National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine
Abstract
:1. Introduction
- The evaluation of the relevance of different training data extraction strategies (i.e., manual and automated) to increase the classification accuracy.
- The evaluation of seasonal and monthly EO information to increase the classification accuracy.
- The assessment of the relative importance of the different features in the classification process, facilitating data dimensionality reduction and computational time and resources optimization.
2. Study Area
3. Materials and Methods
3.1. Overall Workflow
3.2. Satellite Data and Preprocessing
3.3. Image Segmentation
3.4. Feature Extraction
Feature Name | Statistic per Object | Brief Index Formula | Data Source | Reference |
---|---|---|---|---|
Original Bands | ||||
-B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 | Mean, stdDev | - | S2 L2A | |
-VV, VH | Mean, stdDev | - | S1 IW GRD | |
Spectral indices | ||||
-reNDVI | Mean, stdDev | S2 L2A | [67] | |
-NDWI | Mean, stdDev | S2 L2A | [68] | |
-GRVI | Mean, stdDev | S2 L2A | [69] | |
-NDRBI | Mean, stdDev | S2 L2A | [70] | |
-MSI | Mean, stdDev | S2 L2A | [71] | |
-EVI | Mean, stdDev | S2 L2A | [72] | |
-TC Brightness | Mean, stdDev | S2 L1C | [43] | |
-TC Greenness | Mean, stdDev | S2 L1C | ||
-TC Wetness | Mean, stdDev | S2 L1C | ||
-BCI | Mean, stdDev | S2 L1C | [73] | |
-VV/VH ratio | Mean, stdDev | S1 IW GRD | ||
Texture indices | ||||
-B2 7 7 GLCM Correlation | Mean | S2 L2A | [62] | |
-PANTEX | Mean | S2 L2A | [74] | |
-BCI 3 3 GLCM Correlation | Mean | S2 L1C | - | |
-VV 7 7 GLCM Correlation | Mean | S1 IW GRD | [63] | |
VH 7 7 GLCM Correlation | Mean | S1 IW GRD | ||
Object shape properties | ||||
-Perimeter, -Area | ||||
-Form factor | [64] | |||
-Square pixel metric | ||||
-Fractal dimension | ||||
-Shape index | ||||
Ancillary data | ||||
-Elevation, -Slope, -TRASP | Mean | EU-DEM | [66] |
3.5. Classification Scheme
3.6. Reference Data
3.7. Classification Algorithm and Accuracy Assessment
4. Results
4.1. Classification Schemes
4.2. Visual Assessment of the Results
4.3. Variable Importance
5. Discussion
5.1. Classification Accuracy
5.2. Automated Sampling Potential with Available LULC Products
5.3. Multi-Temporal Features and Variable Importance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrew, M.E.; Wulder, M.A.; Nelson, T.A.; Coops, N.C. Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: A review. GIScience Remote Sens. 2015, 52, 344–373. [Google Scholar] [CrossRef] [Green Version]
- Cowling, R.M.; Egoh, B.; Knight, A.T.; O’Farrell, P.J.; Reyers, B.; Rouget, M.; Roux, D.J.; Welz, A.; Wilhelm-Rechman, A. An operational model for mainstreaming ecosystem services for implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9483–9488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Kokkoris, I.; Mallinis, G.; Bekri, E.; Vlami, V.; Zogaris, S.; Chrysafis, I.; Mitsopoulos, I.; Dimopoulos, P. National Set of MAES Indicators in Greece: Ecosystem Services and Management Implications. Forests 2020, 11, 595. [Google Scholar] [CrossRef]
