E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data
Abstract
:1. Introduction
- (a)
- Investigate cocoa intensification opportunities by classifying areas under coconut palm as proxies for locations where cocoa is already grown or can be cultivated.
- (b)
- Explore cocoa expansion opportunities based on highly suitable and capable areas for agricultural production that are not currently utilised.
- (c)
- Examine the sustainability of cocoa production by comparing the resulting potential cocoa maps with legacy information, that is, soil/land capability/cocoa suitability maps.
- (d)
- Explore the potential use of this tool as a land cover change monitoring tool for measuring deforestation in the future, particularly as evidence to address the PNG E-Ag strategy and UN-SDGs.
2. Materials and Methods
2.1. Study Area
2.2. Datasets Used and Preprocessing
- Acrisols with a clay-rich subsoil (present in southeast Bougainville), were ranked as having low suitability for cocoa due to acidic conditions, low fertility, and the need for management.
- Luvisols with a clay-rich subsoil (present in north Bougainville—Lonahan), corresponding to fertile soils, were ranked as having a moderate suitability.
- Other soil types categorised are:
- (a)
- Relatively young soils or soils with very little or no profile development, or very homogenous sands with moderate fertility, predominately Cambisols (present in central Bougainville), were ranked as having moderate suitability.
- (b)
- Soils strongly influenced by water, such as Fluvisols (present in south and central west Bougainville around Siwai), were ranked as being moderately suitable for cocoa as they require drainage management.
- (c)
- Soils of volcanic origin, that is, Andosols (main soil type of Bougainville spread across central and south), were ranked as exceptional because they are deep and present adequate physical soil properties for cocoa.
2.3. Detection of Potential Cocoa Orchards and Uncertainty Estimation
Index | Equation | Source |
---|---|---|
Enhanced vegetation index (EVI) | [44] | |
Normalised difference moisture index (NDMI) | [45] | |
Chlorophyll index green (ChI green) | [46] | |
Vogelmann Red Edge Index (VREI) | [47] | |
Chlorophyll index red edge (CIr) | [48] | |
Red edge curve index (RECI) | Proposed in this study |
2.4. Validation of Classification
- (a)
- The producer’s accuracy (relates to omission errors) represents how well reference pixels of the land-use type are classified.
- (b)
- The omission error refers to excluding a pixel that should have been included in the class (i.e., omission error = 1 − producer’s accuracy).
- (c)
- The consumer’s accuracy (relates to commission errors) represents the probability that a pixel classified into a given category represents that category on the ground.
- (d)
- The commission error refers to including a pixel in a class when it should have been excluded (i.e., commission error = 1 − consumer’s accuracy).
3. Results
3.1. Classification Performance
3.2. Detection of Potential Cocoa Orchards
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Agriculture and Livestock Papua New Guinea (DAL). 2017. Available online: https://www.agriculture.gov.pg/cocoa/ (accessed on 19 October 2021).
- Guest, D.I.; Butubu, J.; van Ogtrop, F.; Hall, J.; Vinning, G.; Walton, M. Poverty, education and family health limit disease management and yields on smallholder cocoa farms in Bougainville. CABI One Health 2023. [Google Scholar] [CrossRef]
- Byerlee, D.; Stevenson, J.; Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 2014, 3, 92–98. [Google Scholar] [CrossRef]
- Vermote, E.F.; Skakun, S.; Becker-Reshef, I.; Saito, K. Remote sensing of coconut trees in tonga using very high spatial resolution worldview-3 data. Remote Sens. 2020, 12, 3113. [Google Scholar] [CrossRef]
- Asubonteng, K.O. Identification of Land Use-Cover Transfer Hotspots in Ejisu-Juabeng District, Ghana. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2007. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Meador, A.J.S. MODIS phenology-derived, multi-year distribution of conterminous us crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Ouzemou, J.-E.; El Harti, A.; Lhissou, R.; El Moujahid, A.; Bouch, N.; El Ouazzani, R.; Bachaoui, E.M.; El Ghmari, A. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sens. Appl. Soc. Environ. 2018, 11, 94–103. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Al-Shammari, D.; Fuentes, I.; Whelan, B.; Filippi, P.; Bishop, T. Mapping of cotton fields within-season using phenology-based metrics derived from a time series of landsat imagery. Remote Sens. 2020, 12, 3038. [Google Scholar] [CrossRef]
