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Abstract: Knowledge of sea ice is critical for offshore oil and gas exploration, global shipping
industries, and climate change studies. During recent decades, Global Navigation Satellite
System-Reflectometry (GNSS-R) has evolved as an efficient tool for sea ice remote sensing.
In particular, thanks to the availability of the TechDemoSat-1 (TDS-1) data over high-latitude regions,
remote sensing of sea ice based on spaceborne GNSS-R has been rapidly growing. The goal of this
paper is to provide a review of the state-of-the-art methods for sea ice remote sensing offered by the
GNSS-R technique. In this review, the fundamentals of these applications are described, and their
performances are evaluated. Specifically, recent progress in sea ice sensing using TDS-1 data is
highlighted including sea ice detection, sea ice concentration estimation, sea ice type classification,
sea ice thickness retrieval, and sea ice altimetry. In addition, studies of sea ice sensing using airborne
and ground-based data are also noted. Lastly, applications based on various platforms along with
remaining challenges are summarized and possible future trends are explored. In this review,
concepts, research methods, and experimental techniques of GNSS-R-based sea ice sensing are
delivered, and this can benefit the scientific community by providing insights into this topic to further
advance this field or transfer the relevant knowledge and practice to other studies.

Keywords: Global Navigation Satellite System-Reflectometry (GNSS-R); sea ice remote sensing;
TechDemoSat-1 (TDS-1)

1. Introduction

A strong decline of Arctic sea ice has been reported during the last decades [1–3], and this
phenomenon coincides with global warming [4]. Sea ice plays an important role in maintaining high
surface albedo, limiting air-sea interaction [5], and modulating the distribution of freshwater and
seawater [6]. Furthermore, sea ice conditions have a direct impact on managing and securing human
activities, such as offshore oil and gas development and the global shipping industries [7]. Due to its
significant influence on the global climate and human activities, knowledge of sea ice information is
critical. However, in situ sea ice measurement is cumbersome and limited in spatial coverage. As an
alternative, remote sensing techniques present a more efficient and cost effective method for acquiring
sea ice data.

Large-scale sea ice remote sensing data from satellites have been used intensively [8]. Sea ice
conditions, such as the extent, drift, growth stage, concentration, and thickness can be estimated from
data acquired by passive microwave sensors [9–13], scatterometer [14,15], radar altimeter [3,16,17],
and synthetic aperture radar (SAR) [18–20]. However, passive microwave and scatterometer data are
generally characterized by coarse resolutions (typically 25–50 km). On the other hand, SAR and radar
altimeter are able to provide finer resolutions, but their demands in terms of instruments (high power
requirements and complex circuit designs) result in high costs. In addition, interpretations of SAR
images are typically time-consuming and subjective [20] and the use of empirical retracking has no
physical model for altimeter [21].
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Since Hall and Cordey proposed the concept of Global Navigation Satellite System-Reflectometry
(GNSS-R) in [22], it has been successfully applied to various remote sensing tasks. Currently, GNSS-R
is largely utilized to monitor winds and surface roughness over the ocean [23–30]. In addition,
observation of cryosphere and land is also being developed. Applications include snow depth
estimation [31–36] and soil moisture and vegetation sensing [37–40], respectively. GNSS-R works in
a bistatic configuration, in which the transmitter (Tx) and the receiver (Rx) are at different locations.
Theoretically, a Tx can be any GNSS satellite such as the Global Positioning System (GPS), GLONASS,
Galileo, and Beidou/COMPASS [41–43]. After the transmitted signals are reflected by the Earth’s
surface, e.g., ocean, land, and ice (thus carrying information about the surface conditions), they will
be captured by one or more GNSS-R Rxs. At present, the most used signals are from GPS Txs,
which are of L-band wavelength (19 cm). In addition, a GNSS-R Rx is capable of collecting data
from several different tracks simultaneously. Furthermore, as a passive instrument, a GNSS-R Rx is
typically low-cost, low-mass, and low-power, which allows easy and flexible deployment. According
to the platform of Rxs, GNSS-R can be divided into three categories, i.e., spaceborne, airborne,
and ground-based. The first type mainly aims at large-scale or global monitoring while the latter two
are usually for regional and local observations. Therefore, with multiple GNSS-R Rxs deployed on
various platforms, a temporally and spatially intensive coverage at both global and regional scales can
be achieved. Take Cyclone GNSS (CYGNSS) system as an illustration: the achieved average revisit time
is 4 h [44] and the spatial resolution can be about 10 km for cases of incoherent scattering and about
500 m for coherent cases [45]. Therefore, the spatial resolution of spaceborne GNSS-R is comparable
or better than that of radar altimeters (with a nominal circular footprint of 2–10 km in diameter for
Envisat or an along-track footprint of 1.65 km × 0.30 km for CryoSat-2 [17]). In addition, the distance
between successive CYGNSS measurements is about 6 km. Examples of studies that use different
platforms can be found in, e.g., [46–50] for spaceborne, [26,51–53] for airborne, and [32,54–57] for
ground-based applications, respectively.

Sea ice remote sensing using GNSS-R was first demonstrated by [58] with an airborne GPS
Rx. Since then, several ground-based and airborne experiments have been accomplished with
promising results [56,57,59–61]. The first spaceborne GNSS-R measurement was carried out during
the UK Disaster Monitoring Constellation (UK-DMC) mission in 2004 showing its capability of
sea ice remote sensing. With the launch of TechDemoSat-1 (TDS-1, another spaceborne platform
carrying a GNSS-R receiver) in 2014, the application of GNSS-R in sea ice sensing has been rapidly
developed by e.g., [62–70]. In this paper, the techniques of sea ice remote sensing using GNSS-R
are reviewed. The aim of this review is to provide a comprehensive comparison among different
techniques and investigate remaining challenges. Considering the richness of studies using different
platforms, specifically, the limited amount of available data and experiments performed by airborne
and ground-based platforms relative to spaceborne platforms, the focus of this paper is on the progress
in spaceborne applications. The remainder of this paper is organized as follows: Section 2 contains
a review of sea ice sensing applications based on the spaceborne instruments. Section 3 presents a
summary of airborne and ground-based experiments. Section 4 concludes with an overview of current
work and future prospects.

