Reconstructing High-Precision Coral Reef Geomorphology from Active Remote Sensing Datasets: A Robust Spatial Variability Modified Ordinary Kriging Method
Abstract
:1. Introduction
2. Spatial Variability Modified Ordinary Kriging Method (OK-SVM)
2.1. Normal Test and Normal Transformation
2.2. Ordinary Kriging Interpolation
2.3. Spatial Variability Modification
2.3.1. Global Parameters Transformation (GPT)
2.3.2. Local Residual Correction (LRC)
2.3.3. Extremum Test and Correction (ETC)
2.4. Inverse Normal Transformation
3. Robustness Test for Spatial Variability Modification
3.1. Experimental Data
3.2. Test Methods
3.3. Test Results
4. Case Study
4.1. Study Area and Datasets
4.2. Reconstruction of Coral Reef Geomorphology
4.3. Comparative Analysis of Accuracy
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation Processes of Morphological Fidelity Evaluation Index System
Appendix A.1. Analysis Scale
Appendix A.2. Calculation Process
Appendix A.2.1. RMSE of Local Elevation (RMSE_LE)
- (1)
- Use test points to extract the elevation values of the reconstructed geomorphological surface and the geomorphological generalization surface, respectively, and calculate the errors between them.
- (2)
- Calculate the root mean square error of elevation error at all test points.
Appendix A.2.2. RMSE of Local Aspect (RMSE_LA)
- (1)
- Calculate the aspect of the reconstructed geomorphological surface and the geomorphological generalization surface using a 3 × 3 neighborhood window, respectively.
- (2)
- Use the test points to extract their aspect values in the reconstructed geomorphological surface and the geomorphological generalization surface, respectively, and calculate the error between them.
- (3)
- Calculate the root mean square error of the aspect error on all test points.
Appendix A.2.3. RMSE of Local Relief (RMSE_LR)
- (1)
- Calculate the mean values of the reconstructed geomorphological surface and the geomorphological generalization surface using a 3 × 3 neighborhood window, respectively.
- (2)
- Calculate the local relief of each position by subtracting the mean values from the reconstructed geomorphological surface and the geomorphological generalization surface, respectively.
- (3)
- Use the test points to extract their local relief values in the reconstructed geomorphological surface and the geomorphological generalization surface, respectively, and calculate the error between them.
- (4)
- Calculate the root mean square error of the local relief error on all test points.
Appendix A.2.4. Change Rate of Local Elevation Position (CR_LP)
- (1)
- Sort the elevation values of local neighborhoods in the reconstructed morphological surface to obtain position relations, as shown in Figure A2. The position relations of the test points in the geomorphological generalization surface are obtained by the same method.
- (2)
- Comparing the results of the two, if they are different, it is considered that the elevation position relationships of the test points have changed.
- (3)
- Obtain the CR_LP by calculating the number of the test points whose elevation position relationship changed among all test points.
Appendix A.2.5. Change Rate of Local Direction (CR_LD)
- (1)
- Reclassify the local aspect values of the reconstructed morphological surface and the geomorphological generalization surface into directions, as shown in Figure A3.
- (2)
- Use the test points to extract their local directions in the reconstructed geomorphological surface and the geomorphological generalization surface, respectively.
- (3)
- Obtain the CR_LD by calculating the number of test points whose local directions changed among all test points.
Appendix A.2.6. Change Rate of Local Shape (CR_LS)
- (1)
- Reclassify the local relief values of the reconstructed geomorphological surface and the geomorphological generalization surface. Those greater than 0 are concave, those less than 0 are convex, and those equal to 0 are flat.
- (2)
- Use the test points to extract their local convexity attributes in the reconstructed geomorphological surface and the geomorphological generalization surface, respectively.
- (3)
- Obtain the CR_LS by calculating the number of test points whose local convexity changed among all test points.
