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Abstract: This paper proposes a methodology for deriving an agreement map between the Spanish
Land Parcel Information System (LPIS), also known as SIGPAC, and a classification map obtained
from multitemporal Sentinel-1 and Sentinel-2 data. The study area comprises the province of València
(Spain). The approach exploits predictions and class probabilities obtained from an ensemble method
of decision trees (boosting trees). The overall accuracy reaches 91.18% when using only Sentinel-2
data and increases up to 93.96% when Sentinel-1 data are added in the training process. Blending both
Setninel-1 and Sentinel-2 data causes a remarkable classification improvement ranging from 3.6 to
8.7 percentage points over shrubs, forest, and pasture with trees, which are the most confusing classes
in the optical domain as demonstrated by a spectral separability analysis. The derived agreement
map is built upon combining per pixel classifications, their probabilities, and the Spanish LPIS.
This map can be exploited into the decision-making chain for subsidies payment to cope with the
2020+ European Common Agricultural Policy (CAP).

Keywords: Sentinel-1; Sentinel-2; classification; ensemble of boosting decision trees; Common
Agricultural Policy (CAP)

1. Introduction

The Common Agricultural Policy (CAP) is one of the most major European Commission (EC)
policies. With a budget of €385 billion [1] (28.5% of the overall European budget in the period 2021–2027),
the CAP provides support to European farmers with the aim of ensuring the provision of affordable
food while also guarantying its quality on European markets. In this context, €65.2 billion (68.9% of the
total CAP budget) is for direct payments. CAP requirements for payments are bound to the agricultural
land cover and land use. Every member state authority must verify farmers’ declarations in order to
comply with legal cross-compliance control mechanisms [2]. If farmers’ declarations do not fit the
CAP requirements and standards, associated payments could be canceled. Paying agencies of every
member state are responsible of supervising at least 5% of the received declarations. This is achieved
by means of in situ field inspections and photo interpretation of very high–resolution images acquired
from airborne or satellite platforms. Field inspections are expensive mainly when large areas have to
be assessed. In addition, photo interpretation is a time-consuming task, which may lead to different
results depending on both inspector visual skills and the quality of the images. On 22 May 2018, the
EC adopted a new regulation for 2020+ CAP payments that include the possibility of using Earth
Observation (EO) data from the Copernicus Sentinel-1 and Sentinel-2 programs for monitoring farmers’
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parcels and assess cross-compliance [3]. This action will be applied to all declarations whereas only 5%
of the declarations concerned by eligibility criteria, commitments and other obligations that cannot be
monitored by EO data, will be supervised carrying out in situ checks. This oncoming regulation also
attempts to alleviate the administrative red tape in order to facilitate the interaction between farmers
and paying agencies.

Some of the most widely used remote sensing (cost-free) data in land cover and land use
studies are provided by the National Aeronautics and Space Administration (NASA) (e.g., Moderate
Resolution Imaging Spectroradiometer (MODIS) data) [4] and the United States Geological Survey
(USGS) (e.g., Landsat data) [5,6]). They deliver spectral information of land surface at global coverage
with a per pixel spatial resolutions ranging from 250 m–1 km, in the case of MODIS, to 30 m in the case
of Landsat. Temporal resolution varies from 16 days for Landsat to 1–16 days for MODIS (depending
on the temporal composite period of the product). These features make them suitable for classification
and vegetation monitoring over large areas. However, this spatial resolution can be a limitation
for classification mainly over very heterogeneous areas characterized by small landholdings. In the
frame of the European Space Agency (ESA) Copernicus program, data from the Sentinel-1 [7] and
Sentinel-2 [8] are freely disseminated. These data provide global information at decametric spatial
resolution every 5–6 days, offering promising possibilities for land use classification. As a result,
several classification studies have recently sprung up in the literature with the aim of classifying crop
types, tree species, and grassland habitats [9–13].

In general, crop classification approaches can be faced at pixel level or at parcel level
(i.e., object-based) depending on both the spatial resolution of available images and the characteristics
of the target area. In object-based approaches, the unit to be classified is the so-called object, which
is built up from the image segmentation, whereas in pixel-based approaches, pixels are classified
individually without taking into account spatial aggregation. Irrespective of the classification unit,
EO techniques for deriving classification maps are usually based on supervised learning. Among the
most widely used supervised classification algorithms we can find decision trees (DT) [14], k-nearest
neighbor (k-NN) [15], support vector machines (SVM) [16], and random forests (RF) [17]. SVM and
RF usually trend to outperform DT and k-NN [18–20]. In addition, we can find several studies in
the literature combining classifiers and multitemporal remote sensing data [21,22], leading to higher
accuracies in the classification.

Although many studies have been undertaken automatic vegetation classification from remote
sensing data, to date of writing, only a few of them are set up to cope with the context of European
CAP subsidies [23–26]. However, none of them deals with the need for updating the Land Parcel
Identification System (LPIS), which is key for both improving LPIS reliability and distribution of
CAP payments while also reducing administrative costs [27]. In this context, this paper describes
a classification framework from Sentinel-1 and Sentinel-2 developed for improving subsidies control
for the CAP in the Valencian Community (Spain) and assessing the LPIS update. The classification
exploits a time series of both optical and microwave data, vegetation indices (VIs), as well as features
provided by assembling decision trees. The main novelties are two-fold. First, in this paper, we
benefit from the full capabilities of ensemble classifiers’ outputs using in both class predictions and
the class probability obtained from the ensemble of decision trees, which is not very often exploited
in most of remote sensing classification studies. Second, we combine both the prediction and its
probability with the Spanish LPIS to derive an agreement map between derived classification and
Spanish LPIS. This achievement demonstrates its applicability for decision making in the framework
of CAP subsidies.



