The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing
Abstract
:1. Introduction
2. Site, Measurements, and Model Data
2.1. Observation Sites
2.2. Measurements
2.2.1. Lidar
2.2.2. Surface Pollutant Concentration and Meteorological Data
2.2.3. MODIS AOD
2.2.4. Backward Trajectory Simulation
2.3. Aerosol Optical Properties
2.4. Dust Mass Concentration Retrieval
- (1)
- Obtain the near-surface aerosol and dust mass concentration at the same location simultaneously. The Ext. Coef. at 0.2 km is obtained by lidar, and the PM mass concentration is from CNEMC.
- (2)
- Obtain the model parameters. Choose 10 pairs of αd and mass concentration data and then calculate the model parameters of and C using the iterative method.
- (3)
- Retrieve the vertical distribution of the dust mass concentration. The vertical Ext. Coef. with a spatial resolution of 7.5 m can be measured by lidar. Based on the model parameters of and C in step 2, the dust mass concentration at the corresponding height can be obtained. By calculating the Ext. Coef. of all the points, the vertical profiles of the dust mass concentration can be retrieved.
3. Results
3.1. Overview
3.2. Case 1: 4–6 May 2017
3.2.1. Meteorological Condition and MODIS Observation
3.2.2. Aerosol Optical Properties
3.2.3. Surface Data and Backward Trajectories
3.3. Case 2: 16–17 April 2017
3.3.1. Meteorological Condition and MODIS Observation
3.3.2. Aerosol Optical Properties
3.3.3. Surface Data and Backward Trajectories
4. Discussion
4.1. Comparison to Previous Observations
4.2. Vertical Profiles of Dust Mass Concentration
5. Conclusions
- (1)
- The larger values of Ext. Coef. (2.27 km−1 at 355 nm and 1.25 km−1 at 532 nm) in case 1 compared to that of the mixed dust (2.01 km−1 at 355 nm and 1.33 km−1 at 532 nm) in case 2 confirmed the stronger intensity of the pure dust in case 1. The PDR in case 1 remained constant (0.24 ± 0.03) from the surface to 0.8 km in height. In contrast, the PDR profile in the mixed dust layer (case 2) was split into two regions—large values exceeding 0.15 above 0.6 km and small values 0.11 ± 0.03 below 0.6 km. This suggested a stable aerosol layer full of coarse aerosols from the ground to the dust layer in the pure dust plume of case 1, while the stratification in case 2 implied mixed coarse and fine aerosols below 0.6 km and prevalent coarse aerosols exceeding 0.6 km. The absolute values of the BAE were negatively correlated with height in the two cases.
- (2)
- Although the dust aerosols in the two events both originated from the northwest, the metrological influences of the dust vertical distribution and ground air quality were different. In case 1, a moderate speed carried dust plumes to Beijing, resulting in the occurrence of dust pollution. Then, strong winds dilated the dust rapidly the next day. That is to say, the wind effect of exacerbating or mitigating dust pollution depends on the intensity of wind speeds. However, the wind kept an aggravating influence on the dust aerosols when a circulation was formed in case 2. This might be attributed to a more complicated airflow moving path.