References
- Kayanne, H.; Aoki, K.; Suzuki, T.; Hongo, C.; Yamano, H.; Ide, Y.; Iwatsuka, Y.; Takahashi, K.; Katayama, H.; Sekimoto, T.; et al. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan. Geomorphology 2016, 271, 84–93. [Google Scholar] [CrossRef]
- Coles, S.L.; Looker, E.; Burt, J.A. Twenty-year changes in coral near Muscat, Oman estimated from manta board tow observations. Mar. Environ. Res. 2015, 103, 66–73. [Google Scholar] [CrossRef]
- Perry, C.T.; Smithers, S.G.; Kench, P.S.; Pears, B. Impacts of Cyclone Yasi on nearshore, terrigenous sediment-dominated reefs of the central Great Barrier Reef, Australia. Geomorphology 2014, 222, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Huang, H.; Young, M.A.L. The Wicked Problem of China’s Disappearing Coral Reefs. Conserv. Biol. 2013, 27, 261. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Thacker, K.; Hanson, C.; Getten, L. Sewage pollution in Negril, Jamaica: Effects on nutrition and ecology of coral reef macroalgae. Chin. J. Oceanol. Limnol. 2011, 29, 775–789. [Google Scholar] [CrossRef]
- Mcwilliams, J.P.; Côté, I.M.; Gill, J.A.; Sutherland, W.J.; Watkinson, A.R. Accelerating impacts of temperature-induced coral bleaching in the Caribbean. Ecology 2005, 86, 2055–2060. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Strong, A.E.; Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Trans. Am. Geophys. Union 2003, 84, 137–141. [Google Scholar] [CrossRef]
- Wilkinson, C. Status of Coral Reefs of the World: 2008; Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre: Townsville, Australia, 2008; p. 296. [Google Scholar]
- Palandro, D.A.; Andréfouët, S.; Hu, C.; Hallock, P.; Müller-Karger, F.E.; Dustan, P.; Callahan, M.K.; Kranenburg, C.; Beaver, C.R. Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984–2002). Remote Sens. Environ. 2008, 112, 3388–3399. [Google Scholar] [CrossRef]
- Rogers, C.; Miller, J. Permanent ‘phase shifts’ or reversible declines in coral cover? Lack of recovery of two coral reefs inSt. John, US Virgin Islands. Mar. Ecol. Prog. 2006, 306, 103–114. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef] [Green Version]
- Araújo, P.; Amaral, R.F. Mapping of coral reefs in the continental shelf of Brazilian Northeast through remote sensing. Rev. Gestão Costeira Integr. 2016, 16, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhao, D. Review of coral reef ecosystem remote sensing. Acta Ecol. Sin. 2014, 34, 19–25. [Google Scholar] [CrossRef]
- Dubinsky, Z.; Stambler, N. Coral Reefs: An Ecosystem in Transition; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Scopélitis, J.; Andréfouët, S.; Phinn, S.; Arroyo, L.; Dalleau, M.; Cros, A.; Chabanet, P. The next step in shallow coral reef monitoring: Combining remote sensing and in situ approaches. Mar. Pollut. Bull. 2010, 60, 1956–1968. [Google Scholar] [CrossRef]
- Mumby, P.J.; Skirving, W.; Strong, A.E.; Hardy, J.T.; LeDrew, E.F.; Hochberg, E.J.; Stumpf, R.P.; David, L.T. Remote sensing of coral reefs and their physical environment. Mar. Pollut. Bull. 2004, 48, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, J.; Li, F.; Wang, L.; Song, D.; Wen, S.; Wang, F.; Gao, N. Object-based image analysis for mapping geomorphic zones of coral reefs in the Xisha Islands, China. Acta Oceanol. Sin. 2016, 35, 19–27. [Google Scholar] [CrossRef]