- Janssen, L.L.; Middelkoop, H. Knowledge-based crop classification of a landsat thematic mapper image. Int. J. Remote Sens. 1992, 13, 2827–2837. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, J.; Liu, T.; Zhang, H.; Zhang, Z.; Guo, X. Crop type identification and mapping using machine learning algorithms and sentinel-2 time series data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3295–3306. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Shah, R.M.; Che Soh, N.; Arif, C.; Indra Setiawan, B. Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform. Remote Sens. 2019, 11, 1666. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kang, J.; Xu, X.; Zhang, L. Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Comput. Electron. Agric. 2020, 176, 105618. [Google Scholar] [CrossRef]
- Gumma, M.K.; Tummala, K.; Dixit, S.; Collivignarelli, F.; Holecz, F.; Kolli, R.N.; Whitbread, A.M. Crop type identification and spatial mapping using sentinel-2 satellite data with focus on field-level information. Geocarto Int. 2020, 37, 1833–1849. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. sentinel-2: Examining the added value of sentinel-2′s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree species classification with multi-temporal sentinel-2 data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Sánchez-Ruíz, S.; Gilabert, M.A. A copernicus sentinel-1 and sentinel-2 classification framework for the 2020+ European common agricultural policy: A case study in València (Spain). Agronomy 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of irrigated crops from sentinel-1 and sentinel-2 data to estimate seasonal groundwater use in south India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Bricher, P.K.; Lucieer, A.; Shaw, J.; Terauds, A.; Bergstrom, D.M. Mapping sub-Antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling. PLoS ONE 2013, 8, e72093. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery. Remote Sens. 2016, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Numbisi, F.N.; Van Coillie, F.; De Wulf, R. Delineation of cocoa agroforests using multiseason Sentinel-1 SAR images: A low grey level range reduces uncertainties in GLCM texture-based mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Burnett, M.W.; White, T.D.; McCauley, D.J.; De Leo, G.A.; Micheli, F. Quantifying coconut palm extent on pacific islands using spectral and textural analysis of very high resolution imagery. Int. J. Remote Sens. 2019, 40, 7329–7355. [Google Scholar] [CrossRef]
- Abu, I.-O.; Szantoi, Z.; Brink, A.; Robuchon, M.; Thiel, M. Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas. Ecol. Indic. 2021, 129, 107863. [Google Scholar] [CrossRef]
- Singh, K.; Sanderson, T.; Field, D.; Fidelis, C.; Yinil, D. Soil security for developing and sustaining Papua New Guinea soil under cocoa. Geoderma Reg. 2019, 17, e00212. [Google Scholar] [CrossRef]
- Walton, M.; Hall, J.; Guest, D.; Butubu, J.; Vinning, G.; Black, K.; Beardsley, J. Applying one health methods to improve cocoa production in Bougainville: A case study. One Health 2020, 10, 100143. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: Esa’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q.; et al. Nasadem global elevation model: Methods and progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.F.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of cloud cover detection algorithms on sentinel–2 images of the amazon tropical forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Scalzo, R.; Vervoort, R.W. Volume and uncertainty estimates of on-farm reservoirs using surface reflectance and LiDAR data. Environ. Model. Softw. 2021, 143, 105095. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.; Webb, M.; Berthelsen, S.; Curry, G.; Yinil, D.; Fidelis, C. Nutritional Status of Cocoa in Papua New Guinea; Technical Report; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2011.