- (3)
- We retrieved vertical profiles of the dust mass concentrations by means of lidar. The larger dust mass concentration of 523.8 μg·m−3 in case 1 and moderate value of 248.5 μg·m−3 in case 2 showed good agreement with the results from multi-source data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.; Xin, J.; Zhang, W.; Gong, C.; Wu, F. Optical, Radiative and Chemical Characteristics of Aerosol in Changsha City, Central. China Adv. Atmos. Sci. 2020, 37, 1310–1322. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Cai, Z.; Li, D.; Huang, H. Analysis of impact of dust transport on aerosol evolution in Xuzhou region in spring 2021. J. Atmos. Environ. Optics. 2022, 17, 409–419. [Google Scholar]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record–breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers. Atmos. Chem. Phy. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land–use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Yao, W.; Gui, K.; Wang, Y.; Che, H.; Zhang, X. Identifying the dominant local factors of 2000–2019 changes in dust loading over East Asia. Sci. Total. Environ. 2021, 777, 146064. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Zhao, H.; Yao, W.; Li, L.; Zhang, L.; Wang, H.; Wang, Y.; Zhang, X. Three–dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type–dependent aerosols: Insights from 13 years (2007–2019) of CALIOP observations. Atmos. Chem. Phys. 2021, 21, 15309–15336. [Google Scholar] [CrossRef]
- Mu, F.; Liuz, E.W.; Fiedler, S. On the dynamics and air–quality impact of the exceptional East Asian dust outbreak in mid–March 2021. Atmos. Res. 2023, 292, 106846. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Huang, J.; He, J.; Chen, Y.; Chen, J.; Bi, H.; Lou, G.; Du, S.; Zhang, Y.; et al. Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023. Adv. Atmos. Sci. 2023, 40, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Chen, S.; Chen, H.; Guo, P.; Chen, S.; He, J.; Wang, J.; Nian, X. Classification and source analysis of low–altitude aerosols in Beijing using fluorescence-Mie polarization lidar. Opt. Commun. 2020, 479, 126417. [Google Scholar] [CrossRef]
- Igor, V.; Alexei, K.; Vadim, G.; Detlef, M.; Kathleen, F.; David, N. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. Appl. Optics. 2004, 43, 1180–1195. [Google Scholar]
- Gao, F.; Veberič, D.; Stanič, S.; Bergant, K.; Hua, D.X. Performance improvement of long–range scanning Mie lidar for the retrieval of atmospheric extinction. J. Quant. Spectrosc. RA 2013, 122, 72–78. [Google Scholar] [CrossRef]
- Sugimoto, N.; Shimizu, A.; Matsui, I.; Uno, K.; Dong, X.; Zhao, S.; Zhou, J.; Lee, C.H. Study of Asian Dust Phenomena in 2001–2003 Using A Network of Continuously Operated Polarization Lidars. Water Air Soil Pollut. 2005, 5, 145–157. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; McCormick, M.P. The CALIPSO mission: Space–borne lidar for observation of aerosols and clouds. Proc. SPIE 2003, 4893, 1–11. [Google Scholar]
- Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Trepte, C.; Hu, Y.; Powell, K.; Sun, W.; Lin, B. Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements. J. Quant. Spectrosc. RA 2011, 112, 204–213. [Google Scholar] [CrossRef]
- Dietrich, A.; Detlef, M.; Albert, A.; Wandinger, U.; Helgard, H.; Ernst, C.; Steffen, Z. Scanning 6-Wavelength 11-Channel Aerosol Lidar. J. Atmos. Ocean. Technol. 2000, 17, 1469–1482. [Google Scholar]
- Anna, K.J.; Tadeusz, S.; Grzegorz, K.; Michał, P.; Szymon, P.M. Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol. Appl. Opt. 2009, 48, B8–B16. [Google Scholar]