- Cord, A.F.; Brauman, K.A.; Chaplin-, R.; Huth, A.; Ziv, G.; Seppelt, R. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. Trends Ecol. Evol. 2017, 32, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Grêt-Regamey, A.; Weibel, B.; Bagstad, K.J.; Ferrari, M.; Geneletti, D.; Klug, H.; Schirpke, U.; Tappeiner, U. On the effects of scale for ecosystem services mapping. PLoS ONE 2014, 9, e112601. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Mapping Ecosystem Services; Burkhard, B.; Maes, J. (Eds.) Pensoft Publishers: Sofia, Bulgaria, 2017; ISBN 978-954-642-830-1. [Google Scholar]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. “The Matrix Reloaded”: A review of expert knowledge use for mapping ecosystem services. Ecol. Modell. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Mallinis, G.; Georgiadis, C. Editorial of Special Issue “Remote Sensing for Land Cover/Land Use Mapping at Local and Regional Scales”. Remote Sens. 2019, 11, 2202. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, C.C.; Atkinson, P.M.; Dearing, J.A.; De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A.; De Araujo, C.C.; Atkinson, P.M.; Dearing, J.A.; De Araujo Barbosa, C.C.; et al. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Kukawska, E.; Lewinski, S.; Krupinski, M.; Malinowski, R.; Nowakowski, A.; Rybicki, M.; Kotarba, A. Multitemporal Sentinel-2 data-remarks and observations. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Büttner, G. CORINE land cover and land cover change products. Remote Sens. Digit. Image Process. 2014, 18, 55–74. [Google Scholar]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Deck, R.; Huth, J.; Ottinger, M.; Mack, B. The Potential of Open Geodata for Automated Large-Scale Land Use and Land Cover Classification. Remote Sens. 2019, 11, 2249. [Google Scholar] [CrossRef] [Green Version]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Gounaridis, D.; Apostolou, A.; Koukoulas, S. Land cover of Greece, 2010: A semi-automated classification using random forests. J. Maps 2016, 12, 1055–1062. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Hütt, C.; Waldhoff, G.; Waldhoff, G. Multi-data approach for crop classification using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata. Eur. J. Remote Sens. 2018, 51, 62–74. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Slagter, B.; Tsendbazar, N.-E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object-Based Image Analysis; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; ISBN 978-3-540-77057-2. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- EEA Technical Specifications for Implementation of a New land-Monitoring Concept Based on EAGLE. Public Consultation document for CLC+ Core. Available online: https://land.copernicus.eu/user-corner/technical-library/clc-core-consultations-for-the-technical-specifications (accessed on 9 October 2020).
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- European Commision. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions; European Commision: Brussels, Belgium, 2011. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and their Services; Publications office of the European Union: Luxembourg, 2013; ISBN 9789279293696. [Google Scholar]
- Schuler, M.; Stucki, E.; Roque, O.; Perlik, M. Mountain Areas in Europe: Analysis of Mountain Areas in EU Member States, Acceding and Other European Countries; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kokkoris, I.; Dimopoulos, P.; Xystrakis, F.; Tsiripidis, I. National scale ecosystem condition assessment with emphasis on forest types in Greece. One Ecosyst. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Banko, G. Ecosystem Type Map v3.1—Terrestrial and marine ecosystems; EEA-European Topic Centre on Biological Diversity: Paris, France, 2018. [Google Scholar]
- EEA Mapping Europe’s Ecosystems. Available online: https://www.eea.europa.eu/themes/biodiversity/mapping-europes-ecosystems (accessed on 9 October 2020).