2. Spaceborne Applications

2.1. Preliminary Investigation in Sea Ice Sensing

The first acquisition of a GNSS-R signal from space was performed by the UK-DMC satellite,
and its application for sea ice sensing was demonstrated by [71–73]. Two sets of measurements were
acquired, one on 4 February 2005 off the coast of Alaska with a total of 7-s data, and the other on
23 June 2005 near Antarctica in the Southern Ocean with an additional 9-s of data. Referred to in situ
sea ice validation data, the first measurement was obtained from a region in which 90% of the area is
covered by first-year sea ice of 30 to 70 cm thick. For the second collection, the sea ice concentration
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(SIC) was between 70% and 90%. Compared to the acquired GNSS-R signals from 23 June, the data
collected on 4 February showed stronger peak and less spreading in the delay-Doppler map (DDM).
Their differences illustrated that the rough seawater surface could decrease the overall coherent
specular reflection and lead to a larger glistening zone, which corresponds to a DDM with more
spreading along delay and Doppler axes. A comparison of the DDMs from regions of varying SICs
is shown in Figure 1. Although the available GNSS-R data were limited, the analysis indicated
the viability of observing ice-covered regions using spaceborne GNSS-R. In addition, the varying
signal power and extent of spreading in delay and Doppler associated with different SIC values
demonstrated the potential of GNSS-R for SIC estimation. It was also mentioned in [72] that for a
coherent signal to be reflected off the ice surface, the carrier phase information can be recovered for
accurate altimetry measurement.
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Figure 1. TechDemoSat-1 (TDS-1) delay-Doppler maps (DDMs) collected over regions with varying
SICs: (a) 0%, (b) 50%, and (c) 92%, respectively. Each DDM has been normalized by its peak
power value.

Following the launch of TDS-1 in 2014, millions of GNSS-R DDM data have been available to
the public, and this offers an opportunity for researchers to advance the initial achievements made
by [72]. Some of the earliest experiments of TDS-1 DDM data for sea ice sensing include [62,65–69].
Existing studies mainly focus on sea ice detection, SIC estimation, ice type classification, sea ice
thickness (SIT) retrieval, and sea ice altimetry, which will be introduced in the following subsections.
Due to the large variety of methods for sea ice detection, this topic is treated in Sections 2.2–2.4,
which consider the observable-based, scattering coefficient retrieval-based, and machine leaning-based
methods, respectively.
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2.2. DDM Observable-Based Sea Ice Detection

The first application of TDS-1 data for sea ice detection was performed by [62,74] through
evaluating some parameters (also known as observables) extracted from DDMs. Around the same
time, ref. [65] also investigated sea ice detection application with different observables. The DDM
observables were initially proposed to describe the extent of spreading for DDMs, which is determined
by surface roughness [25–27].

In [62] five observables were used (listed as 1–5 below). Three different observables (as 6–8)
were employed by [65], two new ones (listed as 9 and 10) were proposed in [75], and another three
(denoted as 11–13) were adopted in [76]. These observables are described as follows:

1. Pixel Number (PN): the total number of normalized (with respect to the DDM maximum) DDM
pixels with power greater than the pre-set threshold (DDMthres).

2. Power Summation: the power summation I0 of normalized DDM pixels with power greater
than DDMthres.

3. Geometrical center (GC) Distance: the distance from the DDM geometrical center pixel [located at
(GCτ , GC f )] to (MAXτ , MAX f ), and is formulated as

d2 =
√
(MAXτ −GCτ)

2 + (MAX f −GC f )
2, (1)

where GCτ and GC f are the mean values of delay coordinates (τ) and Doppler coordinates ( f )
for the DDM pixels with power greater than DDMthres.

4. Center-of-mass (CM) Distance: the distance from the DDM center-of-mass pixel [whose
coordinate is (CMτ , CM f )] to the peak power pixel [with a coordinate of (MAXτ , MAX f )],
and is formulated as

d1 =
√
(MAXτ −CMτ)

2 + (MAX f −CM f )
2, (2)

where CMτ and CM f are defined as

CMτ = I−1
0 ∑ ∑

DDM(τ, f )>DDMthres

τ ·DDM(τ, f ), (3)

CM f = I−1
0 ∑ ∑

DDM(τ, f )>DDMthres

f ·DDM(τ, f ). (4)

5. CM Taxicab Distance: the taxicab distance from (CMτ , CM f ) to (MAXτ , MAX f ) is

d3 = |MAXτ −CMτ |+ |MAX f −CM f |. (5)

6. Delay-Doppler Map Average (DDMA): the average value of the normalized DDM around its peak.
7. Trailing Edge Slope (TES): the slope of Doppler integrated waveform (DIW, summation of all

delay waveforms at each Doppler bin) between its maximum and the value at, for example, 3 bins
after the peak.

8. Matched Filer (MF): the correlation coefficient between the obtained DIW and a Doppler cut of
the so-called Woodward ambiguity function (WAF).

9. DLR: the distance between two pixels with a value below the average of the waveform that are
immediately before and after the peak power point. These two points confine the boundary of
the “effective zone” of a waveform.

10. σDW : the standard deviation of effective zone.
11. Offset Centre of Gravity (OCOG): this parameter is based on a waveform, which is selected and

re-centered on the peak power point. OCOG is calculated as the difference between the CM point
and peak power point of a waveform.
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12. dx and dy: the difference between the peak power and the location on the waveform where the
power has decreased to 85% of its maximum.

13. Kurtosis: the kurtosis for the DDM of scattered power.

The difference between DDMs of seawater and sea ice lies in the distinct spreading extent,
and typically DDMs of sea water exhibit more spreading. The above-mentioned observables are able to
describe the spreading extent of a DDM. For observables 1–6, 9, and 11–13, a larger value corresponds
to more spreading. However, for observables 7, 8, and 10, a smaller value indicates more spreading.
As such, the sea ice detection can be realized by comparing the value of a DDM observable with its
corresponding threshold. For illustration, the flowchart for sea ice detection using these observables is
displayed in Figure 2.

Figure 2. A flowchart for sea ice detection using DDM observables.