Agronomy 2019, 9, 556 3 of 20

2. Data Collection

2.1. Study Area

The study area selected in this work belongs to the land portion of an entire Sentinel-2 tile
covering part of the Valencian Community (see red square in Figure 1). The Sentinel-2 tile is the
T30SYJ embracing 110 km × 110 km. The selected study area falls within a Sentinel-1 tile in descending
mode that allows for the combination of both sources of information. The study area is located over
the province of Valencia (East of Spain), which has a typical Mediterranean climate, with an average
annual temperature and humidity of 17 ◦C and 65%, respectively. The dominant non-urban classes
over the study area are shrubs (SH), fruits (FR), citrus (CI), forest (FO), rice crops (RI), olive grove (OL),
pasture with trees (PAT), vineyards (VI), dried fruit (DFR), and pasture (PA), which altogether cover
the majority of the study area.
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Figure 1. Location of the study area in the Valencian Community (blue shape), East of Spain, and the
corresponding Sentinel-1 (green) and Sentinel-2 (red) tiles.

2.2. Sentinel-1 and Sentinel-2 Data

ESA provides open access to Copernicus Sentinel-1 and Sentinel-2 data from the Sentinels
Scientific Data Hub (https://scihub.copernicus.eu/). In this study, we used the Sentinel-1 Level-1
Ground Range Detected (GRD) product that uses the Wide swath (IW) mode providing data in VV
and VH polarizations. The data were calibrated to compute backscatter coefficient (sigma nought,
σ0), and subsequently, a multilooking was applied in order to mitigate the speckle noise effect with
a 2 × 2 window size. Eventually, in order to correct geometric distortions caused by slant range, layover,
shadows, and foreshortening, a geometric correction was performed using the digital elevation model
from the Shuttle Radar Topography Mission at 1” resolution (SRTM, 1sec Grid). These processing were
undertaken using the Sentinel Application Platform (SNAP).

Sentinel-2 top-of-atmosphere reflectances (Level 1C) were downloaded and atmospherically
corrected using the Sentinel-2 atmospheric Correction (Sen2Cor) toolbox [28] to obtain top-of-canopy
corrected reflectance for all bands excluding the B10 band (cirrus band), which does not contain surface
information over the study area.

Sentinel-2 Level 1C data were downloaded jointly with the Sentinel-1 GRD data from April 2017
to March 2018, embracing 30 Sentinel-1 and 11 Sentinel-2 images for the study area (see Table 1).
Only completely cloud-free Sentinel-2 images were considered throughout the temporal window from
April 2017 to March 2018, which was selected to account for a complete vegetation cycle of all classes
within the study area.

https://scihub.copernicus.eu/
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Table 1. Sentinel-1 and Sentinel-2 acquisition dates in 2017 and 2018.

2017 2018

Sentinel-1

12 April, 24 April, 6 May, 18 May, 30 May,
5 June, 17 June, 29 June, 11 July, 23 July,

4 August, 16 August, 28 August, 9 September,
21 September, 3 October, 15 October,

27 October, 8 November, 20 November,
2 December, 14 December, 26 December.

7 January, 31 January, 19 January,
12 February, 24 February,

20 March, 8 March.

Sentinel-2 6 May, 26 May, 15 June, 13 September,
13 October, 2 December, 17 December.

21 January, 26 May 26, 15 February,
7 March, 27 March.

2.3. Sistema de Información Geográfica de Parcelas Agrícolas (SIGPAC)

Several European countries, including Spain, have their own Land Parcel Identification System
(LPIS), which is annually updated [23–25]. In Spain the LPIS is given by the Sistema de Información
Geográfica de Parcelas Agrícolas (SIGPAC), which assigns to every agricultural parcel a unique land
use (SIGPAC use). SIGPAC allows the geographic identification of parcels declared by farmers and
livestock farmers, under any subsidy regime relating to the area which is cultivated or used for
livestock. It was built upon an orthophotography mosaic embracing the Spanish territory, in which
cadastral information collected by authorities is over-imposed (https://www.fega.es).

SIGPAC classifies the uses into categories including natural vegetation, urban zones and mixed
classes. In this study we have selected the main 10 classes that cover the vast majority of agricultural
parcels over the study area (listed in Section 2.1. and Section 2.3.). We have excluded urban areas
and buildings, mixed classes, water bodies, and very-low representative classes. Figure 2 shows the
considered SIGPAC classes over the study area in 2017 and the percentage coverage of every class.

2.4. Ground Truth

The Valencian regional government, specifically its Department of Agriculture, Environment,
Climate Change, and Rural Development (http://www.agroambient.gva.es/va/), provided us with
an extensive ground truth regarding SIGPAC classes (see Table 2). It was obtained through several
field campaigns and parcel inspections as well as thanks to the expert knowledge provided by regional
authorities’ technical agronomists.

Table 2. Ground truth: number of pixels for every class.

Class Shrubs Dried
Fruit Fruits Pasture Rice Forest Vineyard Pasture with

Trees
Olive

Groove Citrus

No.
Pixels 20,382 20,703 19,800 20,058 20,157 20,478 20,295 18,846 19,434 20,385

https://www.fega.es
http://www.agroambient.gva.es/va/
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3. Methodology

The methodology is outlined in Figure 3 which includes the main following steps: (1) data
collection of ground truth, and processing selected Sentinel-1 and Sentinel-2 images as described in
Section 2.2; (2) feature selection and spectral separability analysis; (3) assessment of different classifiers
accuracy over a test set never used during the training process; (4) selection of the best classification
method and derivation of both a classification and a class probability map over the study area (masking
out the sea and non-interest areas) and (5) generation of an agreement map between the derived
classification map and SIGPAC.
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3.1. Feature Selection

Although the downloaded Sentinel-2 images are cloud free, it may occur that the atmospheric
correction provided artifacts or slight changes in reflectance over the same classes in different dates
(changes not related to vegetation phenology), which would introduce noise in the training process,
leading to worse classification results. To avoid non-optimal Sentinel-2 images, as well as to alleviate
the Hughes phenomenon [29] related with the decrease of the classification performance as increasing
the number of features, a Sentinel-2 image selection was made using the Jeffries-Matusita (JM) [30]
and Bhattacharyya (BH) [31] distances. The JM distance is a measure of the average distance between
a pair of two classes defined as

Ji j = 2
(
1− e−Bi j

)
(1)

where Bij is the Bhattacharyya distance given by

Bi j =
1
8
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where µi and µj are the mean vectors of the two considered classes and Σi and Σj are the corresponding
covariance matrices. The JM distance ranges from 0 to 2 as increasing separability between classes,
whereas a Bij larger value corresponds to higher average distance between classes. In the case of having
normally distributed classes, Jij becomes Bij [30].

In addition to the selected Sentinel-2 images, a set of VIs (see Table 3) were stacked to the
Sentinel-2 images feature space (i.e., used as predictors during the training). In particular, we
considered the wide-used Normalized Difference Vegetation Index (NDVI) [32] and its red-edge
version (NDVI705) [33], the Modified Chlorophyll Absorption in Reflectance Index (MCARI) [34],
which accounts for chlorophyll changes, the Plant Senescence Reflectance Index (PSRI) [35] that is
sensitive to plant senescence, and in order to minimize soil background noise, both the Optimized Soil
Adjusted Vegetation Index (OSAVI) [36] and its red-edge version (OSAVI705).
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Table 3. Vegetation indices used in the feature space. Reflectance is denoted by ρλ (λ in nm).

Vegetation Index Equation

NDVI ρ842−ρ665
ρ842+ρ665

OSAVI
ρ842−ρ665

ρ842+ρ665+0.16

NDVI705
ρ842−ρ705
ρ842+ρ705

OSAVI705
ρ842−ρ705

ρ842+ρ705+0.16

MCARI [(ρ705 − ρ665) − 0.2(ρ705 − ρ560)]
( ρ705
ρ665

)
PSRI ρ665−ρ560

ρ740

The selected Sentinel-2 images and VIs were jointly stacked with the available Sentinel-1 images
to build the remote sensing data set (see Figure 4) used for the classification. Hence, the final training
feature space was formed by both optical and SAR data. From the microwave domain, the VV and VH
polarizations were used, as well as the VH/VV ratio, which is employed in crop classification because
it is considered to be a good indicator of vegetation status [10,37]. In addition, to assess the impact
of Sentinel-1 in the classification, an experiment was undertaken by removing Sentinel-1 data to the
six selected Sentinel-2 images and VIs. In this case, the training feature space was formed only by
optical data.
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3.2. Classifiers

The ground truth was associated to the remote sensing data and was then split into two sets,
training and test set, comprising 2/3 and 1/3 of the pixels, respectively. The big effort made by the
Valencian authorities allowed us to build a huge training set with balanced classes, thus avoiding
issues introduced by imbalanced training samples [12].

Several classification algorithms based on supervised classification were trained using the training
set, and their respective accuracies were assessed over the test set (see results in Section 4.2). For instance,
we used a linear discriminant analysis (LDA), which is a classification algorithm based on a linear
transformation of variables that reduces an original feature space to a lower one that maximizes
separability among class distributions [38]. In addition, non-linear approaches such as the quadratic
discriminant analysis (QDA) and the k-NN classifier have been considered. The k-NN algorithm is
based on neighbor similarity features where the prediction is done taking into account the k-nearest
neighbors, where k is a real number typically ranging from 1 to a given number depending on image



Agronomy 2019, 9, 556 8 of 20

spatial features. We also considered the use of SVM, which is a kernel method (i.e., a method that
samples input data into a Hilbert space) that divides the training data using hyperplanes maximizing
the margin [16].

Finally, for having a more comprehensive sense, we decided to use ensembles of classifiers based
on decision trees. For the ensemble, different techniques such as bagging, boosting, and random
forest [39] were used. In the bagging ensemble, every decision tree is trained on a random subset
of training samples. The same sample can be selected for training all, several, or even none of the
decision trees composing the ensemble. In the case of RF, the approach is similar to bagging, but the
difference relies in the split of the nodes of every tree. The bagging method uses all input features for
splitting the nodes, whereas in the RF approach, the split is done considering a number of features
(typically its square root), which are selected randomly. In the boosting method, trees are trained
using all training samples in an iterative approach that increases the weights for samples classified
incorrectly in previous training rounds. The boosting approach uses multiple iterations to generate
a single composite strong learner. In this study, the Adaboost.M2 algorithm [40] was used for boosting
decision trees. The algorithm takes a bootstrap sample in every boosting iteration that is used for
building a weak classifier. Then the pseudo-loss is computed and used for updating the sampling
weights to be used for the next iteration. The final assignation for every pixel is given by the most
frequent class, obtained from all decision trees in the ensemble.

3.3. Agreement Map

An agreement map between the classification map derived from Sentinel-1 and Sentinel-2, and
SIGPAC was calculated. For this purpose, a series of logical rules have been proposed in order to
discriminate eight levels of agreement. The levels of agreement were obtained blending the information
provided by SIGPAC, and both the derived classification and confidence maps as described in Table 4.

Table 4. Agreement levels between classifications and SIGPAC.

Classification Map and SIGPAC Classification Confidence Level of Agreement

Same class AND >95% Very high agreement
Same class AND 70–95% High agreement
Same class AND 50–70% Significant agreement
Same class AND <50% Low agreement

Different classes AND <50% Low discrepancy
Different classes AND 50–70% Significant discrepancy
Different classes AND 50–70% High discrepancy
Different classes AND >95% Very high discrepancy

4. Results and Analysis

4.1. Sentinel-2 Spectral Separability Analysis

Sentinel-2 image selection was made using the aforementioned JM and BH distances over the
optical domain (i.e., Sentinel-2 bands). Only the images that maximize the class separability were used,
which leaded to the choice of 6 out 11 available and cloud free Sentinel-2 images. Table 5 shows the JM
(upper diagonal) and BH (lower diagonal) distances obtained for the first selected Sentinel-2 image,
which was acquired on 6 May 2017 over the study area (for the sake of brevity, we show the rest of
JM/BH tables in Supplementary Material (Tables S1–S5). It can be observed that several classes reach JM
values close to 2, which highlights the good separability between pair of classes. It is worth mentioning
rice is the most distinguishable class, exhibiting JM values very close to 2 and the highest BH values.
On the other hand, forest, pasture with trees, and shrubs are the classes presenting the lowest JM
and BH values (<0.5), which denotes their respective significant spectral confusion, being thus more
difficult to classify, a priori. Similarly, fruits and olive grove are also classes with short distances
between them and are difficult to discriminate. In addition, the JM and BH distances were computed
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taking into account all six selected Sentinel-2 images jointly (see Table 6). In this case, the results are
better than the ones obtained individually for each of the six selected Sentinel-2 images, which evince
the use of multitemporal features improves spectral separability among classes. However, for forest,
pasture with trees, and shrubs, although their spectral separability increase, remain the lowest.

Table 5. Jeffries–Matusita (JM) and Bhattacharyya (BH) distances for Sentinel-2 image acquired on 6
May 2017. Classes: shrubs (SH), fruits (FR), citrus (CI), forest (FO), rice crops (RI), olive grove (OL),
pasture with trees (PAT), vineyards (VI), dried fruit (DFR), and pasture (PA).

BH
JM

SH DFR FR PA RI FO VI PAT OL CI

SH 1.750 1.597 1.508 1.996 0.636 1.870 0.253 1.497 1.879
DFR 2.078 0.392 0.698 1.983 1.863 0.466 1.717 0.402 1.439
FR 1.603 0.218 0.621 1.985 1.760 0.672 1.538 0.250 1.472
PA 1.403 0.429 0.371 1.986 1.653 1.202 1.410 0.505 1.123
RI 6.102 4.776 4.880 4.939 1.989 1.989 1.986 1.988 1.995
FO 0.382 2.679 2.120 1.752 5.228 1.951 0.296 1.713 1.899
VI 2.731 0.265 0.409 0.919 5.249 3.714 1.872 0.792 1.692

PAT 0.135 1.955 1.465 1.221 4.991 0.160 2.752 1.446 1.837
OL 1.381 0.225 0.133 0.291 5.135 1.942 0.504 1.283 1.382
CI 2.802 1.271 1.331 0.825 6.033 2.988 1.870 2.509 1.174

Table 6. Jeffries–Matusita (JM) and Bhattacharyya (BH) distances taking into account all the six selected
Sentinel-2 images. Classes: shrubs (SH), fruits (FR), citrus (CI), forest (FO), rice crops (RI), olive grove
(OL), pasture with trees (PAT), vineyards (VI), dried fruit (DFR), and pasture (PA).

BH
JM

SH DFR FR PA RI FO VI PAT OL CI

SH 1.750 1.597 1.508 1.996 0.636 1.870 0.253 1.497 1.879
DFR 2.078 0.392 0.698 1.983 1.863 0.466 1.717 0.402 1.439
FR 1.603 0.218 0.621 1.985 1.760 0.672 1.538 0.250 1.472
PA 1.403 0.429 0.371 1.986 1.653 1.202 1.410 0.505 1.123
RI 6.102 4.776 4.880 4.939 1.989 1.989 1.986 1.988 1.995
FO 0.382 2.679 2.120 1.752 5.228 1.951 0.296 1.713 1.899
VI 2.731 0.265 0.409 0.919 5.249 3.714 1.872 0.792 1.692

PAT 0.135 1.955 1.465 1.221 4.991 0.160 2.752 1.446 1.837
OL 1.381 0.225 0.133 0.291 5.135 1.942 0.504 1.283 1.382
CI 2.802 1.271 1.331 0.825 6.033 2.988 1.870 2.509 1.174

4.2. Accuracy Assessment

Different classifiers were trained using the training set and their respective accuracies were
assessed over the test set (constituted by one third of the pixels never used during the training). Table 7
shows the overall accuracy (OA) and kappa index (κ) [41] of the results taking into account the different
features used in the classifications, i.e., if any vegetation index was stacked to Sentinel-1 and Sentinel-2
data. Among all evaluated classifiers and vegetation indices, the ensembles of decision trees revealed
the highest accuracies being the boosting approach the most accurate using the temporal information
of OSAVI705. It is interesting to highlight that the boosting approach outperforms both the rest of
ensemble approaches and the rest of classifiers irrespective of the VI. If no VI is used in addition to the
selected images, the classification performance is reduced (i.e., OA = 88.19% and κ = 0.87 obtained
without VIs vs OA = 93.96% and κ = 0.91 obtained in the best case).
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Table 7. Overall accuracy (OA) and kappa index (κ) obtained in the test set for every classifier.

Multitemporal Features (Optical +
SAR)

Overall Accuracy (%) (κ)

LDA QDA k-NN SVM RF Bagging
Trees

Boosting
Trees

6 × Sentinel-2 (12 bands) + NDVI
30 × Sentinel-1 (3 bands) 69.82 (0.68) 80.36 (0.79) 84.93 (0.83) 86.80 (0.85) 88.69 (0.87) 88.30 (0.87) 92.66 (0.90)

6 × Sentinel-2 (12 bands) + OSAVI
30 × Sentinel-1 (3 bands) 70.58 (0.69) 80.45 (0.79) 85.68 (0.84) 86.97 (0.85) 88.86 (0.87) 88.48 (0.87) 93.58 (0.91)

6 × Sentinel-2 (12 bands) + NDVI705
30 × Sentinel-1 (3 bands) 67.54 (0.66) 76.41 (0.75) 83.29 (0.82) 85.29 (0.84) 87.64 (0.86) 87.23 (0.86) 90.75 (0.89)

6 × Sentinel-2 (12 bands) + OSAVI705
30 × Sentinel-1 (3 bands) 70.95 (0.70) 80.50 (0.79) 85.94 (0.85) 86.99 (0.84) 89.05 (0.88) 88.76 (0.87) 93.96 (0.91)

6 × Sentinel-2 (12 bands) + MCARI
30 × Sentinel-1 (3 bands) 68.93 (0.68) 77.83 (0.76) 83.15 (0.82) 85.04 (0.84) 88.15 (0.87) 87.51 (0.86) 90.15 (0.89)

6 × Sentinel-2 (12 bands) + PSRI
30 × Sentinel-1 (3 bands) 66.94 (0.66) 71.60 (0.69) 76.83 (0.75) 84.07 (0.83) 87.10 (0.86) 87.08 (0.86) 88.96 (0.88)

6 × Sentinel-2 (12 bands)
30 × Sentinel-1 (3 bands) 66.73 (0.65) 70.23 (0.69) 75.84 (0.74) 85.59 (0.84) 86.80 (0.85) 86.25 (0.85) 88.19 (0.87)

Table 8 shows the corresponding confusion matrix (i.e., for the best result in Table 6). In general,
the results are good, and the majority of classes reveal both user’s accuracy (UA) and producer’s
accuracy (PA) higher than 90% and 94%, respectively. However, shrubs, forest and pasture with trees
presented lower accuracies ranging 82–88% with confusion among them. It is worth mentioning that
this behavior is in accordance with the a priori analysis carried out using the JM and BH distances.
The best result is obtained over rice where both UA and PA reach 99.9%, whereas pasture with trees is
the class with worst UA (82%), and shrubs is the class with worst PA (81.8%).

Table 8. Confusion matrix of the classification obtained for the boosting approach using as predictors
Sentinel-1 and Sentinel-2 imagery, and OSAVI705. Classes: shrubs (SH), fruits (FR), citrus (CI), forest
(FO), rice crops (RI), olive grove (OL), pasture with trees (PAT), vineyards (VI), dried fruit (DFR), and
pasture (PA).

Ground Truth
Total UA (%)

SH DFR FR PA RI FO VI PAT OL CI

C
la

ss
ifi

ed

SH 5560 19 19 1 0 259 1 329 69 7 6264 88.8
DFR 24 6619 10 1 0 7 5 12 72 12 6762 97.9
FR 70 63 6450 4 1 36 20 36 87 16 6783 95.1
PA 3 8 1 6661 0 3 2 1 10 3 6692 99.5
RI 1 1 0 2 6717 1 0 1 1 0 6724 99.9
FO 455 11 15 5 0 5845 1 349 38 12 6731 86.8
VI 3 11 18 1 0 0 6719 1 35 3 6791 98.9

PAT 500 36 27 2 1 569 0 5443 50 10 6638 82.0
OL 175 118 53 7 0 105 14 104 6101 36 6713 90.9
CI 3 15 7 2 0 1 3 6 15 6696 6748 99.2

Total
PA (%)

6794 6901 6600 6686 6719 6826 6765 6282 6478 6795 OA = 93.96%
κ = 0.9181.8 95.9 97.7 99.6 99.9 85.6 99.3 86.6 94.2 98.5

As highlighted by the aforementioned results, the family of ensemble of trees provided the highest
accuracies. The sensitivity of the ensembles of decision trees to the number of trees was analyzed
by executing different ensembles with increasing number of trees (see Figure 4). OA was calculated
from 1 to 100 trees in steps of 10, and from 100 to 1000 in steps of 100. Results show that 1000 decision
trees are sufficient for obtaining stable and accurate predictions. Belgiu and Drăguţ [42] suggested
that 500 trees are acceptable for remote sensing studies, however other studies use a number of trees
ranging from 10 up to 5000 depending on the number of features and spectral-temporal features of the
remote sensing data used [43,44].
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We also assessed the effect of removing Sentinel-1 data in the classification. In this case, the training
feature space was formed only by optical data. The removing of Sentinel-1 images (microwave data)
worsen classification accuracies in all cases (see Table 9) compared to the respective results in Table 7.
In this case, the best results were obtained when fusing the selected six Sentinel-2 multispectral images
and the OSAVI705. Again, the boosting approach outperforms the rest of classifiers (OA = 91.18% and
κ = 0.88). Table 10 shows the confusion matrix over the test set obtained in this case. The results are
not so accurate than the previous case when using both Sentinel-1 and Sentinel-2 data (see Table 8)
revealing a general decrease in accuracy for every class. It is worth mentioning that in terms of
percentage points (pp) in UA this loss is greater over shrubs (5.5 pp), forest (8.7 pp), and pasture with
trees (3.6 pp), and in PA, the loss is 7.5 pp for shrubs, 5.6 pp for forest, and 4.5 pp for pasture with trees.
In addition, the confusion among these classes was also increased. This confirms that the combined
use of Sentinel-1 and Sentinel-2 is useful for improving classification results.

Table 9. Overall accuracy (OA) and kappa index (κ) obtained in the test set for every classifier using as
predictors only Sentinel-2 data and VIs. Best result highlighted in bold.

Multitemporal Features
(Optical + SAR)

Overall Accuracy (%) (κ)

LDA QDA k-NN SVM RF Bagging
Trees

Boosting
Trees

6 × Sentinel-2 (12 bands) + NDVI
30 × Sentinel-1 (3 bands)

69.82
(0.68)

80.36
(0.79)

84.93
(0.83)

86.80
(0.85)

88.69
(0.87)

88.30
(0.87)

92.66
(0.90)

6 × Sentinel-2 (12 bands) + OSAVI
30 × Sentinel-1 (3 bands)

70.58
(0.69)

80.45
(0.79)

85.68
(0.84)

86.97
(0.85)

88.86
(0.87)

88.48
(0.87)

93.58
(0.91)

6 × Sentinel-2 (12 bands) + NDVI705
30 × Sentinel-1 (3 bands)

67.54
(0.66)

76.41
(0.75)

83.29
(0.82)

85.29
(0.84)

87.64
(0.86)

87.23
(0.86)

90.75
(0.89)

6 × Sentinel-2 (12 bands) + OSAVI705
30 × Sentinel-1 (3 bands)

70.95
(0.70)

80.50
(0.79)

85.94
(0.85)

86.99
(0.84)

89.05
(0.88)

88.76
(0.87)

93.96
(0.91)

6 × Sentinel-2 (12 bands) + MCARI
30 × Sentinel-1 (3 bands)

68.93
(0.68)

77.83
(0.76)

83.15
(0.82)

85.04
(0.84)

88.15
(0.87)

87.51
(0.86)

90.15
(0.89)

6 × Sentinel-2 (12 bands) + PSRI
30 × Sentinel-1 (3 bands)

66.94
(0.66)

71.60
(0.69)

76.83
(0.75)

84.07
(0.83)

87.10
(0.86)

87.08
(0.86)

88.96
(0.88)

6 × Sentinel-2 (12 bands)
30 × Sentinel-1 (3 bands)

66.73
(0.65)

70.23
(0.69)

75.84
(0.74)

85.59
(0.84)

86.80
(0.85)

86.25
(0.85)

88.19
(0.87)

Table 10. Confusion matrix of the classification obtained for the boosting approach using as predictors
only the six selected Sentinel-2 images, and OSAVI705. Classes: shrubs (SH), fruits (FR), citrus (CI),
forest (FO), rice crops (RI), olive grove (OL), pasture with trees (PAT), vineyards (VI), dried fruit (DFR),
and pasture (PA).

Ground Truth
Total UA(%)

SH DFR FR PA RI FO VI PAT OL CI

C
la

ss
ifi

ed

SH 5050 20 32 2 0 409 2 475 67 9 6066 83.3
DFR 16 6519 9 16 0 27 19 16 72 30 6724 97.0
FR 101 111 6349 17 3 40 70 25 87 40 6843 92.8
PA 3 8 1 6566 0 21 2 4 37 4 6646 98.8
RI 2 3 0 3 6714 2 0 3 2 0 6729 99.8
FO 955 11 17 31 0 5515 1 474 39 14 7057 78.1
VI 13 20 55 2 0 0 6593 8 97 4 6792 97.1

PAT 519 34 51 14 2 689 1 5160 99 11 6580 78.4
OL 129 155 78 32 0 109 62 103 5962 160 6790 87.8
CI 6 20 8 3 0 14 15 14 16 6523 6619 98.5

Total
PA (%)

6794 6901 6600 6686 6719 6826 6765 6282 6478 6795 OA = 91.18%
κ = 0.8874.3 94.5 96.2 98.2 99.9 80.8 97.5 82.1 92.0 96.0

For completeness, an experiment taking into account all 11 available Sentinel-2 images in the
training was conducted and revealed worse results (OA = 86.21% and κ = 0.82 obtained in the best case.



Agronomy 2019, 9, 556 12 of 20

For the sake of brevity, we show the results in Table S6 of Supplementary Material). This confirms that
the previous Sentinel-2 spectral separability analysis was useful for improving classification results.

4.3. Classification, Class Probability and Agreement Maps

After the accuracy assessment over the test set, the best classifier (i.e., the ensemble of boosting
trees) was executed (using both optical and SAR data as predictors) over the study area to obtain
a classification map (see Figure 5a). In addition, the ensemble approach also provides a per pixel
probability of belonging to every class taking into account the predictions of every tree forming the
ensemble of 1000 boosting tress. The per pixel probability of the class with the maximum probability,
which is indeed the predicted class, was used for deriving a map that can be interpreted as the
confidence of the classification (see Figure 5b). The 80% of the pixels were classified by a confidence
higher than 50% (see greenish colored areas in Figure 5, right, and cumulative histogram in Figure 6).
The 50% of all pixels were classified by a confidence greater than 77% (see Figure 6). The maximum
confidence was achieved over rice pixels (reaching almost 100% of confidence) that, jointly with the
spectral analysis undertaken in Section 4.1, corroborates the high reliability in rice classification from
multitemporal Sentinel-1 and -2 data.
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Taking into account Table 4 described in Section 3.3, we derived the agreement between the
predictions derived from Sentinel-1 and Sentinel-2 data and the SIGPAC (see Figure 7a). Most of the
pixels show bluish colors, which indicate the consistency between the classifications performed in
this study and the official land parcel information system of Valencia (see Figure 7a). The highest
agreement is found over rice crops, whereas significant, high, and very high discrepancies are found
over less than 3.5% of the total classified area over different classes (see Figure 7b). In addition, only
0.1% of the pixels are labeled as very high discrepancy, which highlights the robustness of the classifier.
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4.4. Utility of the Derived Agreement Map

We provide two examples of the utility of the derived agreement map. The first example is shown
in Figure 8, which displays a zoomed area of the three maps mentioned above, containing a very
high discrepancy area (highlighted in red in western part of the displayed maps). It is classified as
forest, while the SIGPAC classifies it as citrus. Since the probability of the classification map over this
zone is >95%, following rules in Table 4, the agreement map assigns to it a very high discrepancy.
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If this polygon is superimposed over the official orthophoto of 2017 (provided by Institut Cartogràfic
Valencià, València, Spain) over the zone, it can be observed that the class corresponds to forest instead
of citrus. This means that in this case SIGPAC should be updated.Agronomy 2019, 9, x FOR PEER REVIEW 15 of 21 
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Figure 8. Classification (top), SIGPAC (bottom), and agreement (right) over an area identified as very
high discrepancy.

The second example is exhibited in Figure 9, which shows an example of high discrepancy between
the derived classification and SIGPAC. The area highlighted in red is classified as fruits, while the
SIGPAC classifies it as citrus. The agreement map assigns to it a high discrepancy. If this polygon is
superimposed over the official orthophoto of 2017 over the zone (Figure 9 (middle)), no conclusion can
be drawn, so a field inspection is recommended to check out the correct class. If the class is identified
as citrus, the corresponding pixels should be labeled as citrus and incorporated in future trainings to
avoid similar errors. If the field check verifies that the class is fruits, the SIGPAC should be updated.
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high discrepancy.

5. Discussion

It is recognized that object-based approaches can be useful to delineate polygons over agricultural
areas, but their effectiveness for delineating and classifying agricultural parcels using Sentinel-2
time series is reduced [12,45]. In addition, other studies using Sentinel-2 for crop mapping did not
found advantages regarding the use of object-based or pixel-based approaches, also highlighting the
impossibility of using textural features for small objects [9,46]. In this study, the classification was
carried out at pixel-level since both the classification of and object/polygon, which can be actually done
aggregating the result of a pixel-level classification, and the report, if there exist different classes over
a polygon, are relevant for CAP payments.

A key aspect in every classification process is related with the training samples selection. The close
collaboration with the regional authorities, particularly with its technicians, allowed obtaining a very
high number of training samples per class. Our results derived from the JM-BH measures revealed that
the highest spectral separabilities among classes were obtained using only six out of the available and
cloud-free Sentinel-2 images. The inclusion of the remainder images would decrease accuracy. This
is mainly due to the non-optimal spectral separability among classes in these dates and the addition
of redundant information, which may introduce noise in the features space of the training samples.
This type of feature selection can be useful in order to avoid Hughes phenomenon and improve
classification accuracy. However, this process must be taken carefully since, if not properly addressed,
relevant information can be lost [20].
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The classification results reveal the joint use of Sentinel-1, Sentinel-2, and derived vegetation
indices improves classification accuracies irrespective of the classification algorithm. Zhong et al. [47]
recently reported that the use of a single multitemporal vegetation index outperformed the use of only
available Landsat reflectances. However, unlike the present study, in their study, the classes were not
spectrally separable. It is interesting to note that when stacking the OSAVI versions (i.e., using either
the red (ρ665) or the red-edge band (ρ705)) the best results were obtained. This could be partly due to
the OSAVI capabilities of minimizing the noise introduced by soil both at sparse and dense vegetation
canopies [35]. In addition, the experiments reveal that the use of red-edge does not always contributes
to improve classification accuracies. OSAVI705 seems to capture information provided by the red-edge
in the classification process and slightly outperforms the OSAVI. Conversely, classification accuracy
decreases when using NDVI705 if compared with cases using NDVI. Furthermore, the results confirmed
that the combination of Sentinel-1 and Sentinel-2 leads to improved accuracy in the classification,
which highlights the complementary information conveyed by Sentinel-1 and Sentinel-2. In particular,
our results demonstrate that the inclusion of Sentinel-1 data is able to better discriminate classes such
as shrubs, forest and pasture with trees that presented rather similar features among them in the optical
domain of Sentinel-2.

Classification accuracy depends on a number of factors including the number of training and
test samples, the number of features and its relevance, the number of classes and its similarity,
and the classification algorithm itself. For instance, Schmedtmann and Campagnolo [24] proposed
a reliable crop identification (12 classes, OA = 68%) over Portuguese parcels covering 1057 km2,
Sitokonstantinou et al. [25] developed a parcel-based crop identification (nine classes, OA = 91.3%
and k = 0.87) scheme for CAP and greening obligations over a Spanish area of 215 km2. Kanjir et
al. [48] developed a change detection method to support land use control within CAP activities over
three areas of 7 km2 in Slovenia, and Blaes et al. [23] developed a framework for area-based subsidies
control in Belgium. The present study reported overall accuracy reaching ≈ 94%, which is similar to
the aforementioned studies. A remarkably high accuracy was found over rice highlighting that its
multitemporal features are extremely informative for rice phenology and classification, which is also
reported in other studies [47,49–51].

The number of available Sentinel-2 images proved to be sufficient for obtaining accurate and
satisfactory classification results in most of the classes. This means that the temporal behavior of the
majority of classes is captured with as few as six Sentinel-2 multispectral images. However, there
was a lack of cloud free Sentinel-2 images during the summer period in 2017 whose data could be
of relevance for our study. The inclusion of Sentinel-1 data tried to mitigate this effect and also
incorporate information of vegetation structure that is not provided by optical sensors such as the MSI
onboard Sentinel-2. Data provided by Sentinel-1 VV and VH polarizations include information on the
vegetation status, structure, and their interaction with soil background [52,53]. In addition, the ratio
VH/VV can provide time series information on vegetation and soil properties such as soil moisture
also reducing SAR acquisition system errors [10,54,55].

With the implementation of the new 2020+ CAP regulation, field inspections are earmarked
for only 5% of the territory. Therefore, the identification of zones with well-founded suspicions of
incompatibility between farmers’ declarations and SIGPAC is key. The derived agreement map is
intended to help in this process by highlighting agreement and discrepancies between the classification
map retrieved with Sentinels data and SIGPAC. Certainly, the definition of the logical rules for deriving
the agreement map influences the final result. The rules proposed in Table 4 are fairly reasonable. When
some level of discrepancy is found between maps, a photo interpretation using very high–resolution
imagery such as orthophotography is recommended. Then, if the interpretation tips the scale in favor
of the reported classification, SIGPAC should be updated with this class. On the contrary, those pixels
should be labeled as SIGPAC does and can be incorporated into the training process to avoid similar
misclassifications in the future. If no conclusion can be drawn, a field inspection is needed. In this
study, the agreement map reported less than 3.5% of the pixels as significant, high, and very high
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discrepancies, hence, in the extreme case of impossibility of establish a class by photo interpretation,
the number of field visits would fall within the 2020+ CAP regulation allowed range. If the level
of discrepancy is low, a field inspection is not recommended, just photo interpretation, since the
confidence of the derived classifications is not very high (<50% according to the established rules in
Table 4) and the classifier may not be performing well over those pixels

6. Conclusions

A classification framework based on the predictions provided by an ensemble of decision trees
using a boosting approach has been developed. Ten classes were classified covering an area of 3568 km2,
which is much bigger than the previous studies dealing with CAP framework. In addition, we also
benefit from the per class probability given by the ensemble in order to develop an agreement map
between derived classifications and the official LPIS of Spain (SIGPAC).

The results revealed an overall accuracy of 93.96% and κ = 0.9 when using both Sentinel-1
and Sentinel-2 data, and the boosting approach in an ensemble of decision trees. The addition of
Sentinel-1 to Sentinel-2 data improved classification accuracy with regard to using only Sentinel-2 data.
The accuracies were improved in all classes, and the inter-class confusions were reduced mainly for
shrubs, forest, and pasture with trees, stressing the usefulness of blending Sentinel-1 and Sentinel-2
data. The use of VIs as predictors improved classification accuracies in all cases, being the OSAVI705,
the VI with which best results were obtained.

The derived agreement map reported less than 3.5% of the pixels as significant, high, and very
high discrepancies with respect to the classification obtained from Sentinels data. In the case of needing
a field inspection for checking the class, the number of field recognitions would fall within the 2020+

CAP regulation allowed range. The agreement map is a clear example of the utility of the proposed
methodology and is intended to help in the CAP subsidies payment process. The derivation of this
map is a major feature of this work, which is suitable to update Spanish SIGPAC as suggested by the
European Court of Auditors also following with the 2020+ CAP regulation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/9/556/s1,
Table S1: Jeffries–Matusita (JM) and Bhattacharyya (BH) distances for Sentinel-2 image acquired on 15 June,
2017, Table S2: Jeffries–Matusita and Bhattacharyya distances for Sentinel-2 image acquired on 13 October, 2017,
Table S3: Jeffries–Matusita and Bhattacharyya distances for Sentinel-2 image acquired on 17 December, 2017,
Table S4: Jeffries–Matusita and Bhattacharyya distances for Sentinel-2 image acquired on 21 January, 2018, Table S5:
Jeffries–Matusita and Bhattacharyya distances for Sentinel-2 image acquired on 7 March, 2018, Table S6: Overall
accuracy (OA) and kappa index (κ) obtained in the test set for every classifier using all (11) available Sentinel-2
images. Best result highlighted in bold.
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