- LIFE-IP 4 NATURA GitHub Page. Available online: https://github.com/n-verde/LIFE-IP_4_NATURA (accessed on 9 October 2020).
- Shoko, C.; Mutanga, O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Shi, T.; Xu, H. Derivation of Tasseled Cap Transformation Coefficients for Sentinel-2 MSI At-Sensor Reflectance Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4038–4048. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Lemoine, G.; van der Velde, M. Targeted Grassland Monitoring at Parcel Level Using Sentinels, Street-Level Images and Field Observations. Remote Sens. 2018, 10, 1300. [Google Scholar] [CrossRef] [Green Version]
- Mack, B.; Leinenkugel, P.; Kuenzer, C.; Dech, S. A semi-automated approach for the generation of a new land use and land cover product for Germany based on Landsat time-series and Lucas in-situ data. Remote Sens. Lett. 2017, 8, 244–253. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2019, 1–12. [Google Scholar] [CrossRef]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Evans, M.J.; Malcom, J.W. Automated Change Detection Methods for Satellite Data that can Improve Conservation Implementation. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–14 September 2017; Volume 10427, p. 3. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic land-cover mapping using landsat time-series data based on google earth engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, L.; O’Neil, A.W.; Daniel Morton, R.; Rowland, C.S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Süsstrunk, S. Superpixels and polygons using simple non-iterative clustering. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4895–4904. [Google Scholar]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Brisco, B.; Homayouni, S.; Gill, E.; DeLancey, E.R.; Bourgeau-Chavez, L. Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Can. J. Remote Sens. 2020, 46, 15–33. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, B.; Zhang, T.; Xu, B. Regional Mapping of Essential Urban Land Use Categories in China: A Segmentation-Based Approach. Remote Sens. 2020, 12, 1058. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef] [Green Version]
- Culbert, P.D.; Pidgeon, A.M.; St. Louis, V.; Radeloff, V.C.; Bash, D.; St.-Louis, V.; Bash, D.; Radeloff, V.C. The Impact of Phenological Variation on Texture Measures of Remotely Sensed Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 299–309. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Tsuyuki, S.; Dube, T. Exploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal. Geocarto Int. 2019, 6049, 1–18. [Google Scholar] [CrossRef]
- Morin, D.; Planells, M.; Guyon, D.; Villard, L.; Mermoz, S.; Bouvet, A.; Thevenon, H.; Dejoux, J.-F.; Le Toan, T.; Dedieu, G. Estimation and Mapping of Forest Structure Parameters from Open Access Satellite Images: Development of a Generic Method with a Study Case on Coniferous Plantation. Remote Sens. 2019, 11, 1275. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Liu, Y.; Li, H. Characterizing land-use classes in remote sensing imagery by shape metrics. ISPRS J. Photogramm. Remote Sens. 2012, 72, 46–55. [Google Scholar] [CrossRef]
- García, J.C.; Antonio, J.; Garzón, A. EU-DEM Upgrade Documentation EEA User Manual; Indra Systems S.A.: Madrid, Spain, 2015. [Google Scholar]