- Lucas, M.Q.; Goodman, J. Linking Coral Reef Remote Sensing and Field Ecology: It’s a Matter of Scale. J. Mar. Sci. Eng. 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Marchese, F.; Bracchi, V.A.; Lisi, G.; Basso, D.; Corselli, C.; Savini, A. Assessing Fine-Scale Distribution and Volume of Mediterranean Algal Reefs through Terrain Analysis of Multibeam Bathymetric Data. A Case Study in the Southern Adriatic Continental Shelf. Water 2020, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Su, D.P.; Yang, F.L.; Ma, Y.; Zhang, K.; Huang, J.; Wang, M.W. Classification of Coral Reefs in the South China Sea by Combining Airborne LiDAR Bathymetry Bottom Waveforms and Bathymetric Features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 815–828. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, F.; Zhang, H.; Su, D.; Li, Q.Q. Morphological characterization of coral reefs by combining LiDAR and MBES data: A case study from Yuanzhi Island, South China Sea. J. Geophys. Res. Ocean. 2017, 122, 4779–4790. [Google Scholar] [CrossRef]
- Leon, J.; Woodroffe, C. The use of digital terrain models in coral reef geomorphology. In Proceedings of the 8th International Symposium on GIS and Computer Mapping for Coastal Zone Management, Santander, Spain, 8–10 October 2007; pp. 454–463. [Google Scholar]
- Anelli, M.; Julitta, T.; Fallati, L.; Galli, P.; Rossini, M.; Colombo, R. Towards new applications of underwater photogrammetry for investigating coral reef morphology and habitat complexity in the Myeik Archipelago, Myanmar. Geocarto Int. 2019, 34, 459–472. [Google Scholar] [CrossRef]
- Zawada, D.G.; Brock, J.C. A Multiscale Analysis of Coral Reef Topographic Complexity Using Lidar-Derived Bathymetry. J. Coast. Res. 2009, 25, 6–15. [Google Scholar] [CrossRef]
- Walker, B.K.; Jordan, L.; Spieler, R.E. Relationship of Reef Fish Assemblages and Topographic Complexity on Southeastern Florida Coral Reef Habitats. J. Coast. Res. 2009, 53, 39–48. [Google Scholar] [CrossRef]
- Costa, B.M.; Battista, T.A.; Pittman, S.J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [Google Scholar] [CrossRef]
- Zarco-Perello, S.; Simoes, N. Ordinary kriging vs inverse distance weighting: Spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. PEERJ 2017, 5, e4078. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.B.; Yao, X.; Jordan, T.R.; Madden, M. Holes in the ocean: Filling voids in bathymetric lidar data. Comput. Geosci. 2011, 37, 474–484. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.; Zhuang, D. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. J. Environ. Manag. 2018, 212, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Desmet, P.J.J. Effects of Interpolation Errors on the Analysis of DEMs. Earth Surf. Processes Landf. 2015, 22, 563–580. [Google Scholar] [CrossRef]
- Arun, P.V. A comparative analysis of different DEM interpolation methods. Egypt. J. Remote Sens. Space Sci. 2013, 16, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Wedding, L.M.; Friedlander, A.M.; McGranaghan, M.; Yost, R.S.; Monaco, M.E. Using bathymetric lidar to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii. Remote Sens. Environ. 2008, 112, 4159–4165. [Google Scholar] [CrossRef]
- Conger, C.L.; Fletcher, C.H.; Hochberg, E.H.; Frazer, N.; Rooney, J.J.B. Remote sensing of sand distribution patterns across an insular shelf: Oahu, Hawaii. Mar. Geol. 2009, 267, 175–190. [Google Scholar] [CrossRef]
- Leon, J.X.; Phinn, S.R.; Hamylton, S.; Saunders, M.I. Filling the ‘white ribbon’—A multisource seamless digital elevation model for Lizard Island, northern Great Barrier Reef. Int. J. Remote Sens. 2013, 34, 6337–6354. [Google Scholar] [CrossRef]
- Yamamoto, J.K. Correcting the Smoothing Effect of Ordinary Kriging Estimates. Math. Geol. 2005, 37, 69–94. [Google Scholar] [CrossRef]