- Shimizu, A.; Sugimoto, N.; Matsui, I. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE–Asia. J. Geophys. Res. 2004, 109, D19S17. [Google Scholar] [CrossRef]
- He, Y.; Yi, F.; Yin, Z.; Liu, F.; Yi, Y.; Zhou, J. Mega Asian dust event over China on 27–31 March 2021 observed with space—Borne instruments and ground-based polarization lidar. Atmos. Environ. 2022, 285, 119238. [Google Scholar] [CrossRef]
- Chen, S.; Nian, X.; Chen, H.; Zhang, Y.; Guo, P.; Bu, Z. Observation and analysis of aerosol optical properties during pollution episodes in Beijing. Optical. Technique 2021, 47, 570–576. [Google Scholar]
- Yin, Z.; Yi, F.; He, Y.; Liu, F.; Yu, C.; Zhang, Y.; Wang, W. Asian dust impacts on heterogeneous ice formation at Wuhan based on polarization lidar measurements. Atmos. Environ. 2021, 246, 118166. [Google Scholar] [CrossRef]
- Liu, C.; Yin, Z.; He, Y.; Wang, L. Climatology of dust aerosols over the Jianghan Plain revealed with space-borne instruments and MERRA—2 reanalysis data during 2006–2021. Remote. Sens. 2022, 14, 4414. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Yang, P.; Qian, W.; Wang, X.; Han, J. Pollution process and optical properties during a dust aerosol event in Shijiazhuang. China Environ. Sci. 2016, 36, 979–989. [Google Scholar]
- Lei, X.; Qian, Y.; Zhong, L.; Quan, Q. Analysis of a Dust Pollution Process in Nanchong City Based on Particulate LiDAR. Si Chuan Environ. 2017, 36, 93–102. [Google Scholar]
- Liu, Q.; Cheng, A.; Zhu, J.; Chang, S.; Tam, K. Ultra–Violet Mie Lidar Observations of Particulates Vertical Profiles in Macao during a Record High Pollution Episode. Remote. Sens. 2022, 14, 118. [Google Scholar] [CrossRef]
- Zhang, X.; Sharratt, B.; Liu, L.; Wang, Z.; Pan, X.; Lei, J.; Wu, S.; Huang, S.; Guo, Y.; Li, J.; et al. East Asian dust storm in May 2017: Observations, modelling, and its influence on the Asia–Pacific region, Atmos. Chem. Phys. 2018, 18, 8353–8371. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Tong, X.; Zhang, K.; Xiao, D.; Rong, Y.; Zhou, Y.; Liu, C.; Liu, D. Polarization lidar gain ratio calibration method: A comparison. Chin. Opt. 2021, 14, 685–703. [Google Scholar]
- Sasano, Y.; Shimizu, H.; Takeuchi, N.; Okuda, M. Geometrical form factor in the laser radar equation: An experimental determination. Appl. Opt. 1979, 18, 3908–3910. [Google Scholar] [CrossRef]
- Wang, S.; Cao, K.; Hu, X.; Wei, H. Analysis and determination lidar geometrical factor. Laser. Tech. 2008, 32, 147–150. [Google Scholar]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 159–259. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Jiang, F.; Chen, J.M.; Jiang, Z.; Wang, X. Weather condition dominates regional PM2.5 pollutions in the eastern coastal provinces of China during winter. Aerosol. Air. Qual. Res. 2018, 18, 969–980. [Google Scholar] [CrossRef]
- Peng, L.; Yi, F.; Liu, F.; Yin, Z.; He, Y. Optical properties of aerosol and cloud particles measured by a single-line-extracted pure rotational Raman lidar. Opt. Express 2021, 29, 21947–21964. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, H.; Goloub, P.; Li, Z.; Veselovskii, I.; Podvin, T.; Li, K.; Korenskiy, M. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China, Atmos. Chem. Phys. 2020, 20, 13817–13834. [Google Scholar]