- Roberts, D.W.; Cooper, S. V Concepts and techniques of vegetation mapping. In Proceedings of the Land Classifications Based on Vegetation: Applications for Resource Management, Moscow, ID, USA, 17–19 November 1987; Intermountain Research Station publications: Ogden, UT, USA, 1989; pp. 90–96. [Google Scholar]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2′s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Karteris, M.; Theodoridou, I.; Tsioukas, V.; Karteris, M. Development of a nationwide approach for large scale estimation of green roof retrofitting areas and roof-top solar energy potential using VHR natural colour orthoimagery and DSM data over Thessaloniki, Greece. Remote Sens. Lett. 2014, 5, 548–557. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The potential of EnMAP and sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- EEA Linkages of Species and Habitat Types to MAES Ecosystems. Available online: https://www.eea.europa.eu/data-and-maps/data/linkages-of-species-and-habitat (accessed on 9 October 2020).
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines; European Environment Agency: Wien, Austria, 2017. [Google Scholar]
- EEA NOMENCLATURE and MAPPING GUIDELINE. Copernicus Land Monitoring Service Local Component: Natura 2000 Mapping. Available online: https://land.copernicus.eu/local/natura/resolveuid/aa66ae0cd4fe4270bd5d354f145498ee (accessed on 9 October 2020).
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated training sample extraction for global land cover mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 9 October 2020).
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Koukoulas, S.; Blackburn, G.A. Introducing new indices for accuracy evaluation of classified images representing semi-natural woodland environments. Photogramm. Eng. Remote Sens. 2001, 67, 499–510. [Google Scholar]
- Karantzalos, K.; Bliziotis, D.; Karmas, A. A Scalable Geospatial Web Service for Near Real-Time, High-Resolution Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4665–4674. [Google Scholar] [CrossRef]
- Karakizi, C.; Karantzalos, K.; Vakalopoulou, M.; Antoniou, G. Detailed Land Cover Mapping from Multitemporal Landsat-8 Data of Different Cloud Cover. Remote Sens. 2018, 10, 1214. [Google Scholar] [CrossRef] [Green Version]
- Pereira-Pires, J.E.; Aubard, V.; Ribeiro, R.A.; Fonseca, J.M.; Silva, J.M.N.; Mora, A. Semi-automatic methodology for fire break maintenance operations detection with sentinel-2 imagery and artificial neural network. Remote Sens. 2020, 12, 909. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.R.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Haest, B.; Vanden Borre, J.; Spanhove, T.; Thoonen, G.; Delalieux, S.; Kooistra, L.; Mücher, C.A.; Paelinckx, D.; Scheunders, P.; Kempeneers, P. Habitat mapping and quality assessment of NATURA 2000 heathland using airborne imaging spectroscopy. Remote Sens. 2017, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Smith, G.; Pennec, A.; Sannier, C.; Dufourmont, H. HRL Imperviousness Degree 2015 Validation Report; European Environment Agency: Brussels, Belgium, 2018. [Google Scholar]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- José Vidal-Macua, J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Pons, X. Factors affecting forest dynamics in the Iberian Peninsula from 1987 to 2012. The role of topography and drought. For. Ecol. Manag. 2017, 406, 290–306. [Google Scholar] [CrossRef]