As an extension of the work done by [62], ref. [70] derived a DDM observable, specifically Pixel
Number and Power Summation, based on the difference between two normalized DDMs acquired
consecutively. The evaluation of the obtained observable enables to determine the type of surface
transition. Take the observable PN as an example and suppose the threshold for distinguishing different
surface types as NT , and the threshold for discriminating the same surface types are PN’ and N′T ,
the surface type will be categorized as:

• Ice-water transition, if PN> NT ;
• Water-ice transition, if PN< −NT ;
• Ice-ice/Water-water transition, if |PN|< NT ; further classification will be made as:

– Ice-ice transition, if |PN’|< N′T ;
– Water-water transition, if |PN’|> N′T ;

In general, derivations of these observables are quite straightforward, whereas their design
requires close attention. For example, the value of DDMthres for deriving the PN observable needs to be
properly assigned by the researchers, because PN will either be severely affected by noise if the value
of DDMthres is too low or become insensitive to geophysical parameters when the value of DDMthres is
too high. A common practice for obtaining the optimal DDMthres is to test various values of DDMthres,
and the one resulting in the best accuracy of detection is selected. However, the Kurtosis observable
(no. 13) is free from this process since it is a statistical parameter derived from the data directly.
Nonetheless, it was found that the performance of these observables is quite similar [69,76]. Without the
loss of generality, the PN Observable is hereafter employed as a representative of observable-based
methods for later comparison in Section 2.6.
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2.3. σ0 Retrieval-Based Sea Ice Detection

The use of DDM observable is efficient for sea ice detection. However, the detailed spatial
distribution of sea ice is hard to interpret on the basis of such products. By retrieving scattering
coefficients (σ0) in the spatial domain from TDS-1 DDMs, ref. [66,77] offered a new perspective to
observe water/ice transitions, detect sea ice, and depict its distribution. The method in [66] is based
on the 2-D truncated singular value decomposition (TSVD), the method in [77] involves the spatial
integration approach (SIA) [78] and multi-scan technique.

DDMs depict the power of scattered GNSS signal and can be described using the
Zavorotny-Voronovich (ZV) model [79], which can be expressed as a 2-D convolution as in [80]:〈

|Y(τ, f )|2
〉
= χ2(τ, f ) ∗ Σ(τ, f ), (6)

where χ2(τ, f ) ∼= Λ2(τ)S2( f ) is the WAF, S is the sinc function and Λ is the triangle function [79], and

Σ(τ, f ) = T2
i

x

A

D2(
⇀
ρ )σ0(

⇀
ρ )δ(τ)δ( f )

4πR2
R(

⇀
ρ )R2

T(
⇀
ρ )

d2⇀ρ , (7)

where Ti is the coherent integration time,
⇀
ρ is the displacement vector of a surface point, D is the

antenna pattern. RT and RR are the distances from a point on the ocean surface to the GNSS-R
transmitter and receiver. A represents the glistening zone. For an effective calculation of the integral
in (7), a change of variables can be adopted [80]

Σ(τ, f ) = T2
i

D2(
⇀
ρ (τ, f ))σ0(

⇀
ρ (τ, f )) |J(τ, f )|

4πR2
R(

⇀
ρ (τ, f ))R2

T(
⇀
ρ (τ, f ))

, (8)

where J(·) is the Jacobian of the change of variables.
In the retrieval stage, Σ needs to be obtained first. The following two different methods can

be applied.

1. 2-D TSVD-based

The reconstruction of Σ from (6) is presented in the following form:

L(X) = B, (9)

where X denotes the discretized Σ and B is the associated DDM, i.e.,
〈
|Y(τ, f )|2

〉
. L(·) represents

the convolution operator. (9) can be expressed in matrix form by transferring B and X into
lexicographically ordered vectors b and x:

Ax = b (10)

where A is an n-by-n matrix and n is the length of b and x. (10) is solved using the regularization
methods, which minimizes the norm of the residual

min ‖Ax− b‖ , subject to x ∈ P. (11)

P represents the space in which the minimization proceeds. In [66,81], Hilbert spaces were
selected, and the 2-D TSVD approach was used. Based on the TSVD, a regularized solution of (10)
is derived using the singular-value decomposition. The noisiest singular values are discarded,
and only the first k singular values are reserved in the TSVD solution
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xk =
k

∑
l=1

uT
l b
ςl

vl (12)

where ςl represents the selected singular values of A; uT
l b and vl are the left and right singular

vectors, respectively. Once Σ is derived using the 2-D TSVD, σ0 can be obtained from (8). The ambiguity
problem is solved by visual inspection on consecutive DDMs acquired within the same track.

2. SIA-based

Unlike [66], Σ is deconvolved from a DDM using the Fourier transformation (F [·]):

F [Σ(τ, f )] =
F
[〈
|Y(τ, f )|2

〉]
F [χ2(τ, f )]

. (13)

By assuming a uniform σ0 within each spatial cluster, σ0 can be calculated using the SIA
with obtained Σ, through

σ0(
⇀
ρ ) =

Σ(τ, f )
T2

i

[
x

A

D2(
⇀
ρ )δ(τ)δ( f )

4πR2
R(

⇀
ρ )R2

T(
⇀
ρ )

d2⇀ρ

]−1

. (14)

The ambiguity problem exists when converting a DDM pixel into the spatial coordinate,
as one DDM pixel is associated with two different spatial clusters that are symmetrical to the
ambiguity-free line (see illustration in Figure 3). To resolve the ambiguity issue, the multi-scan
method is adopted, which uses two consecutive DDMs. Due to a short time gap (1 s) among
the TDS-1 DDM measurement, two adjacent DDMs share nearly (over 90%) the same glistening
zone by assuming its size is about 100 km and the surface scattering property almost remains
unchanged within 1 s. The multi-scan approach can be expressed by

Σ1(τ, f ) = T2
i σ0

A1(
⇀
ρ )

x

A1

D2
1(

⇀
ρ )δ(τ)δ( f )

4πR2
R1(

⇀
ρ )R2

T1(
⇀
ρ )

d2⇀ρ

+T2
i σ0

A2(
⇀
ρ )

x

A2

D2
1(

⇀
ρ )δ(τ)δ( f )

4πR2
R1(

⇀
ρ )R2

T1(
⇀
ρ )

d2⇀ρ

(15)

Σ2(τ, f ) = T2
i σ0

A1(
⇀
ρ )

x

A1

D2
2(

⇀
ρ )δ(τ)δ( f )

4πR2
R2(

⇀
ρ )2R2

T2(
⇀
ρ )

d2⇀ρ

+T2
i σ0

A2(
⇀
ρ )

x

A2

D2
2(

⇀
ρ )δ(τ)δ( f )

4πR2
R2(

⇀
ρ )R2

T2(
⇀
ρ )

d2⇀ρ ,

(16)

where subscripts A1 and A2 distinguish two separate regions that are symmetrical to the
ambiguity-free line, and subscripts 1 and 2 reflect the association with the 1st and the 2nd
DDMs that are acquired consecutively (see Figure 3 for the geometry configuration). The desired
σ0

A1 and σ0
A2 that add up to σ0 can be obtained by solving (15) and (16) simultaneously.

