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Abstract: The difficult job of fighting fires and the nearly impossible task to stop a wildfire without
great casualties requires an imperative implementation of proactive strategies. These strategies must
decrease the number of fires, the burnt area and create better conditions for the firefighting. In this
line of action, the Portuguese Institute of Nature and Forest Conservation defined a fire break network
(FBN), which helps controlling wildfires. However, these fire breaks are efficient only if they are
correctly maintained, which should be ensured by the local authorities and requires verification
from the national authorities. This is a fastidious task since they have a large network of thousands
of hectares to monitor over a full year. With the increasing quality and frequency of the Earth
Observation Satellite imagery with Sentinel-2 and the definition of the FBN, a semi-automatic remote
sensing methodology is proposed in this article for the detection of maintenance operations in a fire
break. The proposed methodology is based on a time-series analysis, an object-based classification
and a change detection process. The change detection is ensured by an artificial neural network, with
reflectance bands and spectral indices as features. Additionally, an analysis of several bands and
spectral indices is presented to show the behaviour of the data during a full year and in the presence
of a maintenance operation. The proposed methodology achieved a relative error lower than 4% and
a recall higher than 75% on the detection of maintenance operations.

Keywords: remote sensing; fire break; object-based classification; change detection; wildfires; artificial
neural networks; sentinel-2

1. Introduction

Wildfires are among the most destructive disasters. These catastrophes have an enormous impact
in populated regions. It applies to the United States (Western states) [1]; Canada (South-Western) [2];
Mediterranean Europe (Portugal, Spain, France, Italy and Greece) [3] and South Eastern Australia [4,5].
As can be seen, this is a worldwide problem and not just on less developed countries. The means
available for fighting the wildfires are clearly insufficient for their efficient suppression. The answer
to this problem must be not only reactive, but also proactive. The prevention of fires and the
implementation of strategies to help the firefighting are imperative.

One of the possible strategies is the implementation of a fire break network (FBN). A fire break
(FB) is a strip of land that has been strategically and artificially modified, where vegetation density is
reduced to break up the continuity of fuel. It acts as a barrier to slow or stop the progress of wildfire,
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thus improving fire control opportunities. Technically, in the Portuguese FBN, an FB is a land strip
with 125 m wide composed by three regions: the road network, with a minimum width of 5 m; the fuel
interruption with a minimum width of 10 m where all vegetation is cut; the fuel reduction composed
by two zones, where a minimum distance between the tree tops is imposed (the complete information
is available in [6]). The technical specifications are synthetized in Figure 1 and a ground observation of
an FB can be seen in Figure 2.
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Since the vegetation is always growing, the monitorization of an FB is essential for its efficiency.
The Portuguese Institute of Nature and Forest Conservation (Instituto de Conservação da Natureza e
das Florestas, ICNF) planned a priority network of FBs to help control wildfires and decrease their
burnt area. The implementation and maintenance of FB is crucial for its efficiency and should be
ensured by the Local Authorities. The verification by the National Authorities (ICNF) of the previous
premises can be made by ground observation, but it is expensive and time consuming if a wide network
is implemented (the FBN was defined as having 11,125 km, having 1600 km already implemented).
The current practice is the visualization of satellite imagery, pointing out the cases that need special
attention. This technique is also a time-consuming process and prone to errors. In this paper, a remote
sensing semi-automatic methodology for the detection of maintenance operations in an FB is presented.

With the launch of the Sentinel 2 (the first satellite of the constellation in June 2015 and the second
in March 2017) free satellite imagery with a spatial resolution of 10 m and a temporal resolution
of five days was made available to the community. This new high spatial resolution allowed the
analysis of the FB conditions, which in current work, was to detect when maintenance operations
are performed. It is common to divide remote sensing applications into two groups: land cover
classification [7–10] and change detection [11–17]. The proposed methodology fits into the second
group. In this kind of applications, the output gives the information of the occurrence of an event
in the study area. In Hamunyela et al. [12], forest disturbances were detected with resource to two
observations and spatio-temporal features and in Hermosilla et al. [13]; annual composites were

http://www2.icnf.pt/
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generated to detect changes. In [15–17], different approaches were used to identify changes in the land
cover and the kind of changes. In [16,17], pixel-based methods were implemented, with three and six
observations, respectively, while in [15], an object-based technique was used. It should be noticed that
in these works [11–17] Landsat imagery was used, which means that the best achievable detection
period is 16 days (but due to the atmospheric conditions the period is usually worse). Additionally,
with the exception of [15], more than one observation of previous data is needed for the detection.
Usually, the change detection relies on the slope of the time-series and consecutive variations in
vegetation indices. These applications showed the importance of the temporal and spatial resources
for disturbances detection.