- Tomaselli, V.; Adamo, M.; Veronico, G.; Sciandrello, S.; Tarantino, C.; Dimopoulos, P.; Medagli, P.; Nagendra, H.; Blonda, P. Definition and application of expert knowledge on vegetation pattern, phenology, and seasonality for habitat mapping, as exemplified in a Mediterranean coastal site. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2017, 151, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.; Song, C.; Vose, J.M.; Band, L.E. Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index. Landsc. Ecol. 2011, 26, 541–556. [Google Scholar] [CrossRef]
- Fernández-Landa, A.; Algeet-Abarquero, N.; Fernández-Moya, J.; Guillén-Climent, M.L.; Pedroni, L.; García, F.; Espejo, A.; Villegas, J.F.; Marchamalo, M.; Bonatti, J.; et al. An operational framework for land cover classification in the context of REDD+ mechanisms: A case study from costa rica. Remote Sens. 2016, 8, 593. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Saatchi, S.; Clark, D.; Astaiza, J.H.; Hubel, A.F.; Gillespie, T.W. Topography and three-dimensional structure can estimate tree diversity along a tropical elevational gradient in Costa Rica. Remote Sens. 2018, 10, 629. [Google Scholar] [CrossRef] [Green Version]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. Analysis of Time-Series Spectral Index Data to Enhance Crop Identification Over a Mediterranean Rural Landscape. IEEE Geosci. Remote Sens. Lett. 2017, 1–5. [Google Scholar] [CrossRef]
- Nagai, S.; Ishii, R.; Bin Suhaili, A.; Kobayashi, H.; Matsuoka, M.; Ichie, T.; Motohka, T.; Kendawang, J.J.; Suzuki, R. Usability of noise-free daily satellite-observed green–red vegetation index values for monitoring ecosystem changes in Borneo. Int. J. Remote Sens. 2014, 35, 7910–7926. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stow, D.A.; Toure, S.I.; Lippitt, C.D.; Lippitt, C.L.; Lee, C.R. Frequency distribution signatures and classification of within-object pixels. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampling Approach | Compositing | Feature Set | Number of Features | Study Area Composite Size (GB) | Abbreviation | |
---|---|---|---|---|---|---|
1 | Manual | Seasonal | Full | 144 | 241.27 | M-S-F |
2 | Manual | Seasonal | Reduced (S2 L2A bands excluded) | 84 | 140.74 | M-S-R |
3 | Manual | Monthly | Reduced (S2 L2A bands excluded) | 168 | 282.54 | M-M-R |
4 | Automated | Seasonal | Full | 144 | 241.27 | A-S-F |
5 | Automated | Seasonal | Reduced (S2 L2A bands excluded) | 84 | 140.74 | A-S-R |
6 | Automated | Monthly | Reduced (S2 L2A bands excluded) | 168 | 282.54 | A-M-R |
MAES Ecosystem Category (Level 1) | MAES Ecosystem Category (Level 2) | Ecosystem Types for Mapping and Assessment in Greece (Level 3) | Code | Data Source | Data Source Classes |
---|---|---|---|---|---|
Terrestrial | Urban | Dense to medium dense Urban Fabric (IM.D. 30–100%) | 1.1.1 | HRL | => 30% |
Low density Urban Fabric (IM.D. 0–30%) | 1.1.2 | HRL | <30% | ||
Cropland | Arable land | 2.1.1 | LPIS, CLC | LPIS: 40, CLC: 2.1 | |
Permanent crops | 2.2.1 | LPIS, CLC | LPIS: 50, 60, 70, CLC: 2.2 | ||
Woodland and forest | Temperate deciduous forests | 3.1.1 | N2K | 9110, 9130, 9140, 9150, 9180, G91K, G91L | |
Mediterranean deciduous forests | 3.1.2 | N2K | 91M0, 9280, 9250, 9310, 9350, 9260, 925A | ||
Floodplain forests (Riparian forest/Fluvial forest) | 3.2.1 | N2K | 92A0, 92C0, 92D0, 91E0, 91F0 | ||
Temperate mountainous coniferous forests | 3.3.1 | N2K | 9530, 951B, 91ΒA, 91CA, 95A0, 9410 | ||
Mediterranean coniferous forests | 3.3.2 | N2K | 2270, 9540, 9560, 9290 | ||
Mediterranean sclerophyllous forests | 3.4.1 | N2K | 9340, 934A, 9320, 9370 | ||
Mixed Forest | 3.5.1 | N2K | 9270 | ||
