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Abstract: Remote sensing approaches are often used to monitor land cover change. However, the
small physical size (about 1–2 hectare area) of smallholder orchards and the cultivation of cocoa
(Theobroma cocoa L.) under shade trees make the use of many popular satellite sensors inefficient
to distinguish cocoa orchards from forest areas. Nevertheless, high-resolution satellite imagery
combined with novel signal extraction methods facilitates the differentiation of coconut palms (Cocos
nucifera L.) from forests. Cocoa grows well under established coconut shade, and underplanting
provides a viable opportunity to intensify production and meet demand and government targets. In
this study, we combined grey-level co-occurrence matrix (GLCM) textural features and vegetation
indices from Sentinel datasets to evaluate the sustainability of cocoa expansion given land suitability
for agriculture and soil capability classes. Additionally, it sheds light on underexploited areas
with agricultural potential. The mapping of areas where cocoa smallholder orchards already exist
or can be grown involved three main components. Firstly, the use of the fine-resolution C-band
synthetic aperture radar and multispectral instruments from Sentinel-1 and Sentinel-2 satellites,
respectively. Secondly, the processing of imagery (Sentinel-1 and Sentinel-2) for feature extraction
using 22 variables. Lastly, fitting a random forest (RF) model to detect and distinguish potential cocoa
orchards from non-cocoa areas. The RF classification scheme differentiated cocoa (for consistency, the
coconut–cocoa areas in this manuscript will be referred to as cocoa regions or orchards) and non-cocoa
regions with 97 percent overall accuracy and over 90 percent producer’s and user’s accuracies for
the cocoa regions when trained on a combination of spectral indices and GLCM textural feature sets.
The top five variables that contributed the most to the model were the red band (B4), red edge curve
index (RECI), blue band (B2), near-infrared (NIR) entropy, and enhanced vegetation index (EVI),
indicating the importance of vegetation indices and entropy values. By comparing the classified
map created in this study with the soil and land capability legacy information of Bougainville, we
observed that potential cocoa regions are already rated as highly suitable. This implies that cocoa
expansion has reached one of many intersecting limits, including land suitability, political, social,
economic, educational, health, labour, and infrastructure. Understanding how these interactions limit
cocoa productivity at present will inform further sustainable growth. The tool provides inexpensive
and rapid monitoring of land use, suitable for a sustainable planning framework that supports
responsible agricultural land use management. The study developed a heuristic tool for monitoring
land cover changes for cocoa production, informing sustainable development that balances the needs
and aspirations of the government and farming communities with the protection of the environment.
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1. Introduction

The Autonomous Region of Bougainville (Bougainville) is the easternmost island of
Papua New Guinea (PNG). The economy depends on subsistence agriculture, cash crops, in-
cluding coconut and cocoa, and small-scale mining (https://bougainvillenews.files.wordpress.
com/2018/06/bougainville-strategic-plan-2018-2022.pdf (accessed on 19 July 2021)). To meet
the ambitious targets set by PNG’s government [1], opportunities for cocoa production
need a kickstart by establishing an E-agriculture strategy (E-Ag strategy) that promotes
balanced land use for sustainable economic, social, and environmental development [2].
This renewed focus on cocoa production should prioritise intensification, aiming for in-
creased yield per hectare rather than expansion through deforestation [3]. Cocoa thrives
under established coconut palm shade, making cocoa expansion within existing coconut
plantations a viable intensification opportunity. Further, it has been reported that coconut
plantations can be distinguished [4] from forested areas with ease, unlike cocoa smallholder
orchards that are difficult to distinguish from other vegetation covers, such as natural
forest [5]. Therefore, we hypothesise that remote sensing can help distinguish areas where
cocoa is established or where it can potentially be grown by classifying areas under coconut
palm. In this manuscript, the coconut–cocoa areas will be referred to as potential cocoa
regions or orchards for consistency.

Numerous studies have investigated land cover classification at local, regional, and
global scales using remote sensing (RS) platforms to extract valuable information and
capture land cover changes. For large-scale crop type mapping, studies have focused
on using the Moderate Resolution Imaging Spectroradiometer (MODIS) [6–10], which
provides high temporal resolution and potential daily monitoring of land use changes.
However, the spatial resolution of MODIS (250–1000 m), having the potential to provide
the areal coverage required [11,12], may not be sufficient to resolve the expected land use
changes in smallholder areas (<1 ha) due to potential errors caused by pixel mixing between
different classes and land cover heterogeneity.