The purpose of this work is to identify when maintenance operations occur in the FBs. Although
there is not an evaluation of the quality of the operation, only complete operation in the FB are to be
detected. Relatively to the common change detections methods the goals were:

• Use of Sentinel-2 data instead of Landsat imagery, due to its increased frequency and
spatial resolution;

• Identify only a specific kind of operation efficiently, dealing with the phenology and different
types of vegetation;

• Use of common vegetation indices and other indices;
• Reduce the previous data used, identifying the maintenance as soon as possible, allowing a

classification whenever a new observation is made, as in [15].

To achieve these objectives and based on current literature, several requirements were defined
as follows:

• Object-based classification—since an FB is a well-defined area, it will be defined as an object. This
approach can—better capture its spatial characteristics;

• Temporal dynamics—the use of time-series allows the determination of the temporal dynamics,
which is essential in change detection methods;

• Machine learning—the use of artificial intelligence techniques to enhance the change
detection classification.

There are two main stages: the data extraction, and the maintenance operations detection with
an artificial neural network (ANN). In the first stage, the time-series and the datasets are created. It
includes the geolocation correction of the observations, calculation of the mean values of the reflectance
bands within the FB, followed by the application of a noise reduction filter and finally, computation of
the spectral indices. The second stage includes a preliminary training step for feature selection, ANN
training and error estimation, and a classification step to identify the months where a maintenance
operation was executed.

The structure of this paper is as follows: Section 2 describes the study area, the data used for the
implementation, and presents the dataset and the detection methodology; Section 3 show the results of
the intermediary steps for designing the ANN and the detection results followed by their discussion in
Section 4. Finally, the conclusions are in Section 5.

2. Materials and Methods

2.1. Study Definition

In this work, four study areas (Fundão, Seia, Serra dos Candeeiros and Sertã) within the Portuguese
FBN were defined. These had an FB installed or operated during the study period, which was 2017
and 2018 (first two years with both sentinel-2 A and B satellites). Beyond the defined FBs, several
vegetation areas (VEG), near the study cases, were analysed for behaviour comparison and ANN
classifier training. Another study area was identified (Marisol) to test the ANN. This FB does not
belong to the FBN, but to the Power Line Network, and an operation was executed during the study
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period. In Figure 3, observations are presented of an FB before and after a maintenance operation.
These disturbances in the land are observable with the naked eye.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 18 
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Figure 3. Example of a maintenance operation on an FB (red) in Serra dos Candeeiros, as seen by
Sentinel-2 Band04 images. (a) before operation (08-05-2017); (b) after operation (04-07-2017).

The flora richness is also a Portuguese characteristic, so the definition of several study areas is
important for the validation and training of the maintenance detection classifier. According to the
Portuguese land-cover use map from 2015 (COS2015), the most up to date map available, vegetation in
these areas are:

• Fundão: pinaster and eucalyptus forests and bush areas;
• Marisol: eucalyptus forests;
• Seia: artificial territories and bush areas;
• Serra dos Candeeiros: agricultural zones and bush areas;
• Sertã: bush areas.

2.2. Materials and Datasets

The data used were the FB shapefiles, provided by ICNF, and the Sentinel-2 images. The Sentinel-2
images are Level 1C (L1C) products, since Level 2A (L2A) products only became available since March
of 2018. The L1C imagery is Top-of-Atmosphere radiance of each band, while L2A has an additional
correction corresponding to the Bottom-of-Atmosphere radiance.

From the available Sentinel-2, observations only bands with a spatial resolution of 10m and
20m were used. Images with 60m spatial resolution were not used, due to the small width of an
FB. The bands analysed were: B02, B03, B04, B05, B07, B08, B8A, B11 and B12. Besides the spectral
bands, several vegetation and other spectral indices were calculated; (Table 1): normalized difference
moist index (NDMI), normalized difference vegetation index (NDVI), ratio vegetation index (RVI),
normalized multi-band drought index (NMDI [18]), normalized difference index (NDI), excess of green
(ExG), excess of red (ExR), excess of green minus excess of red (exgr) and modified excess of green
(MExG) [19].

The NDVI and NDMI indices have several applications for change detection in the vegetation [20,21].
Additionally, NDI highlights the distinction between vegetation and soil land cover types [22]. The visible
spectrum indices ExG, ExR, ExGR and MExG also evidence good results in the separation of vegetation
from the background [23,24].
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Table 1. Spectral indices equations.