Both methods can produce qualitative confirmation of the presence of sea ice. However, the 2-D
TSVD-based approach relies on visual inspection for resolving the ambiguity issue, which means the
application of this method is relatively limited because it is potentially time-consuming and cannot
proceed automatically.

2.4. Machine Learning-Based Sea Ice Detection

Recently, machine learning has been widely accepted as a new solution to remote sensing image
processing because it is able to construct the relationship between the remote sensing data and desired
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parameters directly from the data. Furthermore, machine learning approaches have successfully
been applied to sea ice remote sensing using, e.g., SAR [19], altimeter [82], and passive microwave
data [83]. The general machine learning procedure consists of three steps: preprocessing of the input
(remote sensing data), training, and test. A corresponding flowchart is presented in Figure 4. Up to
now, the following three machine learning techniques for sea ice detection using TDS-1 data have
been exploited.

Glistening

zone 1

Glistening

zone 2

iso-Doppler

iso-Delay

A1
A2

ambiguity-free line

1 s

Instant 1

Instant 2

(0, 0) delay

Doppler shift

DD domain

Figure 3. Demonstration of ambiguity problem and its solution by the multi-scan method. The glistening
zones of two different DDM acquisition consecutively are shown in blue and orange, respectively.
A1 and A2 denote the separate regions that are symmetrical to the ambiguity-free line in red.

Pre-processed

Figure 4. Flowchart of general processes for machine learning-based sea ice sensing techniques.
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1. Neural Networks (NNs)

Before being input to the neural networks, each DDM is preprocessed with (1) noise floor
subtraction, (2) normalization, (3) signal box determination, and (4) data stretching. To mitigate
the noise effect, the noise floor is deducted for each DDM, which is determined as the average of a
signal-free box (containing the first four delay bins along all Doppler bins). It is worth mentioning
that an original TDS-1 DDM consists of 128 bins (with a resolution of 244 ns) in delay and 20 bins
in Doppler (with a resolution of 500 Hz). Next, each DDM is normalized with respect to its peak
power, which is determined by the local maxima in the DDM. After that, the signal box is selected
based on the local maxima, specifically, 4 rows before and 35 rows after the local maxima in delay
and all the Doppler bins. Then the 2-D signal box is transferred into a lexicographically ordered
vector, which has 800 elements and is the input of the NN.

In [69], an NN with 1 input layer (800 units, i.e., a(0)l , l ∈ [1, 800]), 1 hidden layer (3 units,

i.e., a(1)l , l ∈ [1, 3]), and 1 output layer (1 unit, i.e., a(2)1 that produces the detection results) was
devised. The corresponding diagram is displayed in Figure 5a. In general, the associations
between the layers can be summarized in the matrix form

a(k+1) = ϕ(k+1)
(

W(k+1)a(k) + c(k+1)
)

, k ∈ [0, 1], (17)

where ϕ(k+1)(·), a(k+1), c(k+1), and W(k+1) represent the activation function, input vector, the bias
vector, and the weight matrix, respectively. The activation functions in the hidden layer and the
output layers were chosen separately as the widely used sigmoid function ϕ(1)(x) = 1/(1 + e−x)

and the softmax function, respectively.

Input

layer

Hidden

layer

Output

layer

Output

…

(1)

(1)

(1)

1
(0)

2
(0)

3
(0)

800
(0)

1 1
(1)

2 1
(1)

3 1
(1)

(2)

(a)

…

Input DDM

A: 128*20

B: 40*20

Filters

7*7*5

Convolution layer Pooling layer

2*2

fully connected layer

Feature map

A: 122*14*5

B: 34*14*5

Subsampled

feature map
A: 61*7*5

B: 17*7*5

Pixels
A: 2135

B: 595

Output

P(water)

P(ice)

…

(b)

Figure 5. Diagram of (a) Neural Network (NN) and (b) Convolutional Neural Network (CNN).
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With the constructed NN, a training process begins to determine weights and bias, for which
the back-propagation (BP) learning [84] and the Levenberg-Marquardt algorithm [85] can be
employed. Detailed formulas can be found in [69]. After learning with a training set of DDM
data and its corresponding seawater/ice label data, the sea ice detection results can be generated
by inputting the processed DDMs to the trained NN.

2. Convolutional Neural Networks (CNNs)

Compared with NNs, CNNs deploy extra convolutional and pooling layers. The convolutional
layer directly interacts with the input 2-D DDM, which preserves the correlation between adjacent
DDM pixels. The employment of a pooling layer helps reduce the redundancy in data and makes
CNNs less sensitive to the misalignment of the signal box within a DDM frame. CNNs also require
less data preprocessing than NN, including noise floor subtraction, normalization, and (optional)
signal box determination. Ref. [63] designed a CNN architecture (see Figure 5b) that contains 1
convolution layer (which is made of 5 seven-by-seven filters) followed by 1 two-by-two pooling
layer and 2 fully connected layers (whose functionality is similar to the input and hidden layers
for NN). The use of a convolution layer can be described by

hk = ϕ
(

Hk ∗ a + b
)

(18)

where a, b, hk, and Hk are the input, the bias, the kth (k ∈ [1, 5]) convolved image and filter,
respectively. The convolution operation is denoted by ∗. For the output layer, the activation
function is the softmax function; and for the remaining layers, the widely adopted rectified linear
unit (ReLU) function is chosen, i.e.,

ϕ(z) = max(0, z). (19)

BP learning [84] and the stochastic gradient descendant with momentum (SGDM)
algorithm [86] are adopted for training.

3. Support Vector Machines (SVMs)

SVMs [87] are capable of operating classification tasks by finding a hyperplane that can best
distinguish (with the maximum margin) between different types and are able to provide better
accuracy than other pattern classification models [64,88]. In addition to noise floor subtraction
and normalization, another feature extraction process is undertaken as a preprocess in [64].
The mean value along the delay-axis at each Doppler bin is calculated, and processed by ReLU.
Such an array of 20 elements is then normalized by its maximum and consequently reserved as
the feature vector (noted as feature selection, FS).

The classifier can be formulated as

f (z) = sgn

(
∑

j
αjyjzTzj + b

)
, (20)

based on the training set {(z1, y1) , ..., (zn, yn)}, where n is the length of DDM training set, zj is
the jth input feature vector (j ∈ [1, n]), and yj ∈ {−1, 1} is the class labels (seawater/sea ice)
associated with corresponding DDMs. α = {α1, ..., αn} are Lagrange multipliers, which can be
solved through

max
α

(
∑

j
αj −

1
2 ∑

j
∑
k

αjαkyjykzj
Tzk

)
(21)

s.t.
0 ≤ αj ≤ C, and ∑

j
αjyj = 0. (22)
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and b can be derived as the mean value of the term (1/yi −∑
i

αiyizi
Tzi).

2.5. SIC Estimation Approaches

As pointed out by [72] and demonstrated in Figure 1, space-detected GNSS-R data collected over
regions of varying SIC manifest different extents in delay and Doppler. Thanks to the availability
of millions of TDS-1 DDM data, the task of SIC estimation has been fulfilled. Nowadays, all the
existing methods are machine learning-based techniques, including NNs [69], CNNs [63], and support
vector regression (SVR) [89]. The procedure for this regression application is similar to that for sea ice
detection described in Section 2.4, and the main difference lies in the fact that the target output is set as
the SIC values instead of surface type labels. In addition, the linear function ϕ(x) = x rather than the
softmax function is adopted as the activation function in the output layer for NNs and CNNs, and the
regression model is employed for SVR. Due to the similarity of the methods for SIC estimation and sea
ice detection, the implementation of these techniques will not be described here. More details can be
found in [63,69,89].

2.6. Performance Comparison and Evaluation

The machine learning-based methods for ice detection and concentration estimation were assessed
with data gathered during five collection periods (3–5, 11–13, and 19–21 February, 15–17 March and
16–18 April 2015 and they were labeled as RD 17, RD 18, RD 19, RD 23, and RD 27, respectively)
in [63,64,69,89]. The first period was employed as a training set while the latter four were adopted
as test sets. The daily reference SIC data were from the Nimbus-7 Scanning Multi-Channel
Microwave Radiometer and Defense Meteorological Satellite Program Special Sensor Microwave
Imager-Special Sensor Microwave Imager/Sounder passive microwave sensors [90] and were regarded
as ground-truth. In addition, the collocation between reference SIC products and the GNSS-R results
is on a same-day basis. For sea ice detection application, the output was labeled as “sea ice” if its
reference SIC was above 15%; otherwise it was identified as “seawater”.

The inputs to SVM/SVR and NN were different; in order to make an impartial performance
comparison between them and to validate the advantage of FS, further tests were made with the
NN-based method by using FS input (note that the CNN employs 2-D input, and therefore, it was
not examined). For comparing NN- and CNN-based methods, two different input schemes using the
cropped and original DDMs were tested as well. Accordingly, results of the NN-based with FS, full,
and cropped DDMs, the CNN-based with full and cropped inputs, and the SVM-based with FS were
evaluated and compared using the same dataset. These methods were utilized for both sea ice detection
and SIC estimation, while the observable-based approach was only evaluated for the application of
sea ice detection. The overall prediction of sea ice or seawater along with the ground truth are
presented in Figure 6. It is worth mentioning that each point in Figure 6 (also including the following
Figures 7 and 8) represents one co-located GNSS-R - reference sea ice data pair. High accuracy was
obtained for sea ice detection using these methods, and the results are tabulated in Table 1.

Table 1. Accuracy of Ice Detection.

ID Observable
Full-Size Input Cropped Input FS

CNN NN CNN NN NN SVM

RD 17 (training) 97.96% 99.15% 99.60% 99.03% 99.13% 98.95% 98.81%
RD 18 (test) 98.17% 98.12% 97.94% 98.94% 99.01% 98.63% 99.06%
RD 19 (test) 96.58% 97.97% 97.29% 98.77% 98.54% 98.21% 98.33%
RD 23 (test) 97.67% 96.42% 93.98% 98.41% 98.04% 97.00% 97.58%
RD 27 (test) 98.10% 97.04% 95.97% 98.43% 98.41% 97.78% 98.64%

Average 97.78% 97.83% 97.17% 98.73% 98.67% 98.18% 98.56%
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Figure 6. Outcomes of sea ice detection using TDS-1 data. Training and test sets are separated by a
solid line.

To assess the SIC estimation, taking NN-based SIC results (SICnn) as an example, SICnn is
compared with the same-day reference SIC data (SICre f ). The standard deviation error Estd and the
correlation coefficient r between SICnn and SICre f were employed for evaluation purposes and they
are defined as

Estd= std(SICnn − SICre f )

r=
cov(SICnn ,SICre f )

std(SICnn)std(SICre f )

. (23)

These error statistics for SIC estimation are shown in Table 2, from which low discrepancy between
estimated SIC and SICre f is noticed for these methods. Insignificant degradation in the test accuracy
relative to the training set suggests the generalizability of these methods. The predicted SIC results
along with the reference data are presented in Figure 7. For demonstration, the averaged SIC estimates
from the proposed NNs-, CNNs-, and SVMs-based methods are shown in a geographic frame as
Figure 8. In addition, the locations without DDM estimates are in white.
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Table 2. Error Statistics for sea ice concentration (SIC) Estimation Using Different Inputs.

ID

Full-Size Input Cropped Input FS

Estd r Estd r Estd r

CNN NN CNN NN CNN NN CNN NN NN SVR NN SVR

RD 17 (training) 0.15 0.11 0.95 0.97 0.15 0.11 0.95 0.97 0.13 0.12 0.96 0.97
RD 18 (test) 0.17 0.20 0.91 0.88 0.16 0.17 0.92 0.91 0.17 0.16 0.91 0.92
RD 19 (test) 0.15 0.17 0.93 0.92 0.15 0.16 0.94 0.93 0.16 0.15 0.93 0.94
RD 23 (test) 0.16 0.19 0.93 0.91 0.15 0.13 0.94 0.95 0.15 0.15 0.94 0.95
RD 27 (test) 0.18 0.20 0.89 0.86 0.17 0.18 0.89 0.90 0.17 0.16 0.90 0.90

Average 0.16 0.17 0.92 0.91 0.16 0.15 0.93 0.93 0.15 0.15 0.93 0.94

Figure 7. SIC estimation using machine learning-based methods. In target (ground-truth) data,
DDMs associated with patterns marked by arrows and tagged by cross symbols result in overestimation
and underestimation, respectively.
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Figure 8. Averaged SIC estimations using different machine learning methods and the reference data.
The difference between the reference and support vector regression (SVR)-FS result is also presented
for illustration.