Grassland | Grasslands | 4.1.1 | N2K | 6110, 6170, 6220, 6230, G628, 6290, 62A0, 62D0, 6420, 6430, G645, 6510, 651A, 1070 | |
Heathland and shrub | Moors and heathland | 5.1.1 | N2K | 4060, 4090, 5360, 5420, 5430 | |
Sclerophyllous vegetation | 5.2.1 | N2K | 2250, 5110, 5150, 5160, 5210, 5230, 5310, 5330, 5340, 5350 | ||
Sparsely vegetated | Sparsely vegetated areas | 6.1.1 | N2K | 8130, 8140, 8210, 8220, 8230, 8310, 8320, 8330, 2240, 2260, 9620, 8250 | |
Beaches, dunes, sands | 6.2.1 | N2K | 1210, 1240, 1410, 2110, 2120, 2220, 2230, 2210, 21B0 | ||
Bare rocks, burnt areas, mines, dump, land without current use | 6.3.1 | N2K | 1030 | ||
Wetlands | Inland freshwater and saline marshes | 7.1.1 | N2K | 72A0, 72B0, 2190, 1310, 1410, 1420, 1430, 1510, 1440 | |
Peat bogs | 7.2.1 | N2K | 7140, 7210, 7220, 7230 | ||
Marine | Marine | Marine | 7.3.1 | N2K | 1110, 1120, 1130, 1150, 1160, 1170, 1180, 1310 |
Freshwater | Rivers and lakes | Rivers and lakes | 8.1.1 | N2K | 3130, 3140, 3150, 3170, 3240, 3250, 3260, 3280, 3290, 3190 |
M-S-F | M-S-R | M-M-R | A-S-F | A-S-R | M-M-R | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | PA | UA | ICSI | PA | UA | ICSI | PA | UA | ICSI | PA | UA | ICSI | PA | UA | ICSI | PA | UA | ICSI |
1.1.1 | 84 | 83 | 67 | 82 | 84 | 66 | 82 | 85 | 67 | 96 | 60 | 56 | 96 | 59 | 55 | 96 | 59 | 55 |
1.1.2 | 93 | 80 | 73 | 93 | 81 | 74 | 93 | 83 | 76 | 45 | 92 | 37 | 43 | 92 | 35 | 43 | 92 | 35 |
2.1.1 | 90 | 87 | 77 | 89 | 86 | 75 | 91 | 88 | 79 | 91 | 79 | 70 | 91 | 78 | 69 | 93 | 80 | 73 |
2.2.1 | 80 | 81 | 61 | 84 | 85 | 69 | 84 | 86 | 70 | 83 | 74 | 57 | 84 | 73 | 57 | 86 | 78 | 64 |
3.1.1 | 85 | 82 | 67 | 86 | 81 | 67 | 91 | 84 | 75 | 89 | 74 | 63 | 87 | 74 | 61 | 90 | 81 | 71 |
3.1.2 | 77 | 79 | 56 | 75 | 79 | 54 | 79 | 78 | 57 | 80 | 66 | 46 | 79 | 66 | 45 | 80 | 65 | 45 |
3.2.1 | 68 | 64 | 32 | 72 | 60 | 32 | 74 | 81 | 55 | 65 | 73 | 38 | 68 | 73 | 41 | 67 | 75 | 42 |
3.3.1 | 82 | 77 | 59 | 84 | 77 | 61 | 83 | 76 | 59 | 81 | 85 | 66 | 79 | 82 | 61 | 79 | 83 | 62 |
3.3.2 | 81 | 74 | 55 | 84 | 79 | 63 | 84 | 79 | 63 | 85 | 74 | 59 | 85 | 78 | 63 | 83 | 79 | 62 |
3.4.1 | 37 | 62 | −1 | 43 | 67 | 10 | 48 | 68 | 16 | 55 | 63 | 18 | 57 | 61 | 18 | 57 | 60 | 17 |
3.5.1 | 58 | 78 | 36 | 63 | 80 | 43 | 60 | 78 | 38 | 58 | 72 | 30 | 57 | 71 | 28 | 69 | 76 | 45 |
4.1.1 | 75 | 75 | 50 | 76 | 76 | 52 | 77 | 75 | 52 | 78 | 75 | 53 | 78 | 76 | 54 | 79 | 75 | 54 |
5.1.1 | 48 | 61 | 9 | 49 | 63 | 12 | 51 | 62 | 13 | 52 | 51 | 3 | 55 | 52 | 7 | 55 | 56 | 11 |
5.2.1 | 46 | 39 | −15 | 49 | 44 | −7 | 46 | 44 | −10 | 48 | 55 | 3 | 48 | 54 | 2 | 49 | 53 | 2 |
6.1.1 | 87 | 72 | 59 | 88 | 73 | 61 | 90 | 75 | 65 | 84 | 78 | 62 | 83 | 78 | 61 | 86 | 78 | 64 |
6.2.1 | 62 | 76 | 38 | 69 | 75 | 44 | 71 | 77 | 48 | 69 | 65 | 34 | 70 | 63 | 33 | 70 | 62 | 32 |
6.3.1 | 90 | 83 | 73 | 91 | 84 | 75 | 88 | 82 | 70 | 38 | 92 | 30 | 36 | 97 | 33 | 35 | 96 | 31 |
7.1.1 | 81 | 76 | 57 | 78 | 76 | 54 | 89 | 82 | 71 | 87 | 85 | 72 | 86 | 85 | 71 | 88 | 86 | 74 |
7.2.1 | 81 | 100 | 81 | 78 | 100 | 78 | 81 | 100 | 81 | 66 | 100 | 66 | 66 | 100 | 66 | 63 | 100 | 63 |
7.3.1 | 98 | 99 | 97 | 97 | 99 | 96 | 97 | 99 | 96 | 98 | 100 | 98 | 99 | 100 | 99 | 97 | 100 | 97 |
8.1.1 | 93 | 98 | 91 | 95 | 98 | 93 | 95 | 98 | 93 | 97 | 98 | 95 | 95 | 99 | 94 | 96 | 99 | 95 |
OA | 77.33 | 78.67 | 79.55 | 74.89 | 74.61 | 75.64 |
Classification | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1.1 | 1.1.2 | 2.1.1 | 2.2.1 | 3.1.1 | 3.1.2 | 3.2.1 | 3.3.1 | 3.3.2 | 3.4.1 | 3.5.1 | 4.1.1 | 5.1.1 | 5.2.1 | 6.1.1 | 6.2.1 | 6.3.1 | 7.1.1 | 7.2.1 | 7.3.1 | 8.1.1 | ||