Index Equation

Normalized Difference Moisture Index (NDMI) B08−B11
B08+B11

Normalized Difference Vegetation Index (NDVI)
B08−B04
B08+B04

Ratio Vegetation Index (RVI)
B04
B08

Normalized Multi-Band Drought Index (NMDI)
B8A−(B11−B12)
B8A+(B11−B12)

Normalized Difference Index (NDI) 128×
(

B03−B04
B03+B04 + 1

)
Excess of Green (ExG) 2× B03− B04− B02

Excess of Red (ExR) 1.3× B04− B03

Excess of Green minus Excess of Red (ExGR) ExG− ExR

Modified Excess of Green (MExG) 0.441× B04− 0.811× B03 + 0.383× B02 + 18.78745

The vegetation has a typical dynamic throughout the whole year. Due to phenology, the spectral
reflectance of the vegetation is not constant. There are some trends that can be observed in the different
seasons of the year, particularly in the summer and in the winter. The influence of these cyclical effects
in vegetation areas is shown in Figure 4. Note that Portugal has a Mediterranean climate, which implies
four well defined seasons. This enhances phenology dynamics, a drawback for the detection of the
maintenance operations. This is because a change detection methodology looks for variations in data,
so it is important to understand if the disturbance occurs due to phenology or a maintenance operation.
In Figure 5 are presented two vegetation indices time-series where the two kinds of transitions are
shown. It may also be concluded that there are indices more robust to the phenology, for instance, in
Figure 5b with ExG, the operation is more evident.
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Due to cloudiness and snow (Fundão and Seia) some of the observations were not clear, winter
months being the most affected ones. In Table 2, the number of clear observations per study area and
year, number of FBs and the months defined for the operations are shown. From the study areas, a total
of 14 FB and 9 VEG areas were defined. The maintenance operation or implementation dates were
given by ICNF and confirmed by visual inspection of Sentinel-2 imagery.
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Table 2. Number of clear observations per study area and year.

Study Area Area
[ha]

Clear Observations Number of
FBs

Operation Dates
2017 2018

Fundão 71.2 28 23 3 JUL/AUG/SEP 2017
Marisol 2.0 40 49 1 MAR 2018

Seia 50.2 29 24 2 JUN 2017

Serra dos Candeeiros 105.5 59 49 5 MAY/JUN/JUL/AUG
2017

Sertã 53.2 30 19 3 JAN/FEB/JUN 2017
JUL 2018

As can be seen in Figure 6, some of the maintenance operations occur in two successive months.
This fact leads to the definition of two kinds of operations: the instantaneous operations, that occur
in one month only, and the continuous operations. Normally, the latter start at the end of the month
and continue into the beginning of the next month. Note that an operation is not an instantaneous
procedure; it takes several days between the vegetation cut and the cleaning of the site (and sometimes
it can be noticed between observations). So, it may be executed during the same month or in two
consecutive months. In Figure 6, the difference between an instantaneous and a continuous operation
is shown. The first is characterized by a single event (June of 2017), while the second by two events
(May and June of 2017). The change in a continuous operation is, usually, softer than the instantaneous
one, being usually harder to detect.

The implementation of the methodology relied on three datasets: training, validation and test.
The first two resort only to data from Fundão, Seia, Serra dos Candeeiros and Sertã. A random
stratified split was executed, generating the training and validation dataset (the first with 67% of
the data and the second with the remaining). The test dataset is composed of two groups: the real
case scenario and the incomplete operations set. The first group is composed by Marisol data, it
tested the behaviour of the ANN in an untrained scenario. For the second group, since there is no
information about the occurrence of incomplete operations, it was needed to simulate these events. As
said before, the maintenance procedures are not instantaneous, which allowed the creation of datasets
with partial operations. For this purpose, some observations were removed, being presented to the
ANN as an incomplete operation, instead of the real complete operation. In Figure 7, there are several
observations of an FB, between (a), (b) and (c), some work is done, but it is only completed in (d). In
the real case all observations are used, but for the simulated incomplete operations, each transition
is evaluated. The incomplete operations should be divided into different groups, according to their
completeness degree. This measure corresponds to the ratio between the area already operated and the
FB total area. In Figure 7, an example from Marisol is presented, where in (b), the completeness of the
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operation is 28% and in (c) it is 61%. If the maintenance covers 75% or more of the FB, it is considered a
complete operation.

The training and validation dataset were composed by 261 observations and for the test dataset
there were 89 observations for Marisol and 21 observations for the definition of 9 incomplete operations.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 
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Figure 7. Sentinel-2 Band 04 images from an FB maintenance operation in Marisol (in red the total area, in
green the operated area): (a) before (30-01-2018), (b) completeness of 28% (22-02-2018), (c) completeness
of 61% (24-02-2018) and (d) completed (26-03-2018).

2.3. Data Extraction

The data extraction stage goals are to obtain for the FB and VEG areas: the time-series from
the Sentinel-2 observations, to understand their trends; and the datasets for the ANN training and
detection steps. The data extraction procedure is synthetized in Figure 8. The GIS tool used in this
study for the methodology implementation was Quantum GIS (QGIS) because it is an open source
software and it allows the automation of tasks with the available Python console.
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The procedure starts by loading Sentinel-2 data into QGIS, followed by clipping the area of interest
(to save time in the geolocation corrections). The geolocation errors are calculated, and the corrections
applied to the Sentinel-2 data. The final step is the generation of the time-series and the datasets.
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2.3.1. Geolocation Correction

As reported by ESA in [25], the Sentinel-2 L1C products may have a geolocation offset error, even
after performing correction procedures [26]. This is only a translational offset and rarely exceeds 1.5
pixels (15 meters), being usually at the sub-pixel level. Normally this error is negligible, because the
areas in study are wide enough not to influence the results. In our case, due to the dimensions of the
FB (125 m wide) and the spatial resolution of Sentinel-2 (10 m), there are few pixels to use for the FB
object representation. So, on the presence of a geolocation error, pixels within the boundaries of an FB
shapefile may correspond to vegetation. Additionally, pixels in the other boundary corresponding to
the FB will be discarded.

The geolocation correction method used was proposed in [27]. It detects subpixel deviations and
is processing efficient. Due to the large amount of information on each observation and to speed up
the offset calculations, a smaller area is clipped and used for the analysis, significantly reducing the
computation time.

Since the methodology is implemented in QGIS, the geographic coordinates of each pixel play
an important role in this study. All the observations are compared with a reference image (the one
used for the FB shapefiles design) and the deviations are registered. The algorithm starts with the
computation of the maximum value of the cross-correlation between the images, using the Fast Fourier
Transform. Then, to detect the subpixel errors, a refinement is made by up-sampling a just narrower
region of interest and again the algorithm computes the cross-correlation on a neighbour of 1.5 pixels.

The application of the corrections is done using the GDAL library from OSGeo project (https:
//gdal.org/). The images’ coordinates are then adjusted correcting the geolocation of the pixels
accordingly to the estimated values. After that, the observations are ready for data extraction. Figure 9
shows an example of a geolocation error, being (a) the reference image and (b) an observation of
the same site in a different day with a computed geolocation error of 0.7 (7 m) and −0.11 (1.1 m) in
North/South and East/West directions, respectively. This is highlighted by the dashed green ellipsis in
Figure 9b.

To estimate the error of the geolocation method, two tests were made. The first (T1) applies to
artificial geolocation errors, allowing an error estimation without uncertainty. The second (T2) tests a
real scenario, where a set of images was compared with a reference and the uncertainty calculated.

https://gdal.org/
https://gdal.org/
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Figure 9. Geolocation correction in Band 04 images from Seia: (a) reference image (18-08-2017);
(b) corrected image with an estimated offset of 0.7 North/South and −0.11 East/West (24-07-2017).

In T1 a set of images were randomly deviated between −1.5 and 1.5 pixels in both directions,
creating an artificial geolocation error. The proposed algorithm for the geolocation error estimation
compared the deviated observation with the corresponding non-deviated observation. The normalized
root mean square error (NRMSE), presented in Equation (1), between the calculated geolocation errors
and the artificial geolocation errors generated was used as an evaluation metric of this algorithm. In
Equation (1) RMSE stands for root mean square error, (2), where yp corresponds to the predicted values
and T the number of samples.

NRMSE =
RMSE

ymax − ymin
(1)

RMSE =

√∑T
t=1

(
y− yp

)2

T
(2)

T2 consisted of a comparison of a set of reference images with their corrected geolocation. Then,
a smaller area from the corrected observation is clipped and geolocation errors are computed again.
The new calculated values correspond to the uncertainty of the method. The error was estimated with
the same metric of T1, and the results are presented in Table 3. The results show that the maximum
error, obtained in the worst-case scenario of 15m deviation, will be less than 1.5 m, which is acceptable.

Table 3. Results of the Geolocation Correction.

Test NRMSE

T1 9%
T2 4%

2.3.2. Image Data Extraction

The data extraction stage is responsible for extracting monthly values for the analysed bands and
vegetation indices from the multispectral images, for each FB or VEG areas. The outputs from this
procedure are a time-series (used for the feature selection and visualization of data) and a dataset for
the detection and algorithm training.

To achieve these goals, the following steps are performed:

1. Extraction of the pixel values from the FB for each band in analysis and calculation of the mean
value for the object representation;

2. Normalization of the band values;
3. Generation of monthly values for the FB or VEG regions;
4. Calculation of the defined spectral indices;
5. Concatenation of the previous month values to each month, to include temporal information.
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As the goal is to detect the maintenance operation in an object, step 1 is responsible for their
representation by a value. The chosen metric was the mean value. To validate it is a representative
measure to describe an FB, the relative standard deviation was calculated [28] and 0.185 was obtained.
Since it is much smaller than 1, it is a reasonable approximation [29].

In step 2, the band values are normalized with the min-max technique. The minimum and
maximum values corresponding to the radiometric resolution of the bands are [0;4095] and the range
of normalization [0;1]. A requirement for the change detection classifier is the definition of a timestep.
Additionally, time-series are noisy signals and to deal with this, a mean and a high median filter
(when the set have a pair number of elements, instead of being the mean of the median elements, it is
the higher element) were applied separately, and a comparison was made. A monthly timestep was
defined, because two months without observations is unusual in the chosen study areas. In the case
that there is not any clear observation for a month, the previous month’s values are used.

Figure 10a demonstrates that mean and median filters achieve the intended noise reduction when
applied with a monthly window. Additionally, it is shown that the mean filter smooths the data more
than the median filter. It is thus expected that the mean filter decreases the ability for the detection
of operations. However, the median filter is more sensible to the noise, as shown in Figure 10b, and
can origin more false positives, i.e., the detection of incorrect maintenance operations. In Figure 10b,
an example of the performance of the noise reduction filters in an FB in Fundão is shown. It can be
observed in the bars plot that when an operation occurs (August), the change in data is greater with a
median filter. Although, if the operation occurs in the last observation of the month, the median value
will be a value one before the cut, hiding the change being detected in the next month.
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Figure 10. Comparison of mean and median noise reduction filtering (a) Raw and filtered data (band
03, Serra dos Candeeiros in 2017); (b) Month disturbances (MExG, Fundão in 2017).

Step 4 begins with the calculation of the spectral indices using the monthly values calculated in
the previous step. Alternatively, these could be obtained by calculating the spectral indices per pixel
and then aggregating them in a monthly value. However, the first approach saves processing time
and does not represent a loss of information that compromises the problem solving. This is proved by
Figure 11, where the results for the NDVI using the pixel and object computation with a median filter
are presented. The NRMSE between the data obtained from these techniques is 7.4%, and if a mean
filter is used, this value is 1.4%, which demonstrates the similarity between the data acquired.

The maintenance detections rely on the temporal disturbances of the data. In step 5, to represent
the temporal behaviour in the datasets, the previous month values are concatenated to each data entry.
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2.4. Maintenance Operations Detection

The algorithm for the maintenance operation detection is represented in Figure 12. The goal is to
identify the month where a maintenance operation was undertaken. In this section, the ANN design
and training and the detection of operations are discussed.
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2.4.1. Artificial Neural Network Design and Training

The first task is to generate, from the dataset created in Section 2.3, a training and a validation
dataset. With this training dataset, the feature selection and the structure of the ANN are defined
(number of hidden layers and neurons per layer). The validation set is used to make fine adjustments
and to improve the credibility of the error estimation. Since only 3.5% of the training samples
correspond to detected operations, it was necessary to add a penalty for the incorrect classification of
this class. The Scikit–Learn module does not have this feature, therefore these samples were replicated
a number of times equal to the penalty value. In this work a value of 8 was used, increasing the
percentage of detected operations to 22.4%.

The feature selection step uses the SelectKBest method (from Scikit–Learn) and the Pearson
Correlation over the time-series generated in Section 2.3. The SelectKBest performs a variance analysis
and selects the K best features based on a score function. The 10 best features with the highest
f_classif score function were selected (this function uses the ANOVA F-Value between label/feature for
classification task). Although this analysis chooses the best features, they are selected independently.
So, the Pearson Correlation was used to find redundancies and eliminate strong correlated features.
After these tasks, multiple sets of features were defined and evaluated. The evaluation consisted of
using them to classify the training set and compare their relative errors.

The ANN structure was defined empirically changing the number of neurons and hidden layers
pursuing the lowest classification error. The number of neurons per layer chosen was the value that,
after increasing, did not improve the ANN. For the number of layers, due to the vanishing gradients
problem, the ANN with one and two hidden layers was tested. The input layer uses one neuron per
feature and the output layer is only one neuron, since it is a binary class (detection, no detection). The
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activation function is the logistic function. The method used for the backpropagation of the error was
the stochastic gradient descent, described in [30], with an adaptive learning rate.

2.4.2. Training, Validation and Test Error Estimation

The error estimation for the detection methodology was done using the training set, validation set
and a test set. For the training, a cross-validation technique was applied. Then, the validation dataset
was classified, and relative error, recall, precision and F1-score relativity to both classes, detection and
no detection metrics were computed, to assess detection efficiency. Finally, the ANN is applied to the
test dataset, evaluating the error on a real case scenario and to assess the robustness to avoid detecting
incomplete operations.

3. Results

The results will be divided into two sections. On the first, the results that supported the ANN
design are presented, while on the second the results of the implemented methodology are presented.

3.1. Feature Selection and Artificial Neural Network Sizing

Feature selection techniques were applied to the training set, to reduce the number of features
and use the most discriminant ones. This process was applied to both median and mean filtered data.
The results presented here will be only for the median filter, due to its similarity with the mean filter.
The total number of samples used in the ANN training were 633, which accounted for 67% of all the
clear observations in the four study areas multiplied by the 13 FBs.

According to the SelectKBest feature selection algorithm, the best features in this analysis are: B04,
B05, B11, B12, NMDI, NDI, ExG, ExR, ExGR, and MExG. Additionally, the Pearson absolute correlations
between these features were calculated, to identify which ones give more information together.

Analysing the mean correlation values between a feature and all the others (Table 4), the more
independent features are the NMDI and ExG, with 0.751 and 0.748, respectively. The least correlated
features pairs were ExG/B05 and ExG/B11, with 0.600 and 0.602, respectively. From this analysis, it
was concluded that ExG is probably the most discriminant feature, and consequently it was one of
the selected features to be used in the detection. The higher correlated pairs were B11/B12 (0.986)
and ExR/ExGR (0.984). In the first pair, the features have a similar behaviour, but B12 has a higher
mean correlation, therefore it was rejected. Regarding the other pair, ExR is less correlated to ExG than
ExGR, but ExGR works better with B05 and B11 than ExR. The NDI do not enhance the occurrence of a
maintenance operation. Finally, B04 is extremely correlated with B05 (0.975), and the same happens
with MExG and ExG (0.958). However, with B04 and MExG the same happens as with the NDI.

Table 4. Pearson correlation between features.

B04 B05 B11 B12 ExG ExGR ExR MExG NDI NMDI

B04 1 0.975 0.929 0.939 0.731 0.931 0.973 0.845 0.946 0.702

B05 0.975 1 0.952 0.938 0.600 0.852 0.923 0.748 0.910 0.678

B11 0.929 0.952 1 0.986 0.602 0.832 0.894 0.744 0.908 0.805

B12 0.939 0.938 0.986 1 0.648 0.857 0.909 0.773 0.927 0.794

ExG 0.731 0.600 0.602 0.648 1 0.922 0.840 0.958 0.789 0.670

ExGR 0.931 0.852 0.832 0.857 0.922 1 0.984 0.981 0.941 0.754

ExR 0.973 0.923 0.894 0.909 0.840 0.984 1 0.941 0.962 0.754

MExG 0.845 0.748 0.744 0.773 0.958 0.981 0.941 1 0.892 0.748

NDI 0.946 0.910 0.908 0.927 0.789 0.941 0.962 0.892 1 0.83

NMDI 0.702 0.678 0.805 0.794 0.670 0.754 0.754 0.748 0.83 1

Mean 0.886 0.842 0.850 0.863 0.751 0.895 0.909 0.848 0.901 0.748
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To access the performance of the classifier for different feature combinations, several groups of
features were defined, as presented in Table 5.

Table 5. Group of features to evaluate.

