solut. 2020, 24, 38. [Google Scholar] [CrossRef]
- Jin, S.; Su, K. PPP Models and Performances from Single- to Quad-Frequency BDS Observations. Satell Navig 2020, 1, 16. [Google Scholar] [CrossRef]
- Odijk, D.; Teunissen, P.J.G. Characterization of Between-Receiver GPS-Galileo Inter-System Biases and Their Effect on Mixed Ambiguity Resolution. GPS Solut. 2013, 17, 521–533. [Google Scholar] [CrossRef]
- Rabbou, M.A.; El-Rabbany, A. Performance Analysis of GPS/GALILEO PPP Model for Static and Kinematic Applications. Geomatica 2015, 69, 75–81. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Montenbruck, O.; Hauschild, A. Precise Orbit Determination of GIOVE-B Based on the CONGO Network. J. Geod. 2011, 85, 357–365. [Google Scholar] [CrossRef]
- Paziewski, J.; Wielgosz, P. Assessment of GPS + Galileo and Multi-Frequency Galileo Single-Epoch Precise Positioning with Network Corrections. GPS Solut. 2014, 18, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pan, L. Precise Point Positioning with Almost Fully Deployed BDS-3, BDS-2, GPS, GLONASS, Galileo and QZSS Using Precise Products from Different Analysis Centers. Remote Sens. 2021, 13, 3905. [Google Scholar] [CrossRef]
- Bu, J.; Yu, K.; Qian, N.; Zuo, X.; Chang, J. Performance Assessment of Positioning Based on Multi-Frequency Multi-GNSS Observations: Signal Quality, PPP and Baseline Solution. IEEE Access 2021, 9, 5845–5861. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Liu, C.; Zhu, S.; Liu, Z.; Yue, D. Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/RNSS: GPS, GLONASS, BDS, Galileo and QZSS. J. Navig. 2021, 74, 247–267. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, Y.; Zhang, B.; Wang, N.; Tan, B.; Chen, Y. Multi-GNSS Precise Point Positioning (MGPPP) Using Raw Observations. J. Geod. 2017, 91, 253–268. [Google Scholar] [CrossRef]
- Karimi, H. An Analysis of Satellite Visibility and Single Point Positioning with GPS, GLONASS, Galileo, and BeiDou-2/3. Appl. Geomat. 2021, 13, 781–791. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Jiao, G. Assessment of Multi-Frequency Global Navigation Satellite System Precise Point Positioning Models Using GPS, BeiDou, GLONASS, Galileo and QZSS. Meas. Sci. Technol. 2020, 31, 064008. [Google Scholar] [CrossRef]
- GitHub—Zhouforme0318/GAMPII-GOOD. Available online: https://github.com/zhouforme0318/GAMPII-GOOD (accessed on 31 December 2022).
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An Open-Source Software of Multi-GNSS Precise Point Positioning Using Undifferenced and Uncombined Observations. GPS Solut. 2018, 22, 33. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X. Integrating GPS and GLONASS to Accelerate Convergence and Initialization Times of Precise Point Positioning. GPS Solut. 2014, 18, 461–471. [Google Scholar] [CrossRef]
- Lou, Y.; Zheng, F.; Gu, S.; Wang, C.; Guo, H.; Feng, Y. Multi-GNSS Precise Point Positioning with Raw Single-Frequency and Dual-Frequency Measurement Models. GPS Solut. 2016, 20, 849–862. [Google Scholar] [CrossRef]
Process Options | Strategy |
---|---|
Cutoff elevation angle | 7° |
Sampling rate | 30 s |
PCV and PCO | Corrected with IGS14 atx file |
Satellite orbit | Fixed with GFZ MGEX final products |
Satellite clock | Fixed with GFZ MGEX final products |
Estimator | Kalman filter |
Phase ambiguity | Estimated as float constants |
Ionospheric delay | First-order effects removed with IF combination |
Tropospheric delay | Mapping function: GMF, Dry part: corrected using Saastamoinen model |
Tides correction | Solid earth tide, pole tide, ocean tide loading |
Latitude | High_N | Med_N | Low_N | Low_S | Med_S | High_S |
---|---|---|---|---|---|---|
Num. | 12 | 49 | 24 | 31 | 22 | 5 |
GPS_H | 9.15 | 10.23 | 17.52 | 13.74 | 14.26 | 9.56 |
Galileo_H | 14.74 | 17.52 | 23.94 | 21.04 | 20.13 | 12.01 |
BDS_H | 15.37 | 23.55 | 23.74 | 20.73 | 23.64 | 16.80 |
GPS_V | 7.98 | 11.70 | 16.48 | 11.70 | 11.15 | 9.70 |
Galileo_V | 12.21 | 17.91 | 22.84 | 22.62 | 18.35 | 12.90 |
BDS_V | 12.77 | 16.03 | 23.84 | 18.44 | 18.44 | 10.30 |
Latitude | High_N | Med_N | Low_N | Low_S | Med_S | High_S |
---|---|---|---|---|---|---|
GPS_H | 19.45 | 24.06 | 32.14 | 21.90 | 28.00 | 21.32 |
Galileo_H | 28.38 | 29.13 | 41.68 | 39.67 | 32.43 | 23.07 |
BDS_H | 30.66 | 54.11 | 35.29 | 40.81 | 43.67 | 31.09 |
GPS_V | 13.52 | 20.03 | 26.23 | 15.81 | 21.31 | 16.20 |
Galileo_V | 22.81 | 39.39 | 50.19 | 49.99 | 49.34 | 24.80 |
BDS_V | 26.15 | 37.99 | 37.58 | 35.01 | 39.69 | 25.40 |
Latitude | High_N | Med_N | Low_N | Low_S | Med_S | High_S |
---|---|---|---|---|---|---|
GPS_H | 0.38 | 0.35 | 0.48 | 0.49 | 0.59 | 0.43 |
Galileo_H | 0.65 | 0.62 | 0.56 | 0.58 | 0.65 | 0.71 |
BDS_H | 0.96 | 0.90 | 1.06 | 0.94 | 1.01 | 0.97 |
GPS_V | 0.76 | 0.98 | 1.22 | 1.28 | 0.89 | 0.61 |
Galileo_V | 0.93 | 1.12 | 1.17 | 1.46 | 1.12 | 0.96 |
BDS_V | 2.21 | 1.55 | 1.90 | 1.79 | 1.55 | 1.60 |
Latitude | High_N | Med_N | Low_N | Low_S | Med_S | High_S |
---|---|---|---|---|---|---|
GPS_H | 2.06 | 2.36 | 3.16 | 2.29 | 2.42 | 2.90 |
Galileo_H | 3.32 | 6.18 | 6.49 | 4.72 | 5.76 | 4.23 |
BDS_H | 4.21 | 6.26 | 5.18 | 4.90 | 5.48 | 4.26 |
GPS_V | 3.54 | 3.53 | 5.10 | 4.27 | 3.95 | 4.29 |
Galileo_V | 4.63 | 8.49 | 12.70 | 7.97 | 7.99 | 5.84 |
BDS_V | 6.91 | 7.50 | 9.60 | 8.13 | 8.14 | 7.06 |
Institutions | Prefix | Supported Systems | Orbit/Clock |
---|---|---|---|
CODE | cod | GRECJ | 5 min/30 s |
GFZ | gfz | GREC | 5 min/30 s |
GRGS | grg | GRE | 5 min/30 s |
IAC | iac | GREC | 5 min/30 s |
WHU | whu | GRECJ | 15 min/30 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Zhou, F. Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo. Remote Sens. 2023, 15, 807. https://doi.org/10.3390/rs15030807
Hou Z, Zhou F. Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo. Remote Sensing. 2023; 15(3):807. https://doi.org/10.3390/rs15030807
Chicago/Turabian StyleHou, Zunyao, and Feng Zhou. 2023. "Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo" Remote Sensing 15, no. 3: 807. https://doi.org/10.3390/rs15030807
APA StyleHou, Z., & Zhou, F. (2023). Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo. Remote Sensing, 15(3), 807. https://doi.org/10.3390/rs15030807