Reference | 1.1.1 | 82 | 10 | 1 | 1 | 6 | ||||||||||||||||
1.1.2 | 5 | 93 | 1 | 1 | 1 | |||||||||||||||||
2.1.1 | 1 | 1 | 91 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | ||||||||||||
2.2.1 | 1 | 3 | 84 | 1 | 2 | 2 | 3 | 3 | ||||||||||||||
3.1.1 | 91 | 5 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||
3.1.2 | 1 | 7 | 79 | 2 | 1 | 3 | 3 | 1 | 1 | 3 | ||||||||||||
3.2.1 | 2 | 2 | 3 | 1 | 1 | 74 | 2 | 2 | 13 | |||||||||||||
3.3.1 | 1 | 83 | 5 | 1 | 6 | 1 | 3 | |||||||||||||||
3.3.2 | 1 | 1 | 1 | 3 | 84 | 2 | 1 | 5 | 2 | |||||||||||||
3.4.1 | 1 | 1 | 4 | 1 | 2 | 4 | 7 | 48 | 6 | 27 | 1 | |||||||||||
3.5.1 | 14 | 21 | 60 | 1 | 4 | |||||||||||||||||
4.1.1 | 1 | 1 | 3 | 77 | 6 | 2 | 10 | 1 | ||||||||||||||
5.1.1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 14 | 51 | 4 | 14 | 8 | ||||||||||
5.2.1 | 1 | 1 | 8 | 1 | 5 | 6 | 13 | 1 | 3 | 7 | 46 | 6 | 1 | |||||||||
6.1.1 | 1 | 3 | 5 | 90 | 1 | 1 | ||||||||||||||||
6.2.1 | 1 | 5 | 71 | 2 | 22 | |||||||||||||||||
6.3.1 | 6 | 1 | 2 | 1 | 1 | 88 | 1 | |||||||||||||||
7.1.1 | 2 | 1 | 1 | 5 | 1 | 89 | ||||||||||||||||
7.2.1 | 3 | 13 | 3 | 81 | ||||||||||||||||||
7.3.1 | 3 | 97 | ||||||||||||||||||||
8.1.1 | 1 | 5 | 95 |
Classification | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1.1 | 1.1.2 | 2.1.1 | 2.2.1 | 3.1.1 | 3.1.2 | 3.2.1 | 3.3.1 | 3.3.2 | 3.4.1 | 3.5.1 | 4.1.1 | 5.1.1 | 5.2.1 | 6.1.1 | 6.2.1 | 6.3.1 | 7.1.1 | 7.2.1 | 7.3.1 | 8.1.1 | ||
Reference | 1.1.1 | 96 | 2 | |||||||||||||||||||
1.1.2 | 33 | 43 | 8 | 8 | 2 | 2 | 1 | 1 | 1 | |||||||||||||
2.1.1 | 91 | 4 | 1 | 2 | ||||||||||||||||||
2.2.1 | 3 | 84 | 7 | 3 | 1 | |||||||||||||||||
3.1.1 | 87 | 8 | 1 | 2 | 1 | |||||||||||||||||
3.1.2 | 3 | 11 | 79 | 3 | 1 | 2 | ||||||||||||||||
3.2.1 | 2 | 1 | 12 | 68 | 9 | 6 | ||||||||||||||||
3.3.1 | 79 | 4 | 5 | 10 | ||||||||||||||||||
3.3.2 | 2 | 2 | 1 | 85 | 4 | 4 | ||||||||||||||||
3.4.1 | 6 | 2 | 2 | 3 | 6 | 57 | 4 | 18 | ||||||||||||||
3.5.1 | 23 | 3 | 13 | 57 | 2 | 2 | ||||||||||||||||
4.1.1 | 1 | 2 | 78 | 6 | 3 | 9 | ||||||||||||||||
5.1.1 | 4 | 1 | 2 | 7 | 13 | 55 | 3 | 13 | ||||||||||||||
5.2.1 | 1 | 1 | 7 | 3 | 7 | 15 | 3 | 11 | 48 | 1 | ||||||||||||
6.1.1 | 2 | 2 | 2 | 9 | 83 | 1 | ||||||||||||||||
6.2.1 | 2 | 2 | 9 | 70 | 17 | |||||||||||||||||
6.3.1 | 34 | 4 | 5 | 3 | 14 | 2 | 2 | 36 | ||||||||||||||
7.1.1 | 2 | 9 | 86 | |||||||||||||||||||
7.2.1 | 3 | 13 | 3 | 16 | 66 | |||||||||||||||||
7.3.1 | 1 | 99 | ||||||||||||||||||||
8.1.1 | 4 | 95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I.; Mallinis, G. National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sens. 2020, 12, 3303. https://doi.org/10.3390/rs12203303
Verde N, Kokkoris IP, Georgiadis C, Kaimaris D, Dimopoulos P, Mitsopoulos I, Mallinis G. National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sensing. 2020; 12(20):3303. https://doi.org/10.3390/rs12203303
Chicago/Turabian StyleVerde, Natalia, Ioannis P. Kokkoris, Charalampos Georgiadis, Dimitris Kaimaris, Panayotis Dimopoulos, Ioannis Mitsopoulos, and Giorgos Mallinis. 2020. "National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine" Remote Sensing 12, no. 20: 3303. https://doi.org/10.3390/rs12203303
APA StyleVerde, N., Kokkoris, I. P., Georgiadis, C., Kaimaris, D., Dimopoulos, P., Mitsopoulos, I., & Mallinis, G. (2020). National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sensing, 12(20), 3303. https://doi.org/10.3390/rs12203303