Group Features

1 B05, ExG
2 B11, ExG
3 B05, ExG, NMDI
4 B11, ExG, NMDI
5 B05, ExG, ExR
6 B11, ExG, ExR
7 B05, ExG, ExGR
8 B11, ExG, ExGR
9 B05, ExG, ExR, NMDI
10 B05, ExG, ExGR, NMDI
11 B11, ExG, ExR, NMDI
12 B11, ExG, ExGR, NMDI

First, all the groups were tested on an ANN with one hidden layer, varying the number of neurons
in the interval (5,100) with steps of five. In the cross validation, five folds were used and the process
was repeated 10 times, with the mean error being used. The results presented in Figure 13a show that
is possible to divide the groups into three sets according to the cross-validation error: the first two tend
to a relative error of approximately 6%–8%, while on the third set (group 5, 6, 9, 11) the error can be
less than 4%. The best results were verified for the second category, i.e., groups 5, 6, 9 and 11. The
recall, precision and F1 score for each class (detection and no detection), also demonstrated a better
performance for this third set.

Figure 13b shows the recall, used to check the ability to avoid false negatives. Again, groups
5, 6, 9, and 11 were confirmed as better suiting this problem. Although they present similar results,
groups 5 and 6 use less features; in these groups NDMI index is not included. If this was used in the
data extraction stage, two more bands would be needed (B8A and B12), as well as an extra calculation
and two extra neurons in the input layer. This means more processing time, particularly in the data
extraction. For these two groups, an ANN with two hidden layers was tested, with the goal of reducing
the number of neurons and improve the detection. This test did not show any improvements, so it was
defined as an ANN with just one hidden layer.

To decide which of these two groups will be used and the final number of neurons, a final test was
done varying the number of neurons in the interval (45,60) (where the error is approximately 3%–5%,
and the recall and precision are above 90%), with steps of one neuron. Here, both groups have nearly
the same error. Since B05 had better results in the feature selection stage, group 5 was chosen. For the
ANN structure, one hidden layer with 53 neurons was defined (with an error lower than 3%), with
a penalty of 8. For the mean filtered dataset, the selected features were also from Group 5, and the
ANN was composed by an ANN with 53 neurons (the error is approximately 3%), with a penalty of 8.
In both, during the training stage and structure definition, a penalty of 10 was used. After that, the
penalty was decreased until the error metrics started deteriorating.
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Figure 13. Artificial Neural Network (ANN) cross validation results for different groups of features:
(a) error; (b) detection recall.

3.2. Maintenance Operations Detection Results

In this section, the classification results, using both median and mean filtered data, will be
presented. Since this methodology will be used to validate the execution of maintenance operations in
an FB, it must avoid the false positives. However, there are few true positive examples in the available
data, and this is the reason why there is a thin balance between the recall and precision of each class. If
the ANN is trained to detect all operations, it will decrease the precision of the classifier.

For the validation dataset, 10 ANN were generated with the previous specifications, to assess
the sensitivity of the ANN classifier. The results are presented in Tables 6 and 7. The identification
of maintenance operations is not possible in all cases. With the median filtered data, the detection
results are worse in the validation dataset. Although, it is important to remember that in the validation
dataset only six examples correspond to maintenance operations, so an error in just one example has a
huge impact in these metrics. The precision of 57% for the detection of the operations is low, but is
needed to guarantee that false positives rarely occur. Additionally, the recall value of 87% shows that
most of the operations were detected.

Table 6. Classification results for the training dataset.

Median Filter Data Mean Filter Data

Detection Yes No Yes No

Recall 9% 98% 97% 99%
Precision 94% 98% 89% 97%
F1-Score 93% 98% 93% 98%

Relative Error 3.1% 3.3%

Table 7. Classification results for the validation dataset (average of all generated classifiers).

Median Filter Data Mean Filter Data

Detection Yes No Yes No

Recall 87% 97% 77% 98%
Precision 57% 99% 64% 99%
F1-Score 68% 98% 70% 99%

Relative Error 2.9% 2.5%

A more detailed analysis of the results for the validation dataset showed that the errors usually
occur in continuous operations, just one of the months being identified. Evaluating the use of the
mean filter, it can be verified that with the validation dataset, there is more precision in the detection
(64%), i.e., there are less false detections of maintenance operations. The drawback is that the recall
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decreases to 77%, being more difficult to detect the real operations. So, the median filter allows more
operations detections, but due to its increased sensibility to transitions in the data, it produces more
false detections than using the mean filter.

Both classifiers were applied to the real case scenario (Marisol) and correctly detected one
maintenance operation in March 2018. Unfortunately, there were also two false detections in May and
June of 2017. These can be explained with the fact that there was not any clear observation in May
2017 in Marisol, which led to more significant changes in the data in this period. The observations that
confirm the results are in Figure 14.
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Finally, relative to the incomplete operations test dataset, the nine cases were divided in three
groups of operation completeness. The results by group are presented in Table 8. (they were the
same for both noise filters). Only one case was wrongly detected and it was in the 50%–75% group,
where completeness of the operation on the FB was 73%. Additionally, in the tested FBs with a partial
intervention of less than 50%, no operations were detected. This was a good indicator that incomplete
operations will not be detected, which is important for the FBN monitoring.

Table 8. Results of the incomplete operations detection.

Group Number of Cases Wrong Detections

0%–25% 3 0
25%–50% 4 0
50%–75% 2 1

4. Discussion

Monitoring of the forest is a fundamental task in fire prevention. Not only is it important to
characterize the land cover, but also to understand what is changing and why it is happening, or to
validate the execution of land management operations. As is known and verified during this study,
the phenology is a major concern in change detection problems, since it represents transitions in the
time-series without occurring any modification in the coverage. Additionally, when earth observation
satellites such as Sentinel-2 are used, the variations in the luminosity add more background noise
to the data. Another concern about using optical satellites is its sensitivity to adverse atmospheric
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conditions, which leads to greater periods without available observations. Finally, a methodology to
detect changes in any kind of forest needs to handle the different behaviour of vegetation types.

The results from the feature selection revealed that the better indices for the detection were based
on the visible spectrum, namely ExR and ExR, which is understandable, since an operation is easily
visible in TCI observations. Additionally, a further analysis of the time-series shows that these indices
are more robust of the seasonal effects. This showed the importance of exploring other regions from
the electromagnetic spectrum in remote sensing.

Compared with previous works, one of the achievements of this work was to achieve a monthly
timestep for the change detection. This is important, since in [12,16,17], several observations were
needed, and by using Landsat more than one month was needed to detect changes. In [13], annual
composites were used, which only enabled the creation of annual change maps and in [15], the used
observations were spaced by more than one month. The drawback was that the use of less data led
to the occurrence of false positives (due to less confirmation steps) and the imposition of a month
timestep obliged to estimate month values whenever there were no usable observations. In this work
the error is approximately the same as in [12,13,15–17], but was tested in geographically separated
areas, with different kinds of vegetation and during two full years, representing a more uncontrolled
environment. In [10], the composites were generated in specific seasons of the year, avoiding the
phenology effects. The proposed ANN was trained to detect only a specific kind of change, without
discriminating changes as in [15–17].

The two steps for the noise reduction (object-based analysis and the application of noise filters)
improved the quality of data and reduced false detections. Additionally, for filtering, two approaches
were presented. The mean filter revealed more robustness to the false positives, although less ability
to identify the desired events than the median filter. This is verified by the lower recall and higher
precision of the mean approach. Although these methods helped to separate the phenological trends
from the maintenance operations, misclassifications are still occurring. Since, in this case, it is very
important to avoid the false positives, the mean filter was found to be a better solution.

The results in the test datasets were also promising, since in Marisol the expected operations
were detected. Additionally, the results in the incomplete FBs test verified that this methodology
could distinguish a complete operation from an incomplete. Although there is not a classification of
the quality of the operation, if an operation is detected, it is known with good certainty that it was a
correct operation.

5. Conclusions

The first and most important conclusion is the applicability of the presented methodology to the
detection of maintenance operations in defined FBs. The results range between the 2.5% and 3.3% of
error in the training and validation datasets. However, the F1-Scores in the validation dataset were in
the order of 70%, which reveals that there still some false positives and false negatives. With the test
dataset, the operations were only detected if more than 50% of the area was operated.

The wanted improvements, relative to other methods, were achieved; there is no need of
confirmation if a change really happened; Sentinel-2 data, which give future works a better frequency
of observations, were used; a specific kind of change is detected and usually is not confused with the
background effects of phenology, and the less common vegetation indices had good performances in
the detection.

As future work is expected to develop techniques for obtaining more observations, this compensates
those affected by partial cloudy conditions. This implies the application of techniques to recover
deteriorated images due to atmospheric conditions, and with the resource to radar data from Sentinel-1
(generating time-series of this data, as in [31]). The last may be used just for the image recovery, but
also to get more information. Additionally, testing the ANN with the difference between the feature
values in consecutive months instead of using the values of the two months is intended. This will lead
to an ANN with less features; consequently, a simpler ANN. Finally, a different class for continuous
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operations could be defined, that is characterized by smother changes, which can be misclassified as
seasonal changes due to the phenology.
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