- Rezaee, H.; Asghari, O.; Yamamoto, J.K. On the reduction of the ordinary kriging smoothing effect. J. Min. Environ. 2011, 2, 102–117. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; Li, Y.; Yan, C.; Liu, G. A robust interpolation method for constructing digital elevation models from remote sensing data. Geomorphology 2016, 268, 275–287. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resource Evaluation; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Isaaks, E.H.; Srivastava, M.R. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Journel, A.G.; Kyriakidis, P.C.; Mao, S. Correcting the Smoothing Effect of Estimators: A Spectral Postprocessor. Math. Geol. 2000, 32, 787–813. [Google Scholar] [CrossRef]
- Yamamoto, J.K. On unbiased backtransform of lognormal kriging estimates. Comput. Geosci. 2007, 11, 219–234. [Google Scholar] [CrossRef]
- Wang, Q.; Su, F.; Zhang, Y.; Jiang, H.; Cheng, F. Morphological Precision Assessment of Reconstructed Surface Models for a Coral Atoll Lagoon. Sustainability 2018, 10, 2749. [Google Scholar] [CrossRef] [Green Version]
- Duce, S.; Vila-Concejo, A.; Hamylton, S.M.; Webster, J.M.; Bruce, E.; Beaman, R.J. A morphometric assessment and classification of coral reef spur and groove morphology. Geomorphology 2016, 265, 68–83. [Google Scholar] [CrossRef]
- Zieger, S.; Stieglitz, T.; Kininmonth, S. Mapping reef features from multibeam sonar data using multiscale morphometric analysis. Mar. Geol. 2009, 264, 209–217. [Google Scholar] [CrossRef]
- Drăguţ, L.; Eisank, C. Object representations at multiple scales from digital elevation models. Geomorphology 2011, 129, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.P.; Zhu, A.X.; Burt, J.E.; Stiles, C. The effects of DEM resolution and neighborhood size on digital soil survey. Geoderma 2006, 137, 58–69. [Google Scholar] [CrossRef]
Category | Indexes | Description and Morphological Meanings |
---|---|---|
NA | are the local elevation (LE), local aspect (LA), and local relief (LR) of reconstructed surface at the test points, respectively, and Z, A, R are, the closer the reconstructed surface is to the generalization surface, and the higher the morphological numerical accuracy is. | |
AA | Where N are, the closer the reconstructed surface is to the generalization surface, and the higher the morphological attribute accuracy is. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xiao, H.; Wu, W.; Su, F.; Zuo, X.; Yao, G.; Zheng, G. Reconstructing High-Precision Coral Reef Geomorphology from Active Remote Sensing Datasets: A Robust Spatial Variability Modified Ordinary Kriging Method. Remote Sens. 2022, 14, 253. https://doi.org/10.3390/rs14020253
Wang Q, Xiao H, Wu W, Su F, Zuo X, Yao G, Zheng G. Reconstructing High-Precision Coral Reef Geomorphology from Active Remote Sensing Datasets: A Robust Spatial Variability Modified Ordinary Kriging Method. Remote Sensing. 2022; 14(2):253. https://doi.org/10.3390/rs14020253
Chicago/Turabian StyleWang, Qi, Han Xiao, Wenzhou Wu, Fenzhen Su, Xiuling Zuo, Guobiao Yao, and Guoqiang Zheng. 2022. "Reconstructing High-Precision Coral Reef Geomorphology from Active Remote Sensing Datasets: A Robust Spatial Variability Modified Ordinary Kriging Method" Remote Sensing 14, no. 2: 253. https://doi.org/10.3390/rs14020253
APA StyleWang, Q., Xiao, H., Wu, W., Su, F., Zuo, X., Yao, G., & Zheng, G. (2022). Reconstructing High-Precision Coral Reef Geomorphology from Active Remote Sensing Datasets: A Robust Spatial Variability Modified Ordinary Kriging Method. Remote Sensing, 14(2), 253. https://doi.org/10.3390/rs14020253