To address the aforementioned issues, researchers have used data retrieved from
satellites with higher spatial resolution, such as Landsat (30 m) [13–15], or Sentinel-1 and
Sentinel-2 (10 and 20 m) [16–20]. In addition to improved resolution, Landsat and Sentinel-2
provide visible and near-infrared (NIR) data that better interpret differences within an
area. Sentinel-2 offers three bands in the red-edge region, which are crucial for crop type
mapping [21].

Forkuor et al. [21] showed that Sentinel-2 improved the classification accuracy in rural
Burkina Faso by 4 percent compared to Landsat bands. Persson et al. [22] found that the
red-edge and short-wave bands of Sentinel-2 were particularly effective in discriminating
tree classification. Therefore, land cover classification can be enhanced by utilising the
spectral information in the red-edge region of the spectrum provided by Sentinel-2, along
with its high spatial resolution compared to other platforms like MODIS and Landsat.
Combining Sentinel-1 and Sentinel-2 may further improve these enhancements [23,24].

Moreover, synthetic aperture radar data can help overcome data noise caused by
clouds and shadows in surface reflectance data [25]. More significantly, the application
of grey-level co-occurrence matrix (GLCM) textural features and indices to very high-
resolution imagery can address the issue of canopy heterogeneity [26–30]. This approach
has proven successful in differentiating between coconut plantations and native forests [29].

Additionally, this study offers an opportunity to assess the relationship between
regions where cocoa can be grown and the main soils of Bougainville, as well as agricultural
land capabilities, using legacy information. The current study focuses on monitoring
changes in the land area used for coconut palm plantations and with the potential to

https://bougainvillenews.files.wordpress.com/2018/06/bougainville-strategic-plan-2018-2022.pdf
https://bougainvillenews.files.wordpress.com/2018/06/bougainville-strategic-plan-2018-2022.pdf
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sustain cocoa production, by combining remote sensing information, machine learning
algorithms and agricultural capability legacy data. Generally, cocoa grows well on deep,
well-drained, and reasonably fertile soil [31]. The maps created in this study also have
the potential to contribute to report on the Sustainable Development Goals of the United
Nations (UN-SDGs) and the E-agriculture initiative implemented by the PNG government.

Specifically, this paper aims to:

(a) Investigate cocoa intensification opportunities by classifying areas under coconut
palm as proxies for locations where cocoa is already grown or can be cultivated.

(b) Explore cocoa expansion opportunities based on highly suitable and capable areas for
agricultural production that are not currently utilised.

(c) Examine the sustainability of cocoa production by comparing the resulting potential
cocoa maps with legacy information, that is, soil/land capability/cocoa suitability maps.

(d) Explore the potential use of this tool as a land cover change monitoring tool for
measuring deforestation in the future, particularly as evidence to address the PNG
E-Ag strategy and UN-SDGs.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Autonomous Region of Bougainville, Papua New
Guinea, which covers an area of 9318 km2. This region was chosen based on its potential
for Theobroma cocoa L. (Cocoa) production. A significant area in Bougainville is used for
agriculture, with cocoa and coconut being the primary cash crops [2,32]. Therefore, we
anticipate observing a relation between land capability classes and the cocoa orchard
potential in the classified map. Figure 1 shows the elevation, mean annual temperature,
and annual rainfall for Bougainville obtained from WorldClim version 1 [33].
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2.2. Datasets Used and Preprocessing

This study used two main datasets for the detection of potential areas for cocoa
orchards. These datasets included the tiles of synthetic aperture radar (SAR) from Sentinel-1
and surface reflectance data from Sentinel-2 (Sentinel-2 MSI, Level-2A) satellites [34], which
were processed through Google Earth Engine [35]. Ancillary data, such as a terrain slope
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obtained from the processing Shuttle Radar Topography Mission (SRTM) at a spatial
resolution of 30 m, was also incorporated into the study [36]. The Sentinel datasets were
filtered to limit their extent to the study region and the date range from 2019 to 2020.

Surface reflectance images that contained more than 20% of clouds, stored in the
“cloud pixel percentage” property of the collection, were filtered out. An additional cloud
mask was applied to the collection by appending cloud probability scenes of Sentinel-2,
processed through the s2cloudless library [37], and setting a threshold of cloud probability
to 30% [38]. Due to the high occurrence of clouds in the study region (Figure 2), the masked
surface reflectance collection was averaged. After processing the Sentinel-2 data, raw bands
(B2-B8A and B11) were extracted and used as covariates to calculate vegetation indices,
which were combined with the raw bands. Six vegetation indices were calculated for
different calendar years using the visible, near-infrared (NIR), and red edge bands. Table 1
shows the vegetation indices used, which can capture specific vegetative features, such as
leaf greenness, tree height, and systematic cocoa block planting, compared to a forest that
may contain vegetation of various shapes and sizes.
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Figure 2. Cloud occurrence in Sentinel-2 collection.

The vegetation indices include the enhanced vegetation index (EVI), the normalised
difference moisture index (NDMI), and the chlorophyll index green (Chlgreen), which
are visible NIR-based indices. Additionally, The Vogelmann Red Edge Index (VREI), the
chlorophyll red edge index (CIr), and the red edge curve index (RECI) were used. The
RECI was derived to describe the vegetation curve in the region between the red edge
band 1 (RE1; 698 nm) and the NIR (899 nm). The SAR data were filtered to a single vertical
transmit and vertical receive (VV) co-polarisation to maximise the number of images in
the region. The SAR data were also filtered to the Interferometric Wide Swath (IW) mode
of operation, which is the primary acquisition mode that leads to images of a 250 km
swath at 5 m by 20 m resolution. Furthermore, to remove edge effects, a mask was applied
to remove all pixels with less than −30 dB from the collection. As coconut plantations
(potential cocoa orchards) exhibit similar spectral patterns to forests but display a strong
homogeneity in terms of vegetation growth, the grey-level co-occurrence matrix (GLCM)
texture features analysis was employed [39]. The GLCM with a square kernel of three
pixels was applied to distinguish between forests and potential cocoa orchards. From this
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analysis, angular second moment (VVasm), variance (VVvar), inverse different moments
(VVidm), and entropy (VVent) bands were selected and used in the detection.

To quantitatively and qualitatively evaluate the results and assess the sustainability
of potential cocoa expansion, a comparison was conducted using independent datasets of
cocoa orchards [40], soil series in Bougainville [41], the cocoa suitability map from Papua
New Guinea [41], and land use capability maps [42]. These were compared with the map
of potential cocoa orchards developed in this work (refer to Section 2.3).

The cocoa suitability map [41] identified cocoa suitability classes in PNG using a
multicriteria decision analysis, considering three biophysical and two market access cri-
teria (Figure 3). This map was used to establish a proxy for sustainability evaluation by
comparing the areas where cocoa can be grown under coconut palm plantations with the
identified suitability classes.
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The land use capability map for Bougainville in Figure 4 shows the areas suitable for
cultivation based on various aspects describing soil, physiography, access limitations, and
hazards. The land suitability in this map ranges from class I to class V, indicating lands un-
suitable for cultivation to lands exceptionally suitable for any commercial use, respectively.

The soil map of Bougainville (Figure 5) presents the major soil types (http://worldmap.
harvard.edu/data/geonode:DSMW_RdY (accessed on 23 April 2021)) found within the
province. We ranked the soil types based on their capability for cocoa production using the
following principles:

• Acrisols with a clay-rich subsoil (present in southeast Bougainville), were ranked as
having low suitability for cocoa due to acidic conditions, low fertility, and the need
for management.

• Luvisols with a clay-rich subsoil (present in north Bougainville—Lonahan), corre-
sponding to fertile soils, were ranked as having a moderate suitability.

• Other soil types categorised are:

(a) Relatively young soils or soils with very little or no profile development, or
very homogenous sands with moderate fertility, predominately Cambisols
(present in central Bougainville), were ranked as having moderate suitability.

http://worldmap.harvard.edu/data/geonode:DSMW_RdY
http://worldmap.harvard.edu/data/geonode:DSMW_RdY
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(b) Soils strongly influenced by water, such as Fluvisols (present in south and
central west Bougainville around Siwai), were ranked as being moderately
suitable for cocoa as they require drainage management.

(c) Soils of volcanic origin, that is, Andosols (main soil type of Bougainville spread
across central and south), were ranked as exceptional because they are deep
and present adequate physical soil properties for cocoa.
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2.3. Detection of Potential Cocoa Orchards and Uncertainty Estimation

All the different rasters derived from Sentinel collections for each calendar year were
stacked together with the slope of the terrain and the distance to roads to create a single
multi-band image used for potential cocoa orchard detection (Figure 6). To achieve this, a
random forest model with 250 decision trees was used. This algorithm was selected because
it outperformed other classifiers, including Support Vector Machines (SVM), Classification
and Regression Trees (CART), Gradient Tree Boost, and Naïve Bayes [43] (Supplementary
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Materials Table S1). The supervised classification was conducted by sampling anchor
pixels from polygons drawn in two land use classes, including coconut orchards and others
(such as water, roads, forest, and bare land). A total of 268 polygons were drawn from
known potential cocoa orchards (coconut plantations) and randomly sampled based on
pixels. The sampling order was randomised and limited to 20,000 samples. Additionally,
444 polygons from other land uses were drawn, sampled, randomised, and from these,
another 60,000 samples were selected. These two categories were combined, randomised
again, and split into training, validation, and testing subsets in proportions of 10%, 80%,
and 10%, respectively.
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Table 1. Vegetation indices used in this study.

Index Equation Source

Enhanced vegetation index (EVI) EVI = 2.5(NIR − red)
(NIR + 6 × red − 7.5 × blue + 1)

[44]

Normalised difference moisture index (NDMI) NDMI = (NIR − SWIR1)
(NIR + SWIR1)

[45]

Chlorophyll index green (ChI green) ChI green = NIR
green − 1 [46]

Vogelmann Red Edge Index (VREI) VREI = NIR
Red Edge [47]

Chlorophyll index red edge (CIr) CIr = Red Edge 3
Red Edge 1 − 1 [48]

Red edge curve index (RECI) RECI = (Red Edge2 − Red Edge1) × NIR
Red Edge1 Proposed in this study



Remote Sens. 2023, 15, 3492 8 of 19

To assess the uncertainty of the classification, the output of the random forest model
was set to the probability mode to obtain probabilities for correct pixel-based classifications.
These probabilities were used to evaluate the uncertainty using the normalised Shannon
entropy [49]:

H[P] =
−∑n

i=1 pi ln pi

Smax
(1)

where pi is the probability of class i, n is the number of classes, and Smax corresponds to
ln n. The normalised Shannon entropy ranges from 0 to 1, where 0 implies total certainty
about the classification and 1 for a total uncertainty [50].

2.4. Validation of Classification

For this analysis, a holdout cross-validation analysis was subsequently applied to
the sample subsets for the data corresponding to the calendar year 2019. This allowed
the development of a confusion matrix, from which the performance was evaluated using
metrics such as kappa, overall accuracy, f1-score, consumer’s accuracy, and producer’s
accuracy [51]. The kappa metric compares the agreement obtained to the agreement
obtained by chance [52]. The overall accuracy is the ratio between correctly classified
samples and the total samples. The f1-score corresponds to the harmonic mean between
precision and recall. The producer’s accuracy for each class is calculated by dividing the
number of correctly classified samples by the total number of samples per column in the
confusion matrix, while the consumer’s accuracy is the correctly classified samples per
class divided by the total samples per row.

In simple terms:

(a) The producer’s accuracy (relates to omission errors) represents how well reference
pixels of the land-use type are classified.

(b) The omission error refers to excluding a pixel that should have been included in the
class (i.e., omission error = 1 − producer’s accuracy).

(c) The consumer’s accuracy (relates to commission errors) represents the probability
that a pixel classified into a given category represents that category on the ground.

(d) The commission error refers to including a pixel in a class when it should have been
excluded (i.e., commission error = 1 − consumer’s accuracy).

Since cocoa orchards are expected to have a multidecadal lifespan, all samples previ-
ously selected for detection through the random forest algorithm (training and validation
from 2019) were combined and used as a validation source for the year 2020.

3. Results

The results showcase the classification conducted in this study involving three main
components. First, the use of the finer resolution Sentinel-1 and Sentinel-2 imagery
(Figure 6); second, the processing of imagery (Sentinel-1 and Sentinel-2) for feature ex-
traction using all the 22 variables together; third, fitting the RF model to detect potential
cocoa orchards. An attempt has also been made to find relationships between this classified
map and soil and land capability legacy information. Therefore, the following subsections
of the results report on the main components.

3.1. Classification Performance

The classification accuracy was above 90% for both the calibration and validation
datasets (Table 2). The model provided a high overall calibration accuracy (0.99) as well as a
high validation accuracy (0.97). This high overall accuracy needs to consider the imbalance
between classes, as machine learning classification can be greatly influenced by imbalance
in classes [53]. A decline in the more conservative Kappa accuracy for the validation model
(0.929) still shows a very good performance in the classification. However, Kappa results
should be taken with caution as they refer to an agreement by chance instead of the actual
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agreement, which may lead to a wide range of values, even if the overall accuracy is high,
and difficulties in comparing Kappa coefficients [54].

Table 2. Classification accuracy for calibration and validation datasets.

Dataset Kappa Overall Accuracy Producer’s Accuracy Consumer’s Accuracy F1-Score

Calibration 0.999 0.998
Cocoa region: 0.999 Cocoa region: 0.999 Cocoa region: 0.999

Non-cocoa: 0.998 Non-cocoa: 0.999 Non-cocoa: 0.999

Validation 0.929 0.974
Cocoa region: 0.992 Cocoa region: 0.992 Cocoa region: 0.983

Non-cocoa: 0.918 Non-cocoa: 0.977 Non-cocoa: 0.948

The source of errors when evaluating the producer’s and consumer’s accuracy is
mainly in the non-cocoa classified regions, which implies larger omission errors (false
negatives). Furthermore, the commission error is higher for non-cocoa regions compared
to potential cocoa regions. This is reflected in the lower consumer’s accuracy for non-cocoa
regions (0.977) compared to cocoa regions (0.992), which also represents within-class errors
in a map (false positives). These results, which imply the combination of different metrics
(i.e., Kappa coefficient, overall accuracy, f1-score, producer’s accuracy, and consumer’s
accuracy) show a reliable performance in the classification, even considering the particular
limitations indicated, providing a robust calibration dataset of areas with cocoa potential.
This can be used to assess future land changes, providing a tool utilisable by government
policymakers responsible for monitoring and reporting on land cover changes.

Additionally, the resulting map was compared against the independent dataset of
known cocoa orchards [40] (Figure 5). All the cocoa farms from the independent dataset
are within the classified areas with cocoa potential, which is consistent with the general
land capability map for Bougainville shown in Figure 4.

Following a robust optimisation process, the RF model created in this study shows
classification reliability. In this study, the top five variables contributing the most to the
RF model were B4 (red), RECI, B2 (blue), NIR entropy, and EVI (Figure 7). The B4 and B2
represent raw bands, which are strongly absorbed by vegetation. Similarly, EVI relies on red,
NIR, and blue bands, and varies depending on changes in the canopy structure [55]. These
covariates provide insights into the vegetation types. On the other hand, RECI is based
on differences in the red edge range of the wavelength spectrum and the ratio between
NIR and red edge bands. The red edge wavelengths exhibit high reflectance variations
in vegetation [56] and are known to be good indicators of the vegetation physiological
status [57]. Entropy in the NIR and red bands corresponds to a textural analysis of images as
it uses the pixel neighbourhood (kernel) for calculation. When applied to these wavelengths,
entropy helps distinguish between land uses with different reflectance characteristics. All
surface reflectance-derived bands took precedence over SAR and ancillary data.

Although multi-collinearity does not impact the performance of random forest re-
sults [58–60], it can lead to unreliable feature rankings [61]. Therefore, Figure 8 presents the
correlogram of covariates from the samples. Bands in the visible and red edge wavelength
spectrum exhibit high correlation, and a similar pattern can be observed among indices
calculated from reflectance band combinations. As a result, the importance of covariates
must be taken with caution.

3.2. Detection of Potential Cocoa Orchards

The classified area with the potential for cocoa expansion (under coconut plantations,
Figure 9a) accounts for 5% of Bougainville’s total area (479.97 km2), as assessed by the
degree of uncertainty map, which ranges from 0.20 to >0.80 (Figure 9b). Some observations
align clearly with the land capability map (Figure 4). Areas with high uncertainty (Figure 9b)
correspond to regions with significant variability in land capabilities (Figure 4).
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Figure 7. Relevant bands and indices by their importance from the random forest classification.
Raw bands (B2, B4, B7, B12, B5, B3, B11, and B6) were extracted and used as covariates as well
as to calculate vegetation indices, which were used with the raw bands. Six vegetation indices
were calculated for different calendar years using the visible, near-infrared (NIR), and red edge
bands. Vegetation indices include the enhanced vegetation index (EVI), the normalised difference
moisture index (NDMI), and the chlorophyll index green (Chl), which are visible NIR-based indices,
the Vogelmann Red Edge Index (VREI), the chlorophyll red edge index (CIr), the red edge curve
index (RECI), vertical transmit and vertical receive (VV), angular second moment (VVasm), variance
(VVvar), inverse different moments (VVidm), and entropy (VVent).
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Figure 9. The (a) cocoa potential classification map of Bougainville with green areas identified as
regions with cocoa potential and non-green as non-cocoa regions and (b) uncertainty map of cocoa
orchards in Bougainville.

This relationship is further illustrated in Figure 10, where most lands with cocoa
potential are located along the coast in the central region, in line with the identified land
capability in Figure 4. Similarly, the limited or unsuitable land classification in the south
(Figure 4) aligns with the regions of non-cocoa potential in Figure 10. There is a notable
coincidence of cocoa potential in both maps for the western region (Figures 4 and 10). Ad-
ditional examples of good and poor detection for cocoa potential are provided in Figure 11.
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Figure 11. Example of zoomed-in satellite and classified areas. Images (A–D) represent examples of
good detection of potential cocoa orchards (under coconut plantations) and (E–H) represent examples
of poor detection.

This heuristic tool offers users the opportunity to assess the potential for cocoa expan-
sion, evaluate land cover change, and detect deforestation.

Comparing the soil map with the classified map of cocoa potential (Table 3) and
quantifying the extent of lands with cocoa potential in each soil type, it becomes evident
that local farmers have successfully chosen where cocoa may be produced. The majority
of land with potential for cocoa expansion have Luvisols and Andosols and a few with
Acrisols. The distinction between the use of the Cambisols in the central part of Bougainville
and the moderately suitable Fluvisols and Luvisols is likely influenced by limited road
accessibility in the central region. From this, we understand that suitability to produce
cocoa depends mainly on soil capability and market access constraints amongst other
biophysical variables (e.g., climate).
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Table 3. Cocoa grown in Bougainville on different soil types.

Soil Type Soil Area (ha) Area of Cocoa Grown by Soil Type (%)

Af-Ferric Acrisol 50,177.7 1.46
Bh-Humic Cambisol 68,292.1 0.14

Je-Eutric Fluvisol 98,743.7 8.34
LC-Chromic Luvisol 43,727.0 22.32

TM-Andosol 633,407.4 75.24

4. Discussion

Native forests throughout the tropics face an increasing threat from human-induced
land use changes and climate change [62,63] and there is the need to support the liveli-
hoods of smallholders, including those growing cocoa [2,32]. Previously, it has been nearly
impossible to accurately map cocoa orchard distribution, as cocoa trees are identified as
forests in traditional satellite images [64]. However, regularly planted coconut-dominated
canopies can be easily detected [29]. Coconut is a common shade tree in the cocoa pro-
duction systems of PNG [65]. Therefore, this study has identified an opportunity for a
systematic and broad-scale assessment of coconut to evaluate the areas that can be used for
cocoa intensification.

We used freely available Sentinel-1 and Sentinel-2 satellite imageries and successfully
identified the processing required to discriminate the coconut classification from the sur-
rounding forest [29] and overcame the high frequency of cloud cover associated with the
region. Our results demonstrate that combining remote sensing techniques using very
high-resolution imagery, GLCM textural analysis, vegetation indices, and a RF classifier
gave an overall validation accuracy of 97 percent for potential cocoa and non-cocoa classifi-
cation. These results were not entirely a surprise given the huge body of successful work
along similar lines [26–30]. Additionally, the confusion matrix helped reveal the sources of
errors; based on this, it will be possible to improve the classification accuracy in the future,
perhaps by adding more polygons/pixels from non-cocoa regions.

Further, we expect the top five covariates used in the model (B4, RECI, B2, NIR
entropy, and EVI) to differentiate between systematically planted cocoa (4 m spacing)
and coconut (12 m spacing) trees and their associated cropping cycle from the forest. For
example, the red edge and NIR bands are probably able to capture information on planting
patterns, the colour of leaves, and the height of cocoa (average 3–5 m) and coconut (average
15–25 m) trees from the forest [66]. We cannot undertake this analysis at this stage, and this
will require some ground-based data to create a calibration dataset to distinguish cocoa
from coconut trees. The land capability was mapped (Figure 4) in 1967 in Bougainville
without the use of finer scale information currently available [42]. The map illustrates the
general land suitability for cultivation across the island, but not to the scale needed for the
current monitoring of intensification or expansion potential. While the 1967 map and our
remote sensing effort cannot be compared directly due to differences in methodology, the
general trend shows that the area under cocoa complements the regions that are suitable
for cultivation, as shown by the coincidence of uncertainties (Figures 9 and 10) with land
capability (Figure 4). Therefore, we propose consulting the legacy data to assess the
importance of land capability on present cocoa orchard dynamics [67].

Studies on land suitability [65,68] show that much is known about the capability of
a given area to be able to grow cocoa trees in PNG. However, there are still uncertainties
around many aspects of interactions between soil capability and conditions [30]. For
example, the highly suitable Andisols of Bougainville may have low magnesium and
calcium with high but unavailable phosphorous [69]. These are of the type 1 class (soils
with no physical limitation to root development within 1.5 m of the surface) [68]. This
shows that these soils can produce cocoa with additional nutrient management required to
maintain or enhance soil conditions based on deficiencies [70] using fertilisers [30].

We found that most farmers already grow plantations where the soil is suitable, and
these results can be used to identify local limitations for more targeted and effective soil
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management through training opportunities. The map can help understand the spatial
extent for future intensification of cocoa farming and can be used as a tool for preemptive
decisions of where extension services and demonstration sites for soil/land management
can be directed to improve cocoa and coconut production and their value chain (https://
bougainvillenews.files.wordpress.com/2018/06/bougainville-strategic-plan-2018-2022.pdf
accessed on 19 July 2021).

For sustainable intensification purposes, an attempt has been made to investigate the
suitability of areas where cocoa can potentially grow under coconut plantations. Specifically,
this addresses the challenges outlined in the PNG E-Ag Strategy (https://png-data.sprep.
org/dataset/papua-new-guinea-e-agriculture-strategy-20172023/resource/379a5244-5b9
8-4b72-95e6 accessed on 19 July 2021) developed in accordance with the framework pro-
posed by the FAO ITU E-agriculture Strategy Guide (http://www.fao.org/3/a-i5564e.pdf
accessed on 19 July 2021). This approach and the resulting data and interpretation pre-
sented here provide a monitoring and evaluation framework for land cover change and
suitability for intensification. Further, we outline two main impacts of the study:

(a) As a land cover change monitoring tool: Comparing the 2019 and 2020 data, a
preliminary analysis of the spatial distribution of potential cocoa regions indicates an
increase in area under plantations within 1 year. For the 2019 classified map, the total area
under crop production is 479.97 km2 and an increase in the plantations by 7.31 km2 is seen
(Table 4). This result shows an increase in plantations in Bougainville from the year 2019
to 2020. This land use change is not insignificant, since it represents a growth of 1.52%
of plantation extent in one year. Changes of this magnitude should be monitored and
managed to avoid damage to natural ecosystems. Therefore, the calibration dataset created
in this study can be used as a cocoa expansion and monitoring tool to quantify short- and
long-term changes in land cover.

Table 4. A potential land cover monitoring tool. Area under cocoa in years 2019 and 2020 in Bougainville.

Year Region Area (km2)

2019 Non-cocoa 8893.16
Cocoa 479.97

2020 Non-cocoa 8885.85
Cocoa 487.28

Change 2019–2020 Non-cocoa −7.31
Cocoa 7.31

(b) Sustainable cocoa intensification: Comparing the cocoa suitability map (Figure 3)
to the classified map, we see that (Table 5) plantations (coconut and coconut–cocoa) are
currently grown in highly suitable areas. This is important because unsustainable devel-
opment implies using land resources beyond their limits, and therefore, coconut–cocoa
orchard expansion towards unsuitable lands can be used as an indicator of unsustainable
development. Further, planned roads would also create new deforestation hotspots via the
rapid expansion of logging, mining, and oil-palm plantations [71].

Table 5. Suitability class areas for cocoa orchards in Bougainville and the corresponding planted areas.

Cocoa Suitability Area (ha) Area of Cocoa in Bougainville (%) Area of Cocoa within Class (%)

Suitability 1 0 0 0
Suitability 2 8738.7 0.24 1.16
Suitability 3 437,677.1 24.68 2.35
Suitability 4 413,485.0 69.21 6.97
Suitability 5 12,467.1 5.86 19.58

Since our results show that coconut and cocoa are already produced in highly and
exceptionally suitable areas, this sets a limit to their potential expansion in a sustainable

https://bougainvillenews.files.wordpress.com/2018/06/bougainville-strategic-plan-2018-2022.pdf
https://bougainvillenews.files.wordpress.com/2018/06/bougainville-strategic-plan-2018-2022.pdf
https://png-data.sprep.org/dataset/papua-new-guinea-e-agriculture-strategy-20172023/resource/379a5244-5b98-4b72-95e6
https://png-data.sprep.org/dataset/papua-new-guinea-e-agriculture-strategy-20172023/resource/379a5244-5b98-4b72-95e6
https://png-data.sprep.org/dataset/papua-new-guinea-e-agriculture-strategy-20172023/resource/379a5244-5b98-4b72-95e6
http://www.fao.org/3/a-i5564e.pdf
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manner. Yet, these values should not be used as absolute. For instance, extremely suitable
areas for cocoa production are under plantations in about 20% of their extent. This does
not mean that the remaining 80% of these areas could be used for cocoa plantations. These
regions may have excellent potential for cocoa, but they might be prioritised for other
uses (e.g., residential, environmental protection, horticulture, etc.). Income diversification
has been shown as a significant factor in smallholder wealth in Bougainville [2]. In this
regard, economically sustainable agriculture must consider expansion limits to foster
ecosystem functioning and biodiversity, which is commonly affected by agriculture, while
intensification has proven insufficient on its own to cope with this issue [72].

Being an understory tree, cocoa’s intensification can be considered a sustainable cash
crop in a multi-layered forest system [73,74], adopting agroforestry principles [75]. The
mapping shows great potential for intensification as an understory crop with coconut. It is
expected that the cocoa grown in this type of farming system holds enormous potential for
environmental [75] and cultural [76] conservation in regions under pressure from climate
change, deforestation, and mono-cropping [63,76–78].

5. Conclusions

This study combined grey-level co-occurrence matrix (GLCM) textural features and
vegetation indices from Sentinel datasets to evaluate the sustainability of cocoa expansion
in given land suitability classes for agriculture and soil capability classes. We mapped
areas where cocoa smallholder orchards either already exist or can be grown by using fine-
resolution C-band synthetic aperture radar and multispectral instruments from Sentinel-1
and Sentinel-2 satellites, respectively. Further, the processing of imagery (Sentinel-1 and
Sentinel-2) for feature extraction using 22 variables was conducted as was fitting an RF
model to detect and distinguish cocoa orchards from non-cocoa areas. We were able to
differentiate potential cocoa and non-cocoa regions with 97 percent overall accuracy and
over 90 percent producer’s and user’s accuracies.

Our planning tool provides a foundation for sustainable cocoa production in other
coconut-growing regions by identifying the opportunity to intensify cocoa and coconut in-
tercropping. Secondly, this work addresses the regional needs aspired to by the Bougainville
government by identifying the land cover change in relation to land capability to meet
the sustainability goals set in the Bougainville Strategic Plan 2018–2022. Demand for
sustainably produced cocoa must be supported with technology, extension services, and
consultation with governmental and non-governmental organisations. Further assessment
on sustainability needs to be evaluated by defining a cocoa production extent threshold for
sustainable development and the difficulty in its formulation or quantification. We need
empirical and quantitative ways to assess it, therefore, this is a huge field for future work,
along with region-specific research to identify sustainable production plans.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15143492/s1, Table S1: Performance of different classification algorithms
for cocoa plantation detection.
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