- Singh, K.; Fuentes, I.; Fidelis, C.; Yinil, D.; Sanderson, T.; Snoeck, D.; Minasny, B.; Field, D.J. Cocoa suitability mapping using multi-criteria decision making: An agile step towards soil security. Soil Secur. 2021, 5, 100019. [Google Scholar] [CrossRef]
- Scott, R.; Heyligers, P.; Speight, J.; Saunders, J.; McAlpine, J. No. 20 lands of Bougainville and Buka islands, territory of Papua and New Guinea. CSIRO Land Res. Surv. 1967, 2010, 1–196. [Google Scholar]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An introduction to machine learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Gao, B.-C. Ndwi—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Vogelmann, J.; Rock, B.; Moss, D. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Saco, P.M.; Carpi, L.C.; Figliola, A.; Serrano, E.; Rosso, O.A. Entropy analysis of the dynamics of el niño/southern oscillation during the Holocene. Phys. A Stat. Mech. Its Appl. 2010, 389, 5022–5027. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Iwanaga, T.; Vervoort, R.W. 3d lithological mapping of borehole descriptions using word embeddings. Comput. Geosci. 2020, 141, 104516. [Google Scholar] [CrossRef]
- Fitzgerald, R.W.; Lees, B.G. Assessing the classification accuracy of multisource remote sensing data. Remote Sens. Environ. 1994, 47, 362–368. [Google Scholar] [CrossRef]
- van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Sharififar, A.; Sarmadian, F. Coping with imbalanced data problem in digital mapping of soil classes. Eur. J. Soil Sci. 2023, 74, e13368. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Seager, S.; Turner, E.L.; Schafer, J.; Ford, E.B. Vegetation’s red edge: A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 2005, 5, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Shah, A.D.; Bartlett, J.W.; Carpenter, J.; Nicholas, O.; Hemingway, H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study. Am. J. Epidemiol. 2014, 179, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Grange, S.K.; Carslaw, D.C. Using meteorological normalisation to detect interventions in air quality time series. Sci. Total Environ. 2019, 653, 578–588. [Google Scholar] [CrossRef]
- Srisa-An, C. Guideline of collinearity-avoidable regression models on time-series analysis. In Proceedings of the 2021 2nd International Conference on Big Data Analytics and Practices (IBDAP), Bangkok, Thailand, 26–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 28–32. [Google Scholar]
- Toloşi, L.; Lengauer, T. Classification with correlated features: Unreliability of feature ranking and solutions. Bioinformatics 2011, 27, 1986–1994. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Loveland, T.R.; Townshend, J.R.; DeFries, R.S.; Pittman, K.W.; Arunarwati, B.; Stolle, F.; Steininger, M.K.; et al. Humid tropical forest clearing from 2000 to 2005 quantified by using multi- temporal and multiresolution remotely sensed data. Proc. Natl. Acad. Sci. USA 2008, 105, 9439–9444. [Google Scholar] [CrossRef]
- Seddon, A.W.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, A.; Bakhtary, H.; Haupt, F.; Streck, C. Eliminating Deforestation from the Cocoa Supply Chain; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Hanson, L.W.; Bourke, R.M.; Yinil, D.S. Cocoa and Coconut Growing Environments in Papua New Guinea: A Guide for Research and Extension Activities; Australian Agency for International Development: Canberra, Australia, 1998.
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of sentinel-2 and landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Garbarino, M.; Weisberg, P.J. Land-use legacies and forest change. Landsc. Ecol. 2020, 35, 2641–2644. [Google Scholar] [CrossRef]
- Freyne, D.; Bleeker, P.; Wayi, B.; Jeffery, P. Root Development of Cocoa in Papua New Guinea Soils; Land Utilisation Section, Department of Agriculture and Livestock: Port Moresby, Papua New Guinea, 1996; ISBN 9980998903.
- Fahmy, F. Soil and leaf analyses in relation to the nutrition of tree crops in Papua New Guinea. In Proceedings of the Conference on Classification and Management of Tropical Soils, Kuala Lumpur, Malaysia, 15–20 August 1980; Number L-0224. Malaysian Society of Soil Science: Kuala Lumpur, Malaysia, 1980. [Google Scholar]
- Singh, K.; Aitkenhead, M.; Fidelis, C.; Yinil, D.; Sanderson, T.; Snoeck, D.; Field, D.J. Optimization of spectral preprocessing for estimating soil condition on small farms. Soil Use Manag. 2022, 38, 150–163. [Google Scholar] [CrossRef]
- Alamgir, M.; Sloan, S.; Campbell, M.J.; Engert, J.; Kiele, R.; Porolak, G.; Mutton, T.; Brenier, A.; Ibisch, P.L.; Laurance, W.F. Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE 2019, 14, e0219408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Wessel, M. Shade and nutrition. In Cocoa; 1985; pp. 166–194. Available online: https://research.wur.nl/en/publications/shade-and-nutrition (accessed on 19 July 2021).
