Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China
Abstract
:1. Introduction
2. Study Area, Datasets and Methods
2.1. Study Area
2.2. Satellite Precipitation Estimates
2.3. Ground Reference
2.4. Methods
3. Results
3.1. OLR and Moisture Transport
3.2. Spatial Pattern of Precipitation
3.3. Extreme Precipitation Monitoring
3.4. Statistical Performance
3.5. Error Characteristics under Different Rain Rate
3.6. Overall Performance
4. Discussion
5. Conclusions
- We found that both FY-2G and FY-2H QPEs significantly underestimate the precipitation amount for the “7.20” event: FY-2G with a BIAS value of ~−9.64%, and FY-2H with a BIAS value of ~−46.22%. FY-2H QPE exhibits more severe underestimations than FY-2G QPE for this rainstorm event over Henan province. This is possibly because the FY2-based satellite-borne sensors mainly measure the information of cloud tops, and the link between CTT information derived from IR instruments and precipitation is often weak. It leads to IR-based sensors providing crude precipitation estimates, and those estimated QPEs were prone to underestimating the precipitation of this rainstorm event.
- FY-2G QPE show higher temporal and spatial consistency with ground observations than the latest FY-2H QPE. Compared to FY-2H QPE, the accumulated rainfall and maximum precipitation rate of the FY-2G QPE are closer to the ground observations. The rainfall duration of FY-2H QPE was significantly lower than that of FY-2G QPE and ground observation, suggesting that FY-2H QPE precipitation retrieval algorithm still has significant room for improvement in capturing extreme rainfall at the hourly scale.
- The FY2-based QPEs exhibit significantly lower POD values in western Henan province, especially for FY-2H QPE. This can be attributed to the limitations of IR-based CTT retrievals, which have poor detecting capability in warm orographic rain events, resulting in underestimations of FY2-based QPEs associated with orographic rain events in complex topography regions. Additionally, although FY2-based QPEs merged ground observations, the improvement in detection capability is limited by the sparse station coverage in complicated terrain regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, A.; Kakar, R.; Neeck, S.; Azarbarzin, A.; Kummerow, C.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Meehl, G.; Karl, T.; Easterling, D.; Changnon, S.; Pielke, R., Jr.; Changnon, D.; Evans, J.; Groisman, P.; Knutson, T.; Kunkel, K.; et al. An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts, and Model Projections. Bull. Am. Meteorol. Soc. 2000, 81, 413–416. [Google Scholar] [CrossRef]
- Ding, M.; Yong, B.; Yang, Z. Extreme precipitation monitoring capability of the multi-satellite jointly retrieval precipitation products of Global Precipitation Measurement (GPM) mission. Natl. Remote Sens. Bull. 2022, 26, 657–671. (In Chinese) [Google Scholar]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Z.; Gao, T.; Zou, T.; Liu, J.; Yuan, H. Extreme precipitation event over the Yellow Sea western coast: Is there a trend? Quat. Int. 2017, 441, 1–17. [Google Scholar] [CrossRef]
- Wang, Z. Spatial and Temporal Variation of Extreme Precipitation Indices in Sichuan Province from 1971 to 2018. Open J. Nat. Sci. 2019, 007, 333–348. (In Chinese) [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.; Zwiers, F. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B.; Gourley, J.; Qi, W. Real-time bias adjustment for satellite-based precipitation estimates over Mainland China. J. Hydrol. 2021, 596, 126133. [Google Scholar] [CrossRef]
- Huffman, G.; Adler, R.; Morrissey, M.; Bolvin, D.; Cyrtis, S.; Joyce, R.; Mcgavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Di, Y.; Wang, Y. Performance evaluation of IMERG precipitation products during typhoon Lekima (2019). J. Hydrol. 2021, 597, 126307. [Google Scholar] [CrossRef]
- Habib, E.; Henschke, A.; Adler, R. Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res. 2009, 94, 373–388. [Google Scholar] [CrossRef]
- Ricciardelli, E.; Di Paola, F.; Gentile, S.; Cersosimo, A.; Cimini, D.; Gallucci, D.; Geraldi, E.; Larosa, S.; Teodosio Nilo, S.; Ripepi, E.; et al. Analysis of Livorno heavy rainfall event: Examples of satellite-based observation techniques in support of numerical weather prediction. Remote Sens. 2018, 10, 1549. [Google Scholar] [CrossRef]
- Palharini, R.S.A.; Vila, D.A.; Rodrigues, D.T.; Palharini, R.C.; Mattos, E.V.; Pedra, G.U. Assessment of extreme rainfall estimates from satellite-based: Regional analysis. Remote Sens. Appl. Soc. Environ. 2021, 23, 100603. [Google Scholar] [CrossRef]
- Eini, M.R.; Rahmati, A.; Salmani, H.; Brocca, L.; Piniewski, M. Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe. Sci. Total Environ. 2022, 852, 158497. [Google Scholar] [CrossRef]
- Palharini, R.S.A.; Vila, D.A.; Rodrigues, D.T.; Quispe, D.P.; Palharini, R.C.; de Siqueira, R.A.; de Sousa Afonso, J.M. Assessment of the extreme precipitation by satellite estimates over South America. Remote Sens. 2020, 12, 2085. [Google Scholar] [CrossRef]
- Sutton, J.R.; Jakobsen, A.; Lanyon, K.; Lakshmi, V. Comparing precipitation during typhoons in the Western North Pacific using satellite and in situ observations. Remote Sens. 2022, 14, 877. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.; Pai, D.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Omranian, E.; Sharif, H.O.; Tavakoly, A.A. How well can global precipitation measurement (GPM) capture hurricanes? Case study: Hurricane Harvey. Remote Sens. 2018, 10, 1150. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Nakagawa, H.; Kawaike, K.; Yamanoi, K.; Musumari, H.; Adhikari, T.R.; Prajapati, R. Appraising the potential of using satellite-based rainfall estimates for evaluating extreme precipitation: A case study of august 2014 event across the west rapti river basin, Nepal. Earth Space Sci. 2021, 8, e2020EA001518. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.; et al. Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water 2013, 6, 32–44. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, X.; Lai, C.; Chen, X. Evaluation of TMPA 3B42-V7 product on extreme precipitation estimates. Remote Sens. 2021, 13, 209. [Google Scholar] [CrossRef]
- Qi, W.; Yong, B.; Gourley, J. Monitoring the super typhoon lekima by GPM-based near-real-time satellite precipitation estimates. J. Hydrol. 2021, 603, 126968. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Tang, G.; Ji, Q.; Min, X.; Wan, W.; Shi, Z. Quantitative Evaluations and Error Source Analysis of Fengyun-2-Based and GPM-Based Precipitation Products over Mainland China in Summer, 2018. Remote Sens. 2019, 11, 2992. [Google Scholar] [CrossRef]
- Lu, H.; Ding, L.; Ma, Z.; Li, H.; Lu, T.; Su, M.; Xu, J. Spatiotemporal Assessments on the Satellite-Based Precipitation Products from Fengyun and GPM Over the Yunnan-Kweichow Plateau, China. Earth Space Sci. 2020, 7, e2019EA000857. [Google Scholar] [CrossRef]
- Wu, H.; Yong, B.; Shen, Z.; Qi, W. Comprehensive error analysis of satellite precipitation estimates based on Fengyun-2 and GPM over Chinese mainland. Atmos. Res. 2021, 263, 105805. [Google Scholar] [CrossRef]
- Guo, Y. Variations of Temperature and Precipitation in Henan Province in Past 49 Years. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2012. (In Chinese). [Google Scholar]
- Liu, C.; Lyu, J.; Zhai, X.; Li, Q.; Liu, R.; Sun, C.; Zhao, Y. Risk simulation and comparative analysis of “21·7” heavy rainfall and flood in Henan Province. Express Water Resour. Hydropower Inf. 2021, 42, 8–14. (In Chinese) [Google Scholar] [CrossRef]
- Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmos. Res. 2017, 190, 121–127. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Yang, J.; Zhao, L. Practical Manual of Fengyun-2 Satellite Business Products and Satellite Data Format; China Meteorological Press: Beijing, China, 2008; pp. 11–16. (In Chinese) [Google Scholar]
- Chu, P.S.; Wang, J.B. Recent climate change in the tropical western Pacific and Indian Ocean regions as detected by outgoing longwave radiation records. J. Clim. 1997, 10, 636–646. [Google Scholar] [CrossRef]
- Prasad, K.D.; Bansod, S.D. Interannual variations of outgoing longwave radiation and Indian summer monsoon rainfall. Int. J. Climatol. 2000, 20, 1955–1964. [Google Scholar] [CrossRef]
- Liang, Y.; Bu, Y.; He, Z.; Gu, X. Application of FY-2C satellite data in a typhoon rainstorm process in Henan Province. In Proceedings of the Satellite Remote Sensing Technology Progress and Application Conference at the 2006 Annual Meeting of the Chinese Meteorological Society, Chengdu, China, 25–27 October 2006; pp. 51–55. (In Chinese). [Google Scholar]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef]
- Negri, A.J.; Adler, R.F. An intercomparlson of three satellite infrared rainfall techniques over Japan and surrounding waters. J. Appl. Meteorol. Climatol. 1993, 32, 357–373. [Google Scholar] [CrossRef]
- Tuttle, J.D.; Carbone, R.E.; Arkin, P.A. Comparison of ground-based radar and geosynchronous satellite climatologies of warm-season precipitation over the United States. J. Appl. Meteorol. Climatol. 2008, 47, 3264–3270. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, Z. PECA-FY4A: Precipitation Estimation using Chromatographic Analysis methodology for full-disc multispectral observations from FengYun-4A/AGRI. Remote Sens. Environ. 2022, 282, 113234. [Google Scholar] [CrossRef]
- Yuan, W.; Yu, R.; Fu, Y. Study of different diurnal variations of summer long-duration rainfall between the southern and northern parts of the Huai River. Chin. J. Geophys. 2014, 57, 752–759. (In Chinese) [Google Scholar]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain-gauge network: Validation of GPM and TRMM over TP. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, J.; Zhu, S.; Yang, J.; Tang, G.; Yang, Y.; Shi, Z.; Hong, Y. AIMERG: A new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst. Sci. Data 2020, 12, 1525–1544. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Kirstetter, P.E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V.; Turk, J.; Ferraro, R. Satellite Precipitation Measurements for Water Resource Monitoring 1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 567–579. [Google Scholar] [CrossRef]
Statistical Metric | Calculation Formula | Perfect Value |
---|---|---|
CC | 1 | |
RMSE | 0 | |
BIAS | 0 | |
POD | 1 | |
FAR | 0 | |
CSI | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Yong, B.; Shen, Z. Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China. Remote Sens. 2023, 15, 2726. https://doi.org/10.3390/rs15112726
Wu H, Yong B, Shen Z. Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China. Remote Sensing. 2023; 15(11):2726. https://doi.org/10.3390/rs15112726
Chicago/Turabian StyleWu, Hao, Bin Yong, and Zhehui Shen. 2023. "Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China" Remote Sensing 15, no. 11: 2726. https://doi.org/10.3390/rs15112726
APA StyleWu, H., Yong, B., & Shen, Z. (2023). Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China. Remote Sensing, 15(11), 2726. https://doi.org/10.3390/rs15112726