- Klett, J.D. Stable analytical inversion solution for processing LiDAR returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Nagai, T.; Zaizen, Y.; Mano, Y. Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt. 2010, 49, 4441–4449. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Ansmann, A.; Mamouri, R.E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F. Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated Poliphon conversion factors from global AERONET analysis. Atmos. Meas. Tech. 2019, 12, 4849–4865. [Google Scholar] [CrossRef] [Green Version]
- Mamouri, R.E.; Ansmann, A. Fine and coarse dust separation with polarization lidar. Atmos. Meas. Tech. 2014, 7, 3717–3735. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, Y.; Liu, F.; Yin, Z.; Yi, Y.; Zhan, Y.; Yi, F. Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China. Atmos. Meas. Tech. 2021, 14, 5939–5954. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multi-wavelength Raman and polarization lidars during Saharan Mineral Dust Experiment. Geophys. Res. 2008, 114, D13202. [Google Scholar] [CrossRef]
- Christoph, M.; Stefan, E.; Wolfgang, J.M. Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. Proc. SPIE 2004, 5235, 486–496. [Google Scholar]
- Sun, J.; Zhang, H. Atheoretical analysis of remote measurement of mass concentration of atmospheric dust using lidar. Acta Sci. Circumstantiae 1982, 2, 36–43. [Google Scholar]
- Han, D.; Liu, W.; Liu, J.; Lu, Y.; Zhao, N. Retrieval Method for Aerosol Mass Concentration Vertical Distribution based on Extinction. Proc. SPIE 2008, 6824, 1567–1573. [Google Scholar]
- Wang, Z.; Liu, C.; Dong, Y.; Hu, Q.; Liu, T.; Zhu, Y.; Xing, C. Profiling of Dust and Urban Haze Mass Concentrations during the 2019 National Day Parade in Beijing by Polarization Raman Lidar. Remote. Sens. 2021, 13, 3326. [Google Scholar] [CrossRef]
- Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S. Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech. 2010, 3, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, M.; Pu, Y. Analysis on the chemical and physical properties of “2000. 4.6” super dust storm in Beijing. Clim. Environ. Res. 2000, 5, 259–266. [Google Scholar]
- Sathe, Y.; Kulkarni, S.; Gupta, P.; Kaginalkar, A.; Islam, S.; Gargava, P. Application of Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and Weather Research Forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM2.5) over India. Atmos. Pollut. Res. 2019, 10, 418–434. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Goloub, P.; Hu, Q.; Wang, F.; Lv, Y.; Ge, B.; Hu, X.; Shang, J.; Zhang, P. Identification of typical dust sources in Tarim Basin based on multi-wavelength Raman polarization lidar. Atmos. Environ. 2022, 290, 119358. [Google Scholar] [CrossRef]
- Xu, Q.; Gong, C.; Li, X.; Mei, H.; Li, C.; Zhu, W.; Zhan, J. Measurement and analysis of optical parameters of dust aerosol in Zhangbei Area [A]. In Proceedings of the 5th Cross—Strait Aerosol Technology Seminar, Urumqi, China, 2–6 September 2008; pp. 59–64. [Google Scholar]
- Ahmad, S.R.; Billiet, E.M. Implications of atmospheric attenuation in Raman lidar detection of pollutants. Opt. Laser Techno. 1991, 23, 180–188. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Li, M.; Shen, X.; Wang, Y.; Dong, Q.; Bi, J.; Zhang, J.; Li, W.; Li, Z.; et al. Vertical Structure of Dust Aerosols Observed by a Ground–Based Raman Lidar with Polarization Capabilities in the Center of the Taklimakan Desert. Remote. Sens. 2022, 14, 2461. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, Z.; Li, W.; Li, Z.; Song, X.; Liu, W.; Wang, T.; Bi, J.; Shi, J. Polarization Lidar Measurements of Dust Optical Properties at the Junction of the Taklimakan Desert–Tibetan Plateau. Remote Sens. 2022, 14, 558. [Google Scholar] [CrossRef]
- Gui, H.; Qin, H.; Zhao, P.; Wang, F.; Tang, Z.; Wang, J.; Zhu, Y.; Chu, Y. Characteristics of atmospheric boundary layer and sources of a sand-dust event during spring 2018 in Beijing. J. Meteorol. Environ. 2021, 37, 18–25. [Google Scholar]
- Deng, M.; Zhang, J.; Jiang, Y. Vertical distribution and source analysis of dust aerosol in Beijing under the influence of a dust storm. J. Meteoro. Sci. 2015, 35, 550–557. [Google Scholar]
- Liang, Y.; Che, H.; Wang, H.; Zhang, W.; Li, L.; Zheng, Y.; Gui, K.; Zhang, P.; Zhang, X. Aerosols Direct Radiative Effects Combined Ground-Based Lidar and Sun-Photometer Observations: Cases Comparison between Haze and Dust Events in Beijing. Remote Sens. 2022, 14, 266. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Z.; Huang, Z.; Wang, L.; Han, W.; Yang, Y.; Tao, H.; Wang, J. Detection of a dust storm in 2020 by a multi-observation platform over the Northwest China. Remote Sens. 2021, 13, 1056. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, N.; Chen, S.; Wu, L.; Müller, D.; Veselovskii, I.; Li, C.; Landulfo, E.; Sivakumar, V.; Li, J.; et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high–spectral–resolution lidar. Sci. Total Environ. 2023, 872, 162091. [Google Scholar] [CrossRef]
Components and Parameters | |
---|---|
Laser type | Nd:YAG laser |
Detector type | PMT (Hamamatsu R9880U) |
Telescope type | Cassegrain |
Wavelength (nm) | 532/355 |
FOV (mard) | 1.5 |
Pulse energy (mJ) | 50.0 (532), 76.5 (355) |
Pulse repetition rate (Hz) | 20 |
Linear polarized purity | >99% |
Telescope diameter (mm) | 200 |
Detection distance (m) | 200~10,000 |
Spatial resolution (m) | 7.5 |
Temporal resolution (min) | 15 |
Optical Parameters | Physical Significance |
---|---|
Rang-corrected signal (RCS) | the signal intensity received by lidar |
Bs. Coef. (β) | the aerosol concentration |
Ext. Coef. (α) | |
Particle depolarization ratio (PDR) | the aerosol spherical property |
Backscattering-related Ångström exponent (BAE) | the aerosol size |
Time | Bs.coef at 355 nm (km−1·sr−1) | Bs.coef at 532 nm (km−1·sr−1) | PDR at 532 nm | BAE (355 nm/532 nm) | References |
---|---|---|---|---|---|
21–23 October 2019 | 0.013 ± 0.002 | 0.007 ± 0.001 | 0.19 ± 0.03 | 0.04~1.4 | Chen et al., 2021 [20] |
28 October 2019 | 0.003 ± 0.003 | 0.003 ± 0.004 | 0.25 ± 0.03 | −0.28~0.75 | |
27 March 2021 | –– | 0.020 ± 0.020 | 0.25 ± 0.05 | –– | He et al., 2022 [19] |
27–29 March 2018 | –– | 0.017–0.040 | >0.3 | –– | Gui et al., 2021 [54] |
10 March 2013 | –– | 0.0008–0.0086 | 0.1–0.4 | –– | Deng et al., 2015 [55] |
4–6 May 2017 (case 1) | 0.031 ± 0.015 | 0.014 ± 0.011 | 0.24 ± 0.03 | −0.40 ± 016 | This study |
16–17 April 2017 (case 2) | 0.030 ± 0.010 | 0.019 ± 0.009 | 0.11 ± 0.03 0.16 ± 0.09 | −0.28 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Huang, Y.; Yao, Z.; Zhang, T.; Fan, G.; Cao, X.; Ji, C. The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing. Remote Sens. 2023, 15, 3494. https://doi.org/10.3390/rs15143494
Chen Z, Huang Y, Yao Z, Zhang T, Fan G, Cao X, Ji C. The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing. Remote Sensing. 2023; 15(14):3494. https://doi.org/10.3390/rs15143494
Chicago/Turabian StyleChen, Zhenyi, Yifeng Huang, Zhiliang Yao, Tianshu Zhang, Guangqiang Fan, Xinyue Cao, and Chengli Ji. 2023. "The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing" Remote Sensing 15, no. 14: 3494. https://doi.org/10.3390/rs15143494
APA StyleChen, Z., Huang, Y., Yao, Z., Zhang, T., Fan, G., Cao, X., & Ji, C. (2023). The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing. Remote Sensing, 15(14), 3494. https://doi.org/10.3390/rs15143494