- Dawoe, E.; Isaac, M.E.; Quashie Sam, J. Litter fall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant Soil 2020, 330, 55–64. [Google Scholar] [CrossRef]
- de Sousa, K.; van Zonneveld, M.; Holmgren, M.; Kindt, R.; Ordoñez, J.C. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Sci. Rep. 2019, 9, 8828. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.E.; Dawoe, E.; Sieciechowicz, K. Assessing local knowledge use in agroforestry management with cognitive maps. Environ. Manag. 2009, 43, 1321–1329. [Google Scholar] [CrossRef]
- Wade, A.S.; Asase, A.; Hadley, P.; Mason, J.; Ofori-Frimpong, K.; Preece, D.; Spring, N.; Norris, K. Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric. Ecosyst. Environ. 2010, 138, 324–334. [Google Scholar] [CrossRef]
- Tondoh, J.E.; Kouamé, F.N.; Guéi, A.M.; Sey, B.; Koné, A.W.; Gnessougou, N. Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob. Ecol. Conserv. 2015, 3, 575–595. [Google Scholar] [CrossRef] [Green Version]
Dataset | Kappa | Overall Accuracy | Producer’s Accuracy | Consumer’s Accuracy | F1-Score |
---|---|---|---|---|---|
Calibration | 0.999 | 0.998 | Cocoa region: 0.999 | Cocoa region: 0.999 | Cocoa region: 0.999 |
Non-cocoa: 0.998 | Non-cocoa: 0.999 | Non-cocoa: 0.999 | |||
Validation | 0.929 | 0.974 | Cocoa region: 0.992 | Cocoa region: 0.992 | Cocoa region: 0.983 |
Non-cocoa: 0.918 | Non-cocoa: 0.977 | Non-cocoa: 0.948 |
Soil Type | Soil Area (ha) | Area of Cocoa Grown by Soil Type (%) |
---|---|---|
Af-Ferric Acrisol | 50,177.7 | 1.46 |
Bh-Humic Cambisol | 68,292.1 | 0.14 |
Je-Eutric Fluvisol | 98,743.7 | 8.34 |
LC-Chromic Luvisol | 43,727.0 | 22.32 |
TM-Andosol | 633,407.4 | 75.24 |
Year | Region | Area (km2) |
---|---|---|
2019 | Non-cocoa | 8893.16 |
Cocoa | 479.97 | |
2020 | Non-cocoa | 8885.85 |
Cocoa | 487.28 | |
Change 2019–2020 | Non-cocoa | −7.31 |
Cocoa | 7.31 |
Cocoa Suitability | Area (ha) | Area of Cocoa in Bougainville (%) | Area of Cocoa within Class (%) |
---|---|---|---|
Suitability 1 | 0 | 0 | 0 |
Suitability 2 | 8738.7 | 0.24 | 1.16 |
Suitability 3 | 437,677.1 | 24.68 | 2.35 |
Suitability 4 | 413,485.0 | 69.21 | 6.97 |
Suitability 5 | 12,467.1 | 5.86 | 19.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, K.; Fuentes, I.; Al-Shammari, D.; Fidelis, C.; Butubu, J.; Yinil, D.; Sharififar, A.; Minasny, B.; Guest, D.I.; Field, D.J. E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data. Remote Sens. 2023, 15, 3492. https://doi.org/10.3390/rs15143492
Singh K, Fuentes I, Al-Shammari D, Fidelis C, Butubu J, Yinil D, Sharififar A, Minasny B, Guest DI, Field DJ. E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data. Remote Sensing. 2023; 15(14):3492. https://doi.org/10.3390/rs15143492
Chicago/Turabian StyleSingh, Kanika, Ignacio Fuentes, Dhahi Al-Shammari, Chris Fidelis, James Butubu, David Yinil, Amin Sharififar, Budiman Minasny, David I Guest, and Damien J Field. 2023. "E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data" Remote Sensing 15, no. 14: 3492. https://doi.org/10.3390/rs15143492
APA StyleSingh, K., Fuentes, I., Al-Shammari, D., Fidelis, C., Butubu, J., Yinil, D., Sharififar, A., Minasny, B., Guest, D. I., & Field, D. J. (2023). E-Agriculture Planning Tool for Supporting Smallholder Cocoa Intensification Using Remotely Sensed Data. Remote Sensing, 15(14), 3492. https://doi.org/10.3390/rs15143492