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Abstract: Appropriate management of (semi-)natural areas requires detailed knowledge of the
ecosystems present and their status. Remote sensing can provide a systematic, synoptic view at
regular time intervals, and is therefore often suggested as a powerful tool to assist with the mapping
and monitoring of protected habitats and vegetation. In this study, we present a multi-step mapping
framework that enables detailed NATURA 2000 (N2000) heathland habitat patch mapping and the
assessment of their conservation status at patch level. The method comprises three consecutive
steps: (1) a hierarchical land/vegetation type (LVT) classification using airborne AHS imaging
spectroscopy and field reference data; (2) a spatial re-classification to convert the LVT map to a patch
map based on life forms; and (3) identification of the N2000 habitat type and conservation status
parameters for each of the patches. Based on a multivariate analysis of 1325 vegetation reference
plots acquired in 2006–2007, 24 LVT classes were identified that were considered relevant for the
assessment of heathland conservation status. These labelled data were then used as ground reference
for the supervised classification of the AHS image data to an LVT classification map, using Linear
Discriminant Analysis in combination with Sequential-Floating-Forward-Search feature selection.
Overall classification accuracies for the LVT mapping varied from 83% to 92% (Kappa ≈ 0.82–0.91),
depending on the level of detail in the hierarchical classification. After converting the LVT map
to a N2000 habitat type patch map, an overall accuracy of 89% was obtained. By combining the
N2000 habitat type patch map with the LVT map, two important conservation status parameters
were directly deduced per patch: tree and shrub cover, and grass cover, showing a strong similarity
to an independent dataset with estimates made in the field in 2009. The results of this study indicate
the potential of imaging spectroscopy for detailed heathland habitat characterization of N2000 sites
in a way that matches the current field-based workflows of the user.

Remote Sens. 2017, 9, 266; doi:10.3390/rs9030266 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 266 2 of 25

Keywords: hyperspectral; habitat mapping; species mapping; NATURA 2000; heathland;
conservation status; classification; Calluna vulgaris; tree encroachment; grass encroachment

1. Introduction

In Europe, the main regulations for biodiversity protection are found in the Habitats Directive
(HabDir) [1] and the Birds Directive [2], which provide the legal basis for the NATURA 2000 network
(N2000). Among the various commitments imposed by these legal initiatives on European Union
(EU) member states, are (1) the set-up of monitoring systems to keep track of the ‘conservation status’
of protected habitats and species present in the EU member states; and (2) the 6-yearly reporting to
the European Commission on the ‘conservation status’ of these habitats and species [3]. In practice,
these commitments imply that EU member states are in need of accurate, simple and repeatable
methods for habitat and species monitoring and surveillance. These habitat and species assessments
require detailed, reliable and up-to-date habitat distribution maps, stretching further than merely
attributing a given vegetation patch to a habitat type, but also giving indications on its quality. The first
implementations of the HabDir however revealed a great lack of knowledge on habitat distribution in
many member states [4]. An easily operated, economically priced and as far as possible automated
method is hence desired to meet these requirements [5,6].

European heathlands used to extend over several millions of hectares, but the overall decline
in traditional agricultural land use practices in heathlands (sheep and cattle herding, sod cutting,
controlled burning, etc.) have resulted in a strong decrease in the total heathland area over the last
centuries. The decline of traditional agricultural practices has led to decreased nutrient removal,
and atmospheric nitrogen deposition remains one of the major threats to heathlands. The nitrogen
deposition is causing grass and tree encroachment of the heathlands, resulting in a decline in ericoid
heathland species [7–9]. An effective monitoring of heathland areas hence remains necessary to identify
such vegetation disturbances, and allow timely management interventions. With heathlands becoming
increasingly fragmented, they are now highly valued for biodiversity conservation and as natural
and cultural heritage [10,11]. Their formal protection in the EU is now being safeguarded under the
HabDir [1]. As part of their protection, member states need to report on their conservation status,
i.e., the actual area, the range, the habitat quality and the future prospects for each habitat type. Various
definitions of habitat quality exist [12]. In this paper, we use habitat quality as one aspect of a habitat’s
conservation status, referring to its structure and ecological functioning. Depending on the habitat
type, it is for example assessed in terms of species richness and composition, growth form complexity,
and presence of invasive species.

Imaging spectroscopy (IS) or hyperspectral imaging, with the ability to collect information at a
high spectral resolution using contiguous spectral bands, each with a narrow spectral range, is known
to be capable of fairly accurate identification of different species [13]. IS can even be used to produce
highly accurate species-level vegetation maps in highly complex grasslands with fine-scale mosaics of
different vegetation types [14]. Imaging spectroscopy also provides opportunities for habitat quality
and degradation assessment [15], e.g., by mapping of invasive species [16,17] or encroachment of
undesired species [18], prediction of species richness measures [19], and mapping of plant functional
types [20,21].

Despite the high number of studies that have been performed on using remote sensing for
biodiversity assessments, relatively few efforts have been made to specifically map N2000 habitat types
with remote sensing, and/or specifically assess N2000 habitat quality or conservation status. Until
recently, the vast majority of studies focussed on the mapping of land cover categories, but there are
difficulties in determining how land cover categories correspond to N2000 habitats [15]. Some studies
have however been performed that specifically focus on a certain aspect of N2000 habitat assessments.
Knowledge-based approaches, combined with object-based analysis of Quickbird imagery, have been
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used to map N2000 forest and heathland habitat types, and evaluate broad aspects of habitat quality
by mapping the presence of certain relevant vegetation and land cover classes present in the habitat [6].
More recently, a number of different approaches have also been considered: applying a one-class
classifier to multi-seasonal RapidEye imagery to delineate and classify four N2000 habitat types, which
were scattered across a complex landscape of different vegetation types [22]; an investigation of the
potential of both IS and (simulated) multispectral images to model three N2000 mire habitat types, as
well as their floristic composition [23]; the use of Airborne Laser Scanning to assess the conservation
status of N2000 grassland habitats [24]; and combining multispectral and laser scanning data to assess
the conservation status of Mediterranean forests [25].

For heathlands specifically, the use of IS for N2000 mapping and monitoring has recently received
attention by a number of studies. Subpixel unmixing combined with decision tree classification using
IS data has been shown to be capable of mapping Calluna vulgaris age structures [26]. Small-scale N2000
habitat quality indicators (e.g., the age classes of Calluna vulgaris, and the presence of key species) were
predicted using coarse-scale indicators, mapped with IS (e.g., occurrence of grass encroachment) [27].
Spectral unmixing of IS data has also been used to quantify grass encroachment at the patch level [28].
Floristic gradients in an ordination space were used to model habitat type occurrence probabilities, as
well as habitat conservation status [29]. Except for the latter, all of these studies have in common that
they only focus on a specific aspect, e.g., habitat type classification or assessment of certain habitat
quality parameters, but not cover the full set of requirements needed for the reporting under the HabDir,
i.e., both delineation and determination of habitats, as well as assessing the conservation status.

The objective of this study is to demonstrate the potential of IS in combination with ecological
knowledge to both delineate and discern detailed (even ≤0.1 ha) N2000 heathland habitat patches,
including valuable quality-indicating characteristics within each of the patches (e.g., tree and grass
cover) in a way that matches the current field-based workflows of the user, and produces maps and
statistics that are familiar in both scale and content to local and national N2000 managers. We presented
an earlier version of this method, as well as preliminary results, in the conference proceedings of [30].

2. Materials and Methods

2.1. Study Area

The study area ‘Kalmthoutse Heide’ is located in the north of Belgium (51.40◦N, 04.42◦E) (Figure 1),
on the drainage divide between the rivers Scheldt and Meuse, and hosts forests, heathlands and
grasslands on mostly sandy, acidic soils of aeolian origin. Its central heathland area is almost 1000 ha
and contains a mixture of wet and dry heath, inland sand dunes and water bodies [31]. An overview
of the N2000 habitat types that are well represented in the area is given in Table 1. The site has been
protected as a nature reserve since 1968 and has been part of the N2000 network of protected areas
under the HabDir since 1996 (site BE2100015).

As a result of its vicinity to the city and harbour of Antwerp, and despite its protected status,
the area is affected by anthropogenic influences such as eutrophication, intense recreation, and
desiccation resulting from drinking water extraction [10]. Although dedicated management has
been implemented since the 1970s, atmospheric nitrogen deposition has accelerated the colonisation of
sand dunes by the alien invasive moss species Campylopus introflexus (heath star moss). It has also led
to an increased dominance of Molinia caerulea (purple moorgrass) in wet and dry heaths, at the expense
of other typical species, causing a decline in biodiversity. Molinia caerulea is a native species typical
of heathlands, but under circumstances of increased nutrient availability (e.g., from air pollution or
uncontrolled burning), it responds more rapidly with increased growth and outcompetes other typical
heathland species. In recent years, some intensive and uncontrolled wildfires have destroyed nearly
one-third of the area’s heaths, which were rapidly colonized by Molinia caerulea afterwards [32].
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Figure 1. Location and illustration of the study area ‘Kalmthoutse Heide’ in the north of Belgium. 
Base map © OpenStreetMap contributors (www.openstreetmap.org/copyright). The inset shows an 
inland dune with Corynephorus canescens—habitat type 2330 (foreground and right) and a dry sand 
heath with Calluna vulgaris—habitat type 2310 (centre to left). Figure modified from [30]. 

Table 1. Overview of the NATURA 2000 habitat types that are well represented in the ‘Kalmthoutse 
Heide’ study area. 

Habitats 
Directive 
Habitat 

Code 

Habitat Type 
Areal Cover 

(Hectare) [33] 

2310 Dry sand heaths with Calluna and Genista ca. 250 ha 
2330 Inland dunes with open Corynephorus and Agrostis grasslands ca. 40 ha 
4010 Northern Atlantic wet heaths with Erica tetralix ca. 450 ha 
4030 European dry heaths ca. 60 ha 

2.2. Datasets 

2.2.1. Ground Reference Data 

An extensive field reference dataset was acquired in June–September 2007, i.e., in the same 
vegetation season as the IS data acquired for this study. Circles of 10 m diameter that represented 
homogeneous examples of one of the predefined LVT classes (see Section 2.4) were selected in the 
field as reference plots. Centre points of plot circles were located using Real-Time Kinematic (RTK) 
GPS, with positional accuracies up to a few centimetres. Data collection was based on the 
BioHab-methodology [34,35], and included cover of plant life forms (i.e., trees and shrubs, dwarf 
shrubs, forbs, grass-like species and mosses) and of dominant species, as well as environmental and 

Figure 1. Location and illustration of the study area ‘Kalmthoutse Heide’ in the north of Belgium. Base
map © OpenStreetMap contributors (www.openstreetmap.org/copyright). The inset shows an inland
dune with Corynephorus canescens—habitat type 2330 (foreground and right) and a dry sand heath with
Calluna vulgaris—habitat type 2310 (centre to left). Figure modified from [30].

Table 1. Overview of the NATURA 2000 habitat types that are well represented in the ‘Kalmthoutse
Heide’ study area.

Habitats Directive
Habitat Code Habitat Type Areal Cover

(Hectare) [33]

2310 Dry sand heaths with Calluna and Genista ca. 250 ha
2330 Inland dunes with open Corynephorus and Agrostis grasslands ca. 40 ha
4010 Northern Atlantic wet heaths with Erica tetralix ca. 450 ha
4030 European dry heaths ca. 60 ha

2.2. Datasets

2.2.1. Ground Reference Data

An extensive field reference dataset was acquired in June–September 2007, i.e., in the same
vegetation season as the IS data acquired for this study. Circles of 10 m diameter that represented
homogeneous examples of one of the predefined LVT classes (see Section 2.4) were selected in
the field as reference plots. Centre points of plot circles were located using Real-Time Kinematic
(RTK) GPS, with positional accuracies up to a few centimetres. Data collection was based on the
BioHab-methodology [34,35], and included cover of plant life forms (i.e., trees and shrubs, dwarf
shrubs, forbs, grass-like species and mosses) and of dominant species, as well as environmental and
management information and N2000 habitat type. Vegetation cover was consistently estimated as seen
from above, thus adding up to 100%, to resemble a remote sensor’s viewpoint. A total of 694 reference
plots were collected in the field in 2007. Another 146 plots of dry, wet and Molinia heathland that were
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collected in June 2006 were added, after verification in the field that they were still valid. Additionally,
485 reference plots of easily recognizable classes were taken from orthophoto-interpretation, supported
by terrain knowledge. This specifically provided additional reference plots for bare sand, arable fields,
agricultural grasslands, Juncus effusus swards and unvegetated water bodies, raising the original total
reference plot size in the LVT dataset to 1325 plots.

In 2009, a second, independent dataset was collected, containing conservation status data
(landscape structure, presence of key species and the amount of grass and tree cover) of 938 random
habitat patches. These data were used to validate the conservation status assessments (see Section 2.8.)
More details on the conservation status indicators and the field methods can be found in [27].

2.2.2. Imaging Spectroscopy Data

On 2 June 2007, Airborne Hyperspectral line-Scanner radiometer (AHS-160) images of the
‘Kalmthoutse Heide’ study area were acquired. The AHS sensor, equipped with 63 spectral bands
in the visual and near-infrared spectral domain (400 to 2500 nm), was mounted on a CASA C-212
airplane operated by INTA. Six image strips were acquired with a spatial resolution of 2.4 by 2.4 m.
Geometric and atmospheric corrections were performed using VITO’s in-house Central Data Processing
Centre [36]. Previous validation tests on airborne IS data, acquired in similar conditions, have shown
the geometric accuracy to be sub-pixel [37]. Atmospheric corrections were based on Modtran 4. After
corrections, the six images were mosaicked into one image product. To further reduce the atmospheric
influence on reflectance values caused by off-nadir viewing, pixels with the smallest view zenith angle
were used in overlapping areas. Further details about the imagery can be found in [26,30].

2.3. Method Overview

Direct mapping of heathland habitat using remote sensing is hampered by the intrinsic properties
of high intra-variability, i.e., high heterogeneity in species composition within a habitat type, and low
inter-variability, i.e., the occurrence of the same species in multiple habitat types. To circumvent these
difficulties, the method we developed is based on breaking down habitats into a number of hierarchical
LVT classes that: (i) are related to the dominant species present; (ii) incorporate parameters suitable
for habitat quality assessment; and (iii) enable the subsequent reconstruction of habitats using the
classes’ spatial composition. By doing so, we exploit the inherent properties of heathland habitats
in a three-step indirect method that enables habitat quantity and quality mapping at patch level
(patches down to 400 m2). In the first step, a four-level hierarchical supervised classification of airborne
imaging spectroscopy data is performed, resulting in LVT maps with increasing detail. In the second
step, the Level-4 LVT classification map is converted into a N2000 habitat type patch map, based on the
local spatial composition of the LVT classes. To do so, a set of rules is used that relate the LVT classes
to life forms, General Habitat Categories and N2000 classes. In the final step, the Level-4 LVT and
the General Habitat Categories patch map are combined to derive conservation status indicator maps
of habitat quality per patch (e.g., tree and grass cover). The independent dataset, acquired in 2009,
is then used to validate the obtained conservation status indicator results. Figure 2 gives a schematic
overview of the method. In the following sections, each step of the method is explained in detail.
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data analysis processes, and grey shapes are map results. 
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with Calluna and Genista (habitat code 2310) for example, naturally consist of tufts of heather 
(Calluna vulgaris), mosses, lichens and grasses, and small patches of bare sand. In most cases, the 
observed LVT pattern in a habitat patch, i.e., presence/absence and relative abundance of certain 
species, is the result of internal dynamics and external influences acting on the habitat patch. 
Therefore, the observed LVT pattern can also be used to assess the ecological quality of that patch. 
While some LVTs are indicative of a good habitat quality, others reflect pressures with a negative 
impact on habitat quality. Several European Union member states have made use of this inherent 
complexity of habitats to draw up evaluation frameworks for the assessment of the quality of habitat 
patches in the field [38–41]. For dry sand heaths with Calluna and Genista for example, positive 
indicators are the presence of bare sand and patches of mosses and lichens, whereas encroachment 
by grasses, especially Molinia caerulea, and trees are considered negative indicators. 

To raise the chances of successful IS-based habitat mapping, the classification scheme should be 
based on habitat characteristics with a strong influence on the spectral signature (e.g., dominant 
species, plant architecture). Therefore, the list of habitats present in the study area was translated 
into a provisional list of LVT classes, which can be thought of as a typology of spatial units of 
homogeneous structure and plant species dominance (Figure 3). For habitat 2330, for example, we 
distinguished bare sand, fixed sand (three types) and trees (Pinus sylvestris, Betula sp.) as possible 
LVT classes that make up the habitat. Habitat definitions [42–44] and quality indicators [39,45] 
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Figure 2. Methodological flowchart: parallelograms represent data input, rectangles with double-lined
vertical borders are knowledge-based inputs, rectangles with single-lined borders are data analysis
processes, and grey shapes are map results.

2.4. Design of a Dedicated Hierarchical LVT Classification Scheme

N2000 heathland habitats do not consist of homogeneous vegetation patches of a single or a
few dominant species. Instead, most habitats are intricate mixtures of different LVTs. Dry sand
heaths with Calluna and Genista (habitat code 2310) for example, naturally consist of tufts of heather
(Calluna vulgaris), mosses, lichens and grasses, and small patches of bare sand. In most cases, the
observed LVT pattern in a habitat patch, i.e., presence/absence and relative abundance of certain
species, is the result of internal dynamics and external influences acting on the habitat patch. Therefore,
the observed LVT pattern can also be used to assess the ecological quality of that patch. While some
LVTs are indicative of a good habitat quality, others reflect pressures with a negative impact on
habitat quality. Several European Union member states have made use of this inherent complexity of
habitats to draw up evaluation frameworks for the assessment of the quality of habitat patches in the
field [38–41]. For dry sand heaths with Calluna and Genista for example, positive indicators are the
presence of bare sand and patches of mosses and lichens, whereas encroachment by grasses, especially
Molinia caerulea, and trees are considered negative indicators.

To raise the chances of successful IS-based habitat mapping, the classification scheme should
be based on habitat characteristics with a strong influence on the spectral signature (e.g., dominant
species, plant architecture). Therefore, the list of habitats present in the study area was translated into
a provisional list of LVT classes, which can be thought of as a typology of spatial units of homogeneous
structure and plant species dominance (Figure 3). For habitat 2330, for example, we distinguished
bare sand, fixed sand (three types) and trees (Pinus sylvestris, Betula sp.) as possible LVT classes that
make up the habitat. Habitat definitions [42–44] and quality indicators [39,45] served as input for
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this translation. The field vegetation survey data, recorded in 2006–2007, were first analysed using
two contrasting techniques of multivariate analysis: (1) TWINSPAN (a divisive method; [46]) and
(2) Ward’s clustering with Euclidean distance measure (an agglomerative method; [47]). The outcome
of both methods was then compared and outliers were removed from the dataset to assure that
remaining clusters were robust and homogeneous in plot composition. Each of the retained clusters
was consequently interpreted and matched with a LVT class from the provisional list. Some of these
predefined classes turned out not to be present in sufficient amount or in sufficiently large patches
(with respect to the pixel size of the IS data used; see Section 2.2.2) in the study area, and were therefore
removed from the list (e.g., Rhynchosporion vegetations). This led to a final list of LVT classes, as shown
in the right column of Figure 3. In a final step, the LVT classes were arranged in a four-level hierarchical
classification system, based on similarity of plant life forms (Level 1, 2) or dominant species (Level 3, 4)
present. We applied extra thresholds of vegetation cover to ensure that all reference plots in a class
would represent a typical spectral signature of that class (e.g., >60% cover of Calluna vulgaris for class
‘Calluna-dominated heathland’). The total number of reference points that eventually remained for use
in the next steps was 938. The final classification scheme is given in Table 2.
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Table 2. Land/vegetation type classification scheme.

Level 1 Level 2 Level 3 Level 4

H Heathland

Hd Dry heathland Hdc Calluna-dominated heathland

Hdcy Calluna-stand of predominantly young age

Hdca Calluna-stand of predominantly adult age

Hdco Calluna-stand of predominantly old age (open)

Hdcm Calluna-stand of 2 or 3 mixed age classes

Hw Wet heathland Hwe Erica-dominated heathland Hwe- Erica-dominated heathland

Hg Grass-encroached
heathland

Hgm Molinia-dominated heathland
Hgmd Molinia-stand on dry soil

Hgmw Molinia-stand on moist (wet) soil

G Grassland

Gt Temporary
grassland Gt- Temporary grassland Gt– Temporary grassland

Gp Permanent
grassland

Gpa Permanent grassland in intensive
agricultural use

Gpap Species-poor permanent agricultural grassland

Gpar Species-rich permanent agricultural grassland

Gpn Permanent grassland with
semi-natural vegetation Gpnd Dry semi-natural permanent grassland

Gpj Juncus effusus-dominated grassland Gpj- Juncus effusus-dominated grassland

F Forest

Fc Coniferous forest Fcp Pine (Pinus sp.) forest Fcpc Corsican pine (Pinus nigra laricio)

Fcps Scots pine (Pinus sylvestris)

Fd Deciduous forest
Fdb Birch (Betula sp.) forest Fdb- Birch (Betula pendula/pubescens)

Fdq Oak (Quercus sp.) forest Fdqz Pedunculate oak (Quercus robur)

S Sand dune

Sb Bare sand Sb- Bare sand Sb– Bare sand

Sf Fixed sand dune

Sfg Sand dune with grasses as
important fixators Sfgm Sand dune fixed by grasses and mosses

Sfm
Sand dune with mosses as

dominating fixators
Sfmc Fixed sand dune with predominantly Campylopus introflexus

Sfmp Fixed sand dune with predominantly Polytrichum piliferum

W Water body Wo
Oligotrophic
water body

Wov Shallow, vegetated oligotrophic
water body (banks of pools) Wov- Shallow, vegetated oligotrophic water body (banks of pools)

Wou Unvegetated (deep) oligotrophic
water (centre of pools) Wou- Unvegetated (deep) oligotrophic water (centre of pools)

A Arable
fields

Ac
Arable field

with crop
Acm Arable field—maize Acm- Arable field—maize

Aco Arable field—other crops Aco- Arable field—other crops
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2.5. Land/Vegetation Type Classification

LVT classifications were performed using Linear Discriminant Analysis (LDA) [48] in combination
with a Sequential-Floating-Forward-Search (SFFS) [49] feature selection algorithm. We used a
one-against-one approach which implies that for each pixel-spectrum all possible pairs of output
classes are compared, resulting in C(C-1)/2 classifiers, where C is the number of classes. The finally
assigned LVT class is then decided through a maximum-probability decision rule. The SFFS feature
selection was used to extract the spectral band combination that led to the highest accuracies. The field
dataset of 2006–2007 was used for training and validating the classification using leave-one-out
cross-validation (LOOC). Classifications were first performed on each of the four levels separately
to gain insight into the performance and accuracies at each level, to identify the best-performing
spectral bands for each 1–1 class combination at all levels, and to set the baseline for comparison with
a hierarchical approach. To investigate the effect of using the hierarchy of the classification scheme
in the LVT classification, the classifier was implemented hierarchically. For example, if a sample is
classified as Forest at Level 1, it can only be classified as Deciduous forest or Coniferous forest at Level 2.
To train the LDA classifier at each node in the classification scheme, the same features for each 1–1 class
combination were used as were previously selected in the non-hierarchical approach, but only those
samples were used that were correctly classified at the previous level. Given the LOOC, the sample
that was the test sample at a certain iteration, was also excluded from the training set at this iteration.
On the one hand, this hierarchical approach has the advantage that confusion with similar classes at
a certain level that have a different parent class is reduced. On the other hand, errors that occur at a
certain level are continuously carried to more detailed levels. The results of the LVT classifications are
discussed in Section 3.1. An analysis of the selected features to differentiate each 1–1 class combination
is considered to be out of the scope of this paper.

2.6. Habitat Patch Mapping

The classification scheme was designed in such a way that the list of N2000 habitats present in the
study area is translated into a list of LVT classes that can be classified using the spectral information of
the IS data (see Section 2.4). These LVT classes can conversely be interpreted as spatial units which
can serve to construct habitat patches. Certain LVT classes can however occur in several habitat types,
hampering a straightforward re-classification from LVT classes into a habitat map. For example, trees
(LVT classes Fcpc, Fcps, Fdb-, Fdqz) can occur in almost all habitat types. When they form large,
contiguous patches, they are part of a forest habitat, while smaller patches or individual pixels of these
LVTs are simply a part of the surrounding open habitat. Incorporating the context in the reclassification
process is therefore essential for identifying the most plausible habitat type.

To solve this issue, we split the mapping of habitat patches into two stages, the first one
aiming to delineate patches, and the second one serving to assign a habitat type label to each patch
(see Section 2.7). This method mimics the mapping approach used by field mappers (e.g., [50]): they
first delineate ‘uniform’ habitat patches and then identify the habitat type based on the species that
are present. For the first stage, to delineate patches, we defined a number of rule sets that are used
to: translate the LVT classes to life form compositions [51] (Table 3); and determine a General Habitat
Category [52,53] based on the life forms present in a local spatial window. Grouping of adjacent pixels
with the same General Habitat Category then delivers the desired patches (polygons). This method is
an adaptation of the BioHab/EBONE methodology [35] that is designed for consistent mapping of
habitat patches in the field. To determine the General Habitat Category for each pixel and surroundings,
a spatial kernel of 5 × 5 pixels was run over the image, for which the composition of LVT classes was
determined (adding up to 100%). This local composition is then translated into life form composition
using Table 4. This table accounts for the typical composition of the LVTs in terms of life forms. For
example, Calluna-stands of predominantly adult age typically contain about 80% of evergreen low
shrubs (LPH_EVR; here: Calluna vulgaris), 10% of grasses (CHE) and 10% of mosses (CRY). Older
Calluna-stands typically have a lower cover of Calluna vulgaris (60% LPH_EVR), but a higher cover
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of mosses (30% CRY). Using the definitions and rules in Table 5, the General Habitat Category is
then determined based on the life form composition, and assigned to the central pixel of the spatial
kernel. Running this over the complete image, results in a new map of General Habitat Category
classes. This map was vectorised for further use, and determined the shape of each of the habitat
patches. The steps from LVT classes to General Habitat Categories via life form compositions proved
necessary to help the reclassification process group LVT classes that naturally occur together in habitat
patches. If omitted, the reclassification process based on a moving window would yield unexpected
results: the moving window approach would inevitably combine LVT classes of neighbouring, but
unrelated habitat patches, leading to combinations of LVT classes that do not correspond to the expert
descriptions of any habitat type.

Table 3. Description of the most abundant life forms in the ‘Kalmthoutse Heide’ study site
(adapted from [52]).

Super-Category Life Form Full Name Explanation/Examples

SPV
Sparsely vegetated Less than 30% vegetation cover

AQU Aquatic Permanent water bodies
TER Terrestrial Bare ground (sand)

CUL
Cultivated Cultivated land

CRO Herbaceous crops e.g., Maize

HER

Herbaceous Non-woody vegetation

HEL Helophytes Plants that grow in waterlogged conditions
e.g., Juncus effusus

LHE Leafy hemicryptophytes Biannual or perennial broadleaved herbaceous plant
species (‘forbs’)

CHE Caespitose
hemicryptophytes

Perennial monocotyledonous grasses, sedges and rushes
e.g., Molinia caerulea

CRY Cryptogams Bryophytes and lichens
e.g., Campylopus introflexus

TRS

Trees and shrubs Woody vegetation

SCH/EVR Shrubby chamaephytes
(evergreen)

Undershrubs with height 5 to 30 cm.
e.g., Erica tetralix, young Calