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Abstract: Nowadays, both BDS-3 and Galileo can provide global positioning and navigation services.
This contribution carried out a comprehensive analysis and validation of positioning performance
in terms of positioning accuracy (RMS) and convergence time, which are derived from BDS-3 and
Galileo precise point positioning (PPP) solutions at a global scale. Meanwhile, the comparison with
GPS was demonstrated. The performance and geographical distribution of RMS and convergence
time for each satellite system were analyzed. GPS outperforms the other two systems on a global
scale. Galileo and BDS-3, on the other hand, only perform moderately well in certain latitude zones.
The combination of dual systems related to each single system is analyzed. For the dual-system
combinations, the combination of systems presents a definite advantage over Galileo and BDS-3, and
this advantage is more pronounced for the kinematic PPP. For GPS, the combination with Galileo
and BDS-3 has little improvement in positioning performance. For the dual-system combination
based on Galileo and BDS-3, the RMS and convergence time can be improved by 50% compared with
the single system. The influence of single-system kinematic PPP selection for precise products from
different MGEX analysis centers on positioning performance was studied. Among the five precise
products, grg products have the best positioning performance for GPS, while cod products have the
best positioning performance for Galileo and BDS-3. The difference in RMS and convergence time
between 2 cm and 15 min can be caused by different precise product selections.

Keywords: GNSS; PPP; constellation combinations; positioning accuracy; convergence time

1. Introduction

In the past two decades, precise point positioning (PPP) has gradually been developed
for GPS [1,2]. Through the PPP algorithm, only one receiver can achieve the absolute
positioning of the target point. Compared to other positioning methods, PPP has massive
application scenarios, including seismogeodetic, engineering survey, offshore exploration,
geometric orbit estimation for satellites, emerging applications, etc. [3–8]. The main dis-
advantage of using PPP algorithms is the interminable convergence durations required
to attain improved positioning accuracy. With the development of satellite constellations
and tracking infrastructure, PPP using multi-system observations has become increasingly
popular. To profit from multi-system and multi-frequency observations, the user must be
provided with all calibration parameters that are system-dependent [9,10]. As a result,
the research community and enterprise are working on developing GNSS processing al-
gorithms, methodologies, and associated models. The International GNSS Service (IGS)
launched a MGEX to track, collect, and evaluate all GNSS signals available [11]. MGEX
analysis centers (ACs) already provide precise satellite products, including satellite orbits
and clock corrections, for all GNSS constellations [12]. The difference between multi-system
PPP and single-system PPP is that the clock deviation between different systems and the
corresponding inter-system bias (ISB) and hardware delay need to be estimated. In order
to obtain high-accuracy positioning results, precision ephemeris and orbit selection are
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important. Previous research has explored and compared the performance of PPP with
products from various analysis centers (ACs) [13–18]. With comprehensive reference to
these studies, the precision ephemeris of GFZ is chosen to conduct a series of multi-system
PPP experiments in this paper. Initially, the system combination PPP was mainly based on
GPS and GLONASS [19–22]. Researchers have been studying the performance of the com-
bined GPS and GLONASS PPP, which shows improved accuracy and shorter convergence
time when compared to GPS-only PPP. With the rapid development of muti-frequency
BDS and Galileo in recent years, GPS combined with BDS [23–27] and GPS combined
with Galileo [28–31] have received more and more attention. Especially since the opening
of BDS-3 in 2020, the sufficient number of satellites on BDS-3 can further improve the
geometric distribution of the satellite constellation and increase the number of observations.
Redundant observations can be better realized to improve the positioning accuracy and
shorten the convergence time of PPP positioning. Furthermore, the latest research has ex-
amined the performance of the combined four constellations (GPS, GLONASS, Galileo, and
BeiDou) PPP. Single-system PPP will be gradually replaced by multi-system PPP [32–37].

These studies compare the positioning accuracy and convergence time of different
system combinations with those of single systems, such as GPS, but most of them select
a small number of stations and do not present the corresponding distribution pattern on
a global scale. Therefore, in this paper, GPS, BDS-3, and Galileo are selected to study the
gain of the system combination with respect to the single system. In order to provide
a comprehensive assessment for the different system PPP solutions on a global scale,
143 MGEX tracking stations, which can receive signals from these three systems, have been
selected worldwide. The positioning accuracy and convergence time distribution of the
three single systems are analyzed. Then, the gain of the three dual-system combinations,
including the GPS with BDS-3 combination (GC), GPS with Galileo combination (GE), and
BDS-3 with Galileo combination (CE), with respect to the corresponding single-system
combinations is evaluated. The influence of single-system kinematic PPP selection of
precise products from different analysis centers on positioning performance is studied. In
the last conclusion section, the results in this paper are summarized.

2. Methods
2.1. Ionosphere-Free PPP Observation Model

Ionosphere-free (IF) observations can be used to remove first-order ionospheric delays
from pseudo-range and carrier-phase measurements. For a receiver r that has observed
a satellite s (such as GPS, BDS-3, or Galileo) at a specific epoch, the linearization of the
ionosphere-free code and carrier-phase observation equations are perhaps defined as

ps,M
r,IF= ρs,M

r +c(dtM
r,IF − dts,M

IF ) + Ts,M
r +bM

r,IF − bs,M
IF +δs,M

r,IF (1)

Ls,M
r,IF = ρs,M

r + c(dtM
r,IF − dts,M

IF ) + Ts,M
r +

_
N

s,M
r,IF + εs,M

r,IF (2)

where

ps,M
r,IF and Ls,M

r,IF represent the observed minus calculated values of ionosphere-free code and
carrier-phase observables, respectively;
the superscript M corresponds to G, C, or E, which indicate the satellite systems GPS,
BDS-3, or Galileo;
ρs,M

r stands for the geometric distance between the receiver and the satellite; c is the speed of
light; dtM

r,IF and dts,M
IF denote the receiver clock offset and satellite clock offset, respectively;

Ts,M
r is the tropospheric delay;

bM
r,IF and bs,M

IF are the uncalibrated code hardware delays (UCDs) by the receiver and
satellite, respectively;
δs,M

r,IF and εs,M
r,IF represent the total of code and carrier-phase observation measurement noise

and multi-path errors, respectively;
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_
N

S,M
r,IF is the carrier-phase ambiguity, which consists of the ionosphere-free combined re-

ceiver and satellite UCDs (bM
r,IF and bs,M

IF ), the receiver and satellite uncalibrated phase
hardware delays (UPDs) (BM

r,IF and Bs,M
IF ), the ionosphere-free wavelength (λIF), and the

ionosphere-free combined integer-phase ambiguity (Ns,M
r,IF ).

_
N

s,M
r,IF = λIFNs,M

r,IF + (bM
r,IF − bs,M

IF )− (BM
r,IF − Bs,M

IF ) (3)

The error components not mentioned above are supposed to be properly adjusted
using their respective models, such as PCO and PCV, phase wind-up, solid earth tides, polar
tides, ocean loading, and earth rotation parameters (ERPs). The tropospheric delay can be
divided into the hydrostatic component and the wet component. The zenith hydrostatic
delay (ZHD) is adjusted with the Saastamoinen model. The zenith wet delay (ZWD) has
to be approximated as an uncertainty. The slant hydrostatic delays (SHDs) and slant
wet delays (SWDs) can be corrected using the mapping function, which simulates the
connection between the SHD and SWD to the corresponding zenith delays.

For a single-system PPP, the clock parameter is often regarded as an epoch-wise
parameter. A GNSS clock and an inter-system time difference parameter (referred to as ISB)
are estimated for the multi-system combined PPP. There are various methods for modeling
the ISB parameter. Epoch-wise ISB should be calculated for robust data analysis.

The difference between the common pseudo-range and phase hardware delays is
assimilated into the ambiguity parameter in the multi-system combined PPP model, while
the common pseudo-range hardware delay is assimilated into the clock parameter. The
Ionosphere-free PPP model with multi-constellation can be described as the following by
taking the aforementioned concepts into consideration:
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with
ISBM

r = c · dtM
r,IF − c · dtG

r,IF+bM
r,IF − bG

r,IF (6)

2.2. Data Sets and Processing Strategies

To evaluate the impact of different constellation combinations on PPP performance,
datasets from 143 MGEX stations were selected (shown in Figure 1) and used from 1 to 30
September 2022 (DOY 244 to 273). Signals from GPS, BDS-3, and Galileo can all be received
by all stations. All data are downloaded through the GAMP-GOOD software, which is
open-sourced at GitHub [38]. All PPP analysis was carried out using the open-source GAMP
software [39], which is publicly available via the GPS Toolbox webpage. Static PPP and
kinematic PPP modes are respectively used to evaluate the positioning performance of
the double-frequency PPP model of six schemes, namely, GPS-only (G), BDS-3-only (C),
Galileo-only (E), GC, GE, and CE combinations. Table 1 shows the PPP processing strategies
in detail.

2.3. Availability Analysis of GNSS Constellations

Figure 2 depicts the global distribution of the average number of visible satellites for
single systems and combinations of different orbital types of BDS-3, with an elevation cut-
off of 7◦, over a day (1 September 2022). As shown in Figure 2, the globally average number
of GPS reaches more than 10, and specifically in low- and high-latitude regions, it rises
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to more than 12. However, there are fewer than 10 for Galileo. For BDS-3, it is combined
with MEO, IGSO, and GEO satellites. It is apparent that in the combination of BDS-3, MEO,
and IGSO, there are more than 12 visible satellites in the area between longitude 45–180E
and latitude 20S–20N. Compared with BDS-3 MEO, it is clear that in high-latitude regions,
the number of visible satellites for BDS-3 MEO+IGSO satellites increases greatly. Thus,
it has more visible satellites in the Asia-Pacific region than GPS and Galileo. In contrast,
the number of BDS-3 satellites in the western hemisphere at low and middle latitudes is
under 8. The DPOP values are shown in Figure 3. It is clear that the value for each system
corresponds to the distribution of their number of visible satellites.
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Table 1. Processing strategy for system combination PPP.

Process Options Strategy

Cutoff elevation angle 7◦

Sampling rate 30 s
PCV and PCO Corrected with IGS14 atx file
Satellite orbit Fixed with GFZ MGEX final products
Satellite clock Fixed with GFZ MGEX final products

Estimator Kalman filter
Phase ambiguity Estimated as float constants

Ionospheric delay First-order effects removed with IF combination

Tropospheric delay Mapping function: GMF, Dry part: corrected using
Saastamoinen model

Tides correction Solid earth tide, pole tide, ocean tide loading

The distribution of the number of visible satellites and the value of PDOP for the single
systems and combinations of different orbital types of BDS-3 over a day (1 September 2022),
with an elevation cut-off of 7◦, is shown in Figure 4. It is clear that the range for GPS is from
9 to 12, which is the largest number among all single schemes, while it is only from 7 to 9 for
Galileo, which has the least visible satellites in all the single systems. There are a range of
7–11 globally visible satellites for the BDS-3 MEO+IGSO, which is the widest distribution.
The extensive distribution of BDS-3 MEO+IGSO indicates that there are fewer satellites for
some stations, which may reduce the positioning accuracy of those stations. Although the
visible satellite number can meet the basic requirement, it is worth noting that there are
not many discernible satellites in a single system. For PDOP, BDS-3 MEO has the smallest
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number of visible satellites, so its PDOP is also the largest of the four systems. However,
GPS has the smallest PDOP of the three systems because of its centralized distribution of
the number of visible satellites. BDS-3 MEO+IGSO has the largest PDOP value among the
four systems because of its wide distribution of the number of visible satellites.
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3. Results
3.1. Positioning Performance of the Single Systems

In order to analyze the positioning accuracy and convergence time performance of
a single system, we obtain the corresponding quantile by using data from each tracking
station for each system for a month in static or kinematic mode to plot the boxplot. Figure 5
illustrates the monthly convergence time and RMS of static PPP based on the three single-
system schemes, and the month median RMS and convergence time are also indicated.
Here, we define “convergence” as obtaining a 3D-positioning error less than the predefined
threshold at the current epoch and the following 20 epochs, which has been adopted from Li
and Zhang [40]. Only when the positioning errors of all 20 epochs are within the threshold
do we consider that the position has converged at the current epoch. Here, the threshold is
1 dm, which has been suggested by Lou et al. [41]. For positioning accuracy (RMS), it is
calculated through the same convergence period; here, we have chosen 2 h after the start of
PPP filtering for each test. In order to facilitate the analysis, the east and north component
vectors are synthesized as the horizontal component, and the up component is taken as
the vertical component. For the convergence time in the horizontal component, GPS-only
has the least convergence time of static PPP solutions, about 10.9 min. The performance
of the remaining two single systems is not as good as GPS-only. Specifically, Galileo-only
performs better than BDS-3-only, with values of about 16.5 min, and it is 20.4 min for
BDS-3-only. Similar to the horizontal component, GPS-only has the shortest convergence
time in the vertical component, which is 11.0 min for static PPP. With convergence times
of about 16.5 min, BDS-3-only outperforms Galileo-only, which has values of roughly
17.0 min for static PPP. As shown in the figure, the RMS of both PPP solutions in the
horizontal component is vastly better than in the vertical component. The median RMS
values for GPS-only are 0.39 and 1.00 cm; they are 0.57 and 1.03 cm for Galileo-only. We can
see that the RMS of GPS-only and Galileo-only in the static PPP solution are comparable.
However, the median RMS of PPP solutions for BDS-3-only is larger than that of the other
two single-system schemes, where the values are 0.86 and 1.55 cm in the horizontal and
vertical components, respectively.
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For different solutions, as is generally known, the accuracy of kinematic PPP is obvi-
ously lower than that of static PPP due to the weaker model. Meanwhile, the performance
of different single systems is compared. Similar to Figure 5, Figure 6 shows the distribution
of the convergence time and RMS of the kinematic PPP. Each panel in Figure 6 depicts
the static and kinematic PPP convergence times using three single systems in the hori-
zontal and vertical components, respectively. In contrast to the RMS performance, the
convergence time of both PPP solutions, except Galileo, in the vertical component is shorter
than in the horizontal component. For the horizontal component, GPS-only has the least
convergence time of the kinematic PPP solutions, about 21.9 min. Galileo-only performs
better than BDS-3-only, with values of about 27.5 min, whereas it is 32.0 min for BDS-3-only.
Similar to the horizontal component, GPS-only has the shortest convergence time, which is
17.0 min. With convergence times of about 31.0 min, BDS-3-only outperforms Galileo-
only, which has values of roughly 35.5 min. The median RMS for GPS-only is 2.30 and
3.83 cm, and the median RMS of the PPP solutions for Galileo-only and BDS-3-only is twice
as large as GPS-only, with a value of 4.75 and 7.07 cm for Galileo and 4.73 and 7.62 cm for
BDS-3 in the horizontal and vertical components, respectively. In general, GPS-only has
the best positioning accuracy of all the single-system kinematic PPP solutions. Meanwhile,
convergence time is used to assess positioning performance.
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Overall, the higher convergence performance of GPS-only is particularly apparent in
kinematic PPP. Thus, GPS-only PPP solutions have the best positioning performance in
both positioning accuracy and convergence time among all the single-system PPP solutions.

3.2. Geographical Distribution of the Single Systems

In order to study the geographical distribution pattern of the single system, we use
the RMS and convergence time of each tracking station for one month and take its median
to represent the convergence time and RMS of the station and present it in the global map.
We display the convergence time statistics of static PPP across three single systems over
one month (September 2022) for the horizontal and vertical components at the selected
143 stations using a color bar (but different scales) along a global map in Figure 7. To
make the analysis more intuitive, the mean convergence time of the different latitude zones
for static PPP is listed in Table 2, where H and V represent the horizontal and vertical
components, respectively, and N and S represent the northern and southern hemispheres,
respectively. Accordingly, the range from 60◦ to 90◦ is defined as the high-latitude zone
(denoted by High_N in the northern hemisphere and High_S in the southern hemisphere),
the range from 30◦ to 60◦ as the middle-latitude zone (Med_N and Med_S), and the
range from 0◦ to 30◦ as the low-latitude zone (Low_N and Low_S). Further, the tracking
station numbers in the different latitude zones are listed. For static PPP in the horizontal
component, we can see that the convergence time of GPS-only tracking stations in the
high latitudes is well below 10.00 min, which is shorter than that in the low and middle
latitudes. In addition, the convergence time in other zones is less than 15.00 min, except
for the low latitudes in the northern hemisphere. Galileo-only tracking stations have a
convergence time of less 20.00 min in the middle latitudes of the southern hemisphere
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and in the high latitudes all around the world. For BDS-3-only, stations in the middle
latitudes have a convergence time of more than 23.00 min, while the time for stations in
the high latitudes is shorter than 17.00 min. The three single systems all follow the law
that in the northern hemisphere, the higher the latitude, the shorter the convergence time,
whereas in the southern hemisphere, the convergence time is shortest in the low latitudes
and slightly worse in the middle and high latitudes. In terms of the vertical component, the
three single-system tracking stations have a similar distribution, that is, the convergence
time from high latitude to low latitude changes in turn long.
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Table 2. The number of stations and the mean convergence times (unit: min) of the different latitudes
for static PPP.

Latitude High_N Med_N Low_N Low_S Med_S High_S

Num. 12 49 24 31 22 5

GPS_H 9.15 10.23 17.52 13.74 14.26 9.56
Galileo_H 14.74 17.52 23.94 21.04 20.13 12.01

BDS_H 15.37 23.55 23.74 20.73 23.64 16.80
GPS_V 7.98 11.70 16.48 11.70 11.15 9.70

Galileo_V 12.21 17.91 22.84 22.62 18.35 12.90
BDS_V 12.77 16.03 23.84 18.44 18.44 10.30

Figure 8 shows the convergence time statistics of kinematic PPP, the same as in
Figure 7. Further, Table 3 depicts the mean RMS of the different latitude zones for
kinematic PPP. For kinematic PPP in the horizontal component, it is evident that the
distributions of the convergence times of Galileo-only tracking stations show striking
similarity to the static PPP. GPS-only tracking stations have a convergence time of above
24.00 min in the middle latitudes, but it is below 22.00 min in the high latitudes. BDS-
3-only tracking stations have a convergence time of about 30.00 min, which is shorter
than the stations in the low and middle latitudes. GPS-only and Galileo-only tracking
stations have a vertical component distribution that is equivalent to the static PPP. The
convergence time for BDS-only tracking stations is shorter in the low and high latitude
zones than in the middle latitude zone. In general, the higher the latitude, the shorter
the convergence time for most tracking stations.
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Table 3. The mean convergence times (unit: min) of the different latitudes for kinematic PPP.

Latitude High_N Med_N Low_N Low_S Med_S High_S

GPS_H 19.45 24.06 32.14 21.90 28.00 21.32
Galileo_H 28.38 29.13 41.68 39.67 32.43 23.07

BDS_H 30.66 54.11 35.29 40.81 43.67 31.09
GPS_V 13.52 20.03 26.23 15.81 21.31 16.20

Galileo_V 22.81 39.39 50.19 49.99 49.34 24.80
BDS_V 26.15 37.99 37.58 35.01 39.69 25.40

The geographical distribution of the RMS is depicted (Figure 9 for static PPP, Figure 10
for kinematic PPP), and the mean RMS of the various latitudes is listed (Table 4 for static
PPP, Table 5 for kinematic PPP). For the horizontal component, we can see that the RMS
value of GPS-only tracking stations reaches more than 0.48 cm in the low latitudes and
performs relatively better in the middle and high latitudes of the northern hemisphere,
where the RMS statistics are well below 0.38 cm. Galileo-only tracking stations have an
RMS of above 0.60 cm in the middle and high latitudes, but better performance in the low
latitudes, with a value of below 0.60 cm. For BDS-3-only, most stations have an RMS of
more than 0.95 cm in the middle and high latitudes of the southern hemisphere and the low
and high latitudes of the northern hemisphere, while the stations in the middle latitude of
the northern hemisphere and low latitudes of the southern hemisphere performed relatively
better, with a value below 0.95 cm. For the vertical component, all three systems performed
significantly better at high latitudes than at low latitudes.
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MGEX tracking stations over a month period (September 2022) using three single systems.

Table 4. The mean RMS (unit: cm) of the different latitudes for static PPP.

Latitude High_N Med_N Low_N Low_S Med_S High_S

GPS_H 0.38 0.35 0.48 0.49 0.59 0.43
Galileo_H 0.65 0.62 0.56 0.58 0.65 0.71

BDS_H 0.96 0.90 1.06 0.94 1.01 0.97
GPS_V 0.76 0.98 1.22 1.28 0.89 0.61

Galileo_V 0.93 1.12 1.17 1.46 1.12 0.96
BDS_V 2.21 1.55 1.90 1.79 1.55 1.60

Table 5. The mean RMS (unit: cm) of the different latitudes for kinematic PPP.

Latitude High_N Med_N Low_N Low_S Med_S High_S

GPS_H 2.06 2.36 3.16 2.29 2.42 2.90
Galileo_H 3.32 6.18 6.49 4.72 5.76 4.23

BDS_H 4.21 6.26 5.18 4.90 5.48 4.26
GPS_V 3.54 3.53 5.10 4.27 3.95 4.29

Galileo_V 4.63 8.49 12.70 7.97 7.99 5.84
BDS_V 6.91 7.50 9.60 8.13 8.14 7.06

For the kinematic PPP solutions in the horizontal component, the geographical dis-
tribution of the median RMS for GPS-only are similar to those of the static PPP solutions.
Galileo-only performs better in the high latitudes, with a value of about 4.00 cm. Mean-
while, it is clear that for stations located in the high latitudes all around the world and the
low latitudes of the southern hemisphere, the RMS of BDS-3-only is well below 5.00 cm, and
it is larger than 5.00 cm in the other areas. For the vertical component, it is apparent that,
compared with the low latitudes, the respective RMS of both GPS-only and BDS-3-only
in the high latitudes is relatively lower. On the whole, the RMS statistics of almost all the
PPP solutions perform better in the high latitudes than in the low latitudes. Although
the number of stations located in different latitude zones is not the same, this is a general
conclusion. This can be explained by the similar distribution of the average number of
visible satellites for the three single-system constellations.

3.3. Positioning Performance of the Dual Systems

The three dual-system schemes are compared to their corresponding single-system
schemes in the same way that the single-system schemes are. Figure 11 illustrates the
monthly convergence time and RMS of single-system and dual-system combination static
PPP solutions, and the month median convergence time and RMS are also indicated.
First, convergence time is used to assess positioning performance. For the horizontal
component, the GE combination has the least convergence time of all the dual-system PPP
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solutions, about 8.1 min. The performance of the GC combination is not as good as the GE
combination. Specifically, the median convergence time of the GC combination is 9.4 min.
The performance of the CE combination is not as good as the GE and GC combinations.
Specifically, the median convergence time of the CE combination is 11.8 min. All three
dual-system combinations have a shorter convergence time than all three single systems in
the horizontal component. Similar to the horizontal component, the GE combination has
the shortest convergence time in the vertical component, which is 9.0 min. The convergence
time for this GC combination is about 9.5 min. The convergence time of the CE combination
is 12.0 min. Both the GC and GE combination outperform GPS-only. As shown in the figure,
the RMS of PPP solutions in the vertical component is vastly better than in the horizontal
component. The performance of dual-system combinations is compared. The median RMS
for the GC combination is 0.48 and 1.23 cm in the horizontal and vertical components,
respectively; it is 0.41 and 0.99 cm for the GE combination, respectively, and it is 0.51 and
1.21 cm for the EC combination, respectively. We can see that the RMS statistics of GPS-only
perform better than all three dual-system schemes.
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Figure 11. Distribution of the convergence time and RMS of static PPP solutions for the single systems
(G is short for GPS, E is short for Galileo, and C is short for BDS-3) and dual-system combinations
(GE is short for GPS combined with Galileo, GC is short for GPS combined with BDS-3, and CE is
short for BDS-3 combined with Galileo) in September 2022. (a) Horizontal component of convergence
time, (b) Horizontal component of RMS, (c) Vertical component of convergence time, (d) Vertical
component of RMS.

The situation with kinematic PPP is shown in Figure 12. The advantages of system
combination are more obvious in kinematic PPP. The convergence time of all dual-system
combination PPP solutions in the vertical component is shorter than in the horizontal
component. For the horizontal component, the GE combination has the least convergence
time of all dual-system PPP solutions, about 12.1 min. The median convergence time of the
GC combination is 13.2 min. The performance of the CE combination is not as good as the
GE and GC combinations. Specifically, the median convergence time of the EC combination
is 16.2 min. All three dual systems have a shorter convergence time than GPS-only in
the horizontal component. Both the GE and GC combinations have the same median
convergence time in the vertical component, which is 11.5 min. The convergence time of
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the EC combination is 15.5 min. All three dual-system combinations outperform GPS-only.
It is clear that the RMS of PPP solutions in the vertical component is vastly better than
in the horizontal component. Both the GE and GC combinations are obviously superior
to GPS-only in the horizontal component. The median RMS of the two combinations is
2.19 and 1.97 cm, respectively. The median RMS of the CE combination is 2.61 cm. The
CE combination performed better than BDS-3-only and Galileo-only, but not as well as
GPS-only. For the vertical component, only the GE combination performed better than
GPS-only. It is 3.58, 4.03, and 4.75 cm for the GE, GC, and CE combinations, respectively.
The GC and CE combinations performed better than BDS-3-only and Galileo-only. As
is well known, the accuracy of kinematic PPP is clearly lower than that of static PPP for
various solutions due to the weaker model. Therefore, the RMS statistics of kinematic PPP
are four times as large as static PPP. However, the system combination significantly reduces
the error of kinematic PPP.
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Figure 12. Distribution of the convergence time and RMS of kinematic PPP solutions for the single
systems (G is short for GPS, E is short for Galileo, and C is short for BDS-3) and dual- system
combinations (GE is short for GPS combined with Galileo, GC is short for GPS combined with BDS-3,
and CE is short for BDS-3 combined with Galileo) in September 2022. (a) Horizontal component of
convergence time, (b) Horizontal component of RMS, (c) Vertical component of convergence time,
(d) Vertical component of RMS.

For convergence time, all three dual-system combinations have a shorter convergence
time than the GPS-only PPP solutions. For RMS, it is clear that with Galileo combined, GPS
performs better than without. On the other hand, with BDS-3 combined, GPS does not
perform as well as without.

3.4. Positioning Performance of the Single System with Different Types of Precise Products

We chose five precise products from different analysis centers to compare the position-
ing performance of single systems with different types of precise products. GPS and Galileo
use precise products from five analysis centers, while BDS-3 uses precise products from
four analysis centers. Specific information about the precise products is given in Table 6.
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Table 6. Details of the precise products used in this section.

Institutions Prefix Supported Systems Orbit/Clock

CODE cod GRECJ 5 min/30 s
GFZ gfz GREC 5 min/30 s

GRGS grg GRE 5 min/30 s
IAC iac GREC 5 min/30 s

WHU whu GRECJ 15 min/30 s

In order to better analyze the impact of using different analysis center products on
positioning accuracy, the following figures (Figures 13 and 14 for GPS, Figures 15 and 16 for
Galileo, and Figures 17 and 18 for BDS-3) show the distribution of convergence times and
RMS at 143 tracking stations using different analysis center products for three single-system
PPP solutions over a month. For the convergence time of GPS kinematic PPP solutions,
the performance in the horizontal components is consistent with RMS. In the vertical
direction, the cod, gfz, grg, and iac products have similar convergence time distributions,
and the median convergence time is 17.00 min. The convergence time of the whu product is
17.50 min. For RMS, the grg products performed best, with a median RMS of 1.85 and
3.11 cm in both the horizontal and vertical components, respectively. The cod, iac, and whu
products are 1.89 and 3.18 cm, 1.93 and 3.19 cm, and 1.94 and 3.21 cm, respectively. The gfz
product performed the worst, with RMS values of 2.30 and 3.83 cm, respectively.
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4. Discussion

The positioning performance of three single systems (GPS-only, BDS-3-only, and
Galileo-only) and three dual systems (GC, GE, and CE) in static and kinematic PPP solu-
tions has been thoroughly investigated and assessed based on one-month observations
(September 2022) of 143 MGEX stations that are capable of tracking GPS, BDS-3, and Galileo
signals. The positioning accuracy and convergence time of single-system kinematic PPP
with different precise products are also studied.

For the single systems, in terms of RMS and convergence time distributions, the static
PPP of GPS-only has slightly better RMS than Galileo-only in both the horizontal and
vertical components, while it is much better than BDS-3-only; for the kinematic PPP, the
RMS of GPS-only is significantly smaller than the other two systems. The convergence time
shows different patterns in the two components. For all the PPP solutions, whether in the
horizontal component or the vertical component, there is no doubt that the convergence
time performance of GPS-only ranks first. Galileo-only outperforms BDS-3-only in the
horizontal, while BDS-3-only outperforms Galileo-only in the vertical. Meanwhile, the
relationship among RMS, convergence time, and latitude is being investigated. The GPS-
only solution shows a trend of progressively worse performance from high to low latitudes.
Galileo-only has the same pattern as GPS-only. For BDS-3-only, it performs significantly
better in the low and high latitude zones than in the middle latitude zone.

For the dual-system combinations, the RMS and convergence times of the three system
combinations have nearly the same distribution pattern, with the GE combination having
the highest positioning accuracy and the shortest convergence time, followed by the GC
combination, and finally the CE combination. For GPS-based dual-system combinations,
using Galileo and BDS-3 combined has not improved the positioning accuracy of GPS,
nor has it shortened the convergence time. For the dual-system combination based on
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Galileo, combined with GPS and BDS-3, the RMS value will be reduced by more than
0.10 cm for static PPP and more than 2.00 cm for kinematic PPP, and the convergence
time will be reduced by more than 4.0 min and more than 10.0 min, respectively. For the
dual-system combination based on BDS-3 combined with GPS and Galileo, the RMS value
will be reduced by more than 0.30 cm for static PPP and more than 2.00 cm for kinematic
PPP, and the convergence time will be reduced by more than 4.5 and 15.0 min, respectively.

For single-system kinematic PPP solutions with different types of precise products,
the positioning performance of different products under different systems is also different.
For GPS, the median RMS difference between the best performing product and the worst
performing product can reach more than 0.50 cm. However, the difference in convergence
time is smaller, less than two minutes. For Galileo, the difference in RMS between products
can reach a maximum of about 2.00 cm. The maximum difference in convergence time is
only 2.5 min. Finally, for BDS-3, the maximum difference of the RMS can reach 1.90 cm,
and the maximum difference of the convergence time can reach 30.0 min.

5. Conclusions

Overall, GPS has the best global performance of the three single systems, while Galileo
and BDS-3 have better performance only at high latitudes. In general, the three single systems’
RMS and convergence times are better in high latitude zones than in low latitude zones.

For the dual-system combinations, the combination of systems presents a definite
advantage over Galileo and BDS-3, and this advantage is more pronounced for kinematic
PPP. For the dual-system combination based on Galileo, combined with GPS and BDS-3,
the RMS and convergence time can be improved by 50% compared with the single system.
For the dual-system combination based on BDS-3 combined with GPS and Galileo, the RMS
can be improved by 50% and the convergence time can be improved by 60% compared with
the single system. For GPS, the combination with Galileo and BDS-3 has little improvement
in positioning performance.

The precise products used in PPP have a great impact on positioning performance.
Among the five precise products studied in this paper, the grg products have the best posi-
tioning performance for GPS, and the cod products have the best positioning performance
for Galileo and BDS-3. The difference in RMS and convergence times between 2 cm and
15 min can be caused by different precise product selections.
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