Overall good agreement can be observed between the DDM-based SIC estimates and the reference
data. Despite this, discrepancy was noted for the locations where both sea ice and seawater exist.
It was reported that the SIC tends to be overestimated at the regions near ice edge or in partially
ice-covered areas when the sea state and wind speed are low. Such phenomenon can be noticed from
the patterns marked by arrows in Figure 7. Similarly, false detection of sea ice may be due to very calm
water with low wind [62].
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On the other hand, underestimation also existed when the actual SIC was 100%. This might be
caused by sea surfaces with ice of thickness exceeding the penetration depth. In this case, the scattering
would be dominated by the uppermost sea ice, which could be rougher than the ice-water interface.
In addition, if a DDM is contaminated by speckle noise at the non-specular delay-Doppler bins, the SIC
could also be underestimated. The cases of underestimation can be observed in Figure 7 as patterns
tagged by cross symbols.

2.6.1. NN vs. CNN

As can be seen from Tables 1 and 2, the CNN-based sea ice remote sensing shows overall improved
accuracy over the NN-based one, especially when using the original input size. An advantage of CNN
lies in the deployment of filters in the convolution layer, which can reduce the noise in the DDM.
The convolution and pooling layers make CNN less sensitive to disalignment of DDM specular point
within a frame. However, when the data are adequately processed by cropping the DDM for alignment,
both CNN and NN can produce good result.

2.6.2. NN vs. SVM

The SVM/SVR-FS-based sea ice sensing approach manifests improved accuracy relative to the
NN- and CNN-based (with full DDM frame as input) methods. Note that the FS is derived from full
DDMs rather than cropped ones. By applying the devised FS, the input size is notably decreased
compared with the full-sized DDM (from 128 × 20 to 20). Furthermore, FS is more immune to noise
than original input due to an averaging process. The achieved outcome (see Tables 1 and 2) also
proved both the advantage of FS since NN-FS outperformed NN and the improvement of SVM-FS
against NN-FS.

2.7. Sea Ice Type Classification

The sensitivity of GNSS-R signals to the surface roughness of several primary ice types,
i.e., first-year ice (FYI), multi-year ice (MYI), and young ice was investigated by [91]. It was anticipated
that the smooth new and young ice will result in strongest reflectivity since their low surface roughness
will lead to coherent scattering, FYI gives intermediate reflectivity due to a combination of deformed
edges and smooth surfaces that leads to coherent and incoherent scattering, and MYI contributes
the lowest reflectivity because deformed edges and rough surfaces will lead to incoherent scattering.
The difference in the shape of DDMs for various ice types was observed. Accordingly, several DDM
observables were developed for sea ice type classification. The employed observables include DDMA,
TES, leading edge slope (LES), generalized linear observable (see [92]), and waveform width observable
(the width of a waveform when its power reach 2/3 of the peak value). Firstly, only the DDMs of
sea ice are selected by evaluating these observables similar to those described in Section 2.2. Next,
data (14,370 samples in total) of each sea ice type are randomly and equally divided into two groups
for training and validation, respectively. Since the classification of ice type cannot be accomplished
by inspecting these observables alone, the standard classification and regression tree (CART) method
(see [93]) is adopted for training. In [91], the CART was built with 181 nodes, and the derived
observables are the inputs of the CART. Each node can contain conditional control statements that are
based on the evaluation of input observables and classification result. The complete algorithm in the
form of pseudo-code can be found in [91]. After the results being generated from the designed CART,
a spatial and temporal dominant class check was applied to amend samples that did not agree with
the surroundings.

Validation was made for the Chukchi-Beaufort Seas covering from 70◦N to 80◦N and from
112.5◦W to 180◦W. The TDS-1 data collected on 2, 3, 10, 11, 18, 19, 26, and 27 October and 3 and
4 November 2015 were employed. Sea ice type reference data consist of two sources; one is generated
weekly/semi-weekly from SAR data by the US National Ice Center (NIC) with a spatial resolution
of 100 m and the other is produced weekly from MODIS imagery with a spatial resolution of 1 km.
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The first reference data have better spatial and temporal resolution but less coverage (up to 75◦N)
compared with the second one which covers up to 80◦N. The TDS-1 data were matched with the NIC
data closest in time (within 2–5 days) first. For the regions without NIC data (i.e., from 75◦N to 80◦N),
the MODIS data closet in time (within 7 days) were employed instead. This algorithm produces an
accuracy 54.5%, 94%, and 69.7% for classifying FYI, MYI and Young Ice, respectively. It should be noted
that there was no constraint on local surface incidence angles in [91], which would be sub-optimal for
the application of sea ice type classification. It is also meaningful to consider both surface characteristics
(such as deformation and roughness) and interior properties (e.g., vertical salinity and temperature
distribution) of the sea ice at the same time, and the latter needs further investigation in the future.

2.8. Sea Ice Thickness Retrieval

The possibility of SIT measurement using spaceborne GNSS-R was indicated by [68,94]. Analyzing
the 40-s measurements in the Hudson Bay, it was found that the GNSS signal was mainly reflected
at the ice-water interface for the case of FYI with thickness of 20 to 60 cm [68]. By only considering
coherent GNSS reflections, ref. [95] modeled the scattering coefficient of an ice-covered surface as
the product of the propagation loss within sea ice and the reflection coefficient (<) at sea ice-water
boundary, i.e.,

σ0 = |<|2 · exp (−4α · SIT), (24)

where α is the attenuation coefficient. Consequently, the retrieval of SIT can be proceeded through

SIT =
−1
4α

ln

(
σ0

|<|2

)
. (25)

σ0 can be obtained from the TDS-1 dataset, and |<|2 can be deduced by following the procedure
in [79]. α is dependent on the elevation angle θ, the signal wavelength λ and the relative permittivity
εi of sea ice, which is formulated as

α =
2π

λ
sin θ |Im {

√
εi}| . (26)

For obtaining εi, the model proposed by Vant et al. [96] can be adopted

εi = 3.1 + 0.0084Vb + i(0.037 + 0.00445Vb), (27)

where Vb is the relative brine volume, which can be approximated by the following relationship [97]

Vb = 10−3S
(
−49.185

T
+ 0.532

)
, (28)

where S and T are sea ice salinity and temperature, respectively, and were regarded as known in [95].
The experimental evaluation was performed over the year of 2015 in Arctic for the periods

with available co-located SMOS reference data, i.e., from 1 January to 15 April and from 15 October
to 31 December 2015. The collocation between the TDS-1 and SMOS data is on a same-day basis,
since both of them provide daily data when available. The SMOS data manual (available on
https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-sit.html) suggests not using data
with uncertainty higher than 1 m, a stricter threshold of 0.5 m was adopted by [95] to further ensure
the quality of reference data.

By comparing the derived TDS-1 SIT with the SMOS reference, good consistency was obtained,
with an r of 0.90 and a root-mean-square difference (RMSD) of 8.68 cm for sea ice with thickness
below 1 m. Good agreement can also be observed from the overall results that are plotted in the
form of a density plot (Figure 9). The data densities were calculated relative to the maximum of
overall distribution.

https://icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-sit.html
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Figure 9. Density plot comparing SIT from TDS-1 retrieval and collocated SMOS data with the 1:1 reference
line (magenta). The data densities were calculated relative to the maximum of overall distribution.

The SMOS reference SIT data require assumptions about SIC and vertical profiles of temperature
and salinity in the sea ice, which are also important factors for GNSS-R SIT. It should be noted that
the reference data for S and T in [95] were from those provided in SMOS SIT products [98], but it is
more appropriate to find other S and T data sources, either from local measurements or from an ocean
model (which includes the effects of sea ice formation and melt). In addition, the SMOS data made an
assumption of 100% SIC and underestimation will occur when the actual SIC is not. No SIC threshold
was applied in [95], but its effect cannot be neglected. It is found that when SIC is high (above 90%),
the TDS-1 and SMOS SITs agree well with each other (see Figure 10). In contrast, when SIC is low,
the relative differences, which are calculated as (SMOS SIT – TDS-1 SIT)/ SMOS SIT, are significant,
especially for the negative part. Nonetheless, the occurrence of high negative relative differences may
be due to the underestimation of SMOS SIT for the cases of low SICs.
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Figure 10. The influence of SIC on the relative difference between the SMOS and TDS-1 SITs. Higher SIC
generally results in less discrepancy.
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2.9. Ice Altimetry Techniques

Another argument made by [72] was that the coherent reflection from ice surfaces allows accurate
altimetry measurements, which was later verified by [67] through investigating delay waveforms and
by [68] via processing phase measurements of raw data. In general, over smooth new and young ice
and FYI, coherent reflection can be expected, which allows waveform analysis. These two methods
were both based on the raw data collected by TDS-1 over Hudson Bay on 18 January 2015 (RD 15),
and are discussed as follows.

2.9.1. Waveform-Based

The waveforms are produced from raw data by cross-correlating received signals with local
replicas. With both direct and reflected waveforms, the path delay ∆ρ can be derived as

∆ρ = c · (tR − tD) + V, (29)

where c is the speed of light, tR and tD are the arrival times of reflected and direct signals, respectively.
V represents the error term that includes ionospheric and tropospheric effect, as well as noise. tR and
tD are determined based on the peaks of their corresponding waveforms. The height of the surface
under investigation can be determined from an obtained path delay using the method either described
in [99,100] or [101]. The estimated precision is about 1 m with a spatial resolution of 3.8 km.

2.9.2. Phase-Based

Instead of deriving arrival times with generated waveforms, the phase delay is directly extracted
from raw data through an open-loop tracking of the reflected signal. The surface height h can be
retrieved through

h = − (φo − φm)− εfit
2 sin θ

, (30)

where φo and φm are the observed and modelled phase delays, εfit is the estimated error that is
determined through least squares fitting, and θ is the Tx elevation angle at the specular point.
The RMSD between the achieved GNSS-R altimetric results and mean sea surface is 4.7 cm with an
along-track sampling distance of about 140 m. Moreover, the difference between obtained results and
mean sea surface was found to be correlated with collocated SMOS sea ice thickness data. This indicates
the application of spaceborne GNSS-R for sea ice thickness retrieval. Furthermore, it should be noted
that this experiment was a case study in the Hudson Bay with a 40-s long measurement for a single day.

2.10. Summary

A summary of sea ice sensing studies using spaceborne GNSS-R is presented in Table 3. It can be
noticed that the detection accuracy appear to be similar for both DDM observables-based methods
and machine learning-based methods. The difference of these two kinds of methods lies in that the
latter methods perform classification through a learning process exclusively dependent on the data,
while the former ones are based on interpretations by researchers. The difference between DDMs of
sea ice and seawater is clear, which can be well represented by the derived observables, and thus the
accuracy is plausible. However, it is challenging to deal with complex problems such as SIC estimation
and sea ice type classification by solely using observables, and in such cases machine learning methods
can be adopted. For sea ice altimetry, the phase-based method shows better performance than
the waveform-based one, which is due to (1) an extra error mitigation processed by the former,
(2) the restriction on delay resolution of waveform by the latter, and (3) shorter integration time
adopted by the former that results in better spatial resolution.
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Table 3. Applications of Sea Ice Sensing using Spaceborne GNSS-R.

Application Source Technique Accuracy

Altimetry/SIC [72,73] N/A
Detection [62] Observable-based 97.78%
Detection [65] Observable-based
Detection [70] Observable-based
Detection [66] TSVD-based σ0 retrieval
Detection [77] SIA-based σ0 retrieval
Detection [75] Observable-based
Detection [64] SVM 98.56%
Detection [76] Observable-based

Detection/SIC [69] NN 98.41%/0.93 (R)
Detection/SIC [63] CNN 98.73%/0.93 (R)

SIC [89] SVR 0.94 (R)
Type Classification [91] CART

Altimetry [67] Waveform-based 4.4 m (RMSD)
Altimetry [68] Phase-based 4.7 cm (RMSD)

3. Airborne and Ground-Based Experiments

In addition to the spaceborne applications, there have been several dedicated missions based
on airborne and ground-based GNSS-R receivers capable of providing regional and local sea ice
monitoring. However, these dedicated tests are of relatively limited generality and access compared
with spaceborne applications. Nonetheless, their progress has been important for developing and
validating new GNSS-R-based sea ice sensing practices. In this section, the contributions of recent
airborne and ground-based experiments are described.

3.1. Airborne Tests

The first airborne sea ice measurement was performed in 1998 in the Beaufort Sea. The results
showed the sensitivity of reflected GPS signals to the presence of sea ice and its conditions [58].
During the flight, the received signal shape had consistently a sharp and narrow waveform,
which indicates a trivial variation in the ice surface roughness observed. However, the peak
power of the waveform changed significantly, which suggested the sensitivity to ice reflectivity.
In addition, a correlation between the power of received signals and collocated RADARSAT backscatter
was observed.

The potential of reflected GPS signals for the retrieval of sea ice information, specifically,
permittivity and roughness, was further evaluated by [59]. These two derived parameters are retrieved
from obtained waveforms using the ZV model. It was shown in [59] that the received waveform
can be modeled as the product of the reflection coefficient and the GPS C/A code autocorrelation
function in the limit of small surface slopes for Kirchhoff approximation. For this reason, the power
strength and shape of a waveform are decoupled to derive the permittivity and roughness, separately.
The surface permittivity is mapped from the peak power via reflection coefficient, and the surface
roughness (parameterized by surface mean square slope) is based on a least squares fitting between
the modeled and measured waveforms.

3.2. Ground-Based Operations

In addition to verifying the altimetric application, ground-based experiments conducted in
Greenland in 2008 [54,56] also provided polarimetric analysis from which a qualitative matching was
found between the polarization ratio (a ratio between the received right-handed and left-handed
circular polarization (RHCP and LHCP) signals) and SIC.
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Signal-to-noise ratio (SNR) data of received reflected GNSS signals were collected at the Onsala
Space Observatory, Sweden in 2012 [61,102]. The high-frequency part of the SNR data, referred to as
δSNR, can be modeled as

δSNR =

[
C1 sin

(
4πm

λ
sin θ

)
+ C2 cos

(
4πm

λ
sin θ

)]
× exp

(
−4k2γ sin2 θ

)
(31)

where λ is the signal wavelength, m is the height of receiver above the reflecting surface, θ is the
elevation angle, C1 and C2 are the amplitudes of each component, respectively, and γ is referred to as
the damping parameter that is related with the properties of reflecting surface. C1, C2, m, and γ can be
determined through nonlinear least squares fitting using Equation (31). It was found in [61] that low
values of γ were coincident with the presence of ice, and thus γ can be used for ice detection.

In 2013, tests were operated at the Bohai Bay (China), and the ratio between direct and reflected
signals (ρ) was found to be sensitive to SIC [57].

The ratio ρ was further investigated for sea ice thickness retrieval and an empirical relationship
between these two parameters was obtained through a fitting process based on data collected at the
field demonstration at Liaodong Bay (China) in 2016 [60], and the empirical formula was given as

SIT = 2.086ρ−0.021 − 2.697. (32)

This was verified in [60] for sea ice with a thickness of 10 to 20 cm.
The above-mentioned ground-based investigations are summarized in Table 4.

Table 4. List of Ground-based GNSS-R Techniques for Sea Ice Sensing.

Application Source

Altimetry, SIC [54,56]
Detection [61,102]

SIC [57]
SIT [60]

4. Conclusions

In this paper, the state-of-the-art techniques for sea ice remote sensing using GNSS-R are reviewed.
Due to the availability of massive spaceborne GNSS-R data, more investigations and verifications
have been made for their applications in sea ice sensing than using airborne and ground-based data
in the literature. As such, this review focuses more on the topic of sea ice sensing using spaceborne
GNSS-R data.

For spaceborne applications, the characteristics of coherent reflection off sea ice is utilized.
The presence of sea ice results in (1) less spreading in DDM of sea ice than that of seawater and
(2) recoverable phase information. Based on the first attribute, sea ice detection and SIC estimation
can be realized; and sea ice altimetry is accomplished according to the latter one. The difference in
DDMs for various ice types is the fundamental for ice type classification. Although existing studies
have demonstrated high accuracy and efficiency in sea ice detection and SIC estimation, it is necessary
to derive other sea ice parameters from the GNSS-R signals in the future. For example, further
investigation on retrieval of thin-ice thickness at fine spatial resolution is meaningful, which if done
properly can greatly assist shipping close to coasts and harbor areas. Existing work on sea ice sensing
are mainly based on data collected by TDS-1 satellite, whose service was ceased in December 2018.
Although the CYGNSS mission is in orbit, it is unable to cover high-latitude sea ice-infested areas.
Thus, the launch of new GNSS-R satellites for sea ice monitoring will be helpful.

For airborne tests, the waveform that can be regarded as the central column of a DDM was most
investigated. By analyzing the peak power value and the shape of a waveform, the sea ice permittivity
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and surface roughness can be determined. In order to verify the generality of their applications,
more tests are necessary in the future.

For ground-based measurements, the power ratio between the RHCP and the LHCP signals
and the SNR of received signal can be used and their relationship with, e.g., presence of sea ice, SIT,
and SIC were investigated. Although the coverage area by a ground-based receiver is quite limited
compared to spaceborne and airborne instruments, GNSS sites can provide long-term observations for
specific regions of interests. The sea ice information obtained from coastal GNSS-R can be regarded
as ground-truth for validating spaceborne and airborne sensors [61]. With increasing ground GNSS
stations, more intensive coverage and more data will be accessible at a regional scale [42], it is thus
possible to further develop sea ice sensing schemes in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

GNSS-R Global Navigation Satellite System-Reflectometry
TDS-1 TechDemoSat-1
SAR Synthetic aperture radar
Tx Transmitter
Rx Receiver
GPS Global Positioning System
CYGNSS Cyclone Global Navigation Satellite System
UK-DMC UK Disaster Monitoring Constellation
SIC Sea ice concentration
DDM Delay-Doppler map
SIT Sea ice thickness
PN Pixel number
GC Geometrical center
CM Center-of-mass
DDMA Delay-Doppler map average
TES Trailing edge slope
DIW Doppler integrated waveform
MF Global Navigation Satellite System-Reflectometry
WAF Woodward ambiguity function
OCOG Offset centre of gravity
TSVD Truncated singular value decomposition
SIA Spatial integration approach
ZV Zavorotny-Voronovich
NN Neural network
BP Back-propagation
CNN Convolutional neural network
ReLU Rectified linear unit
SGDM Stochastic gradient descendant with momentum
SVM Support vector machine
SVR Support vector regression
FYI First-year ice
MYI Multi-year ice
LES Leading edge slope
CART Classification and regression tree
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NIC National Ice Center
SMOS Soil Moisture Ocean Salinity
RMSD Root-mean-square difference
RHCP Right-handed circular polarization
LHCP Left-handed circular polarization
SNR Signal-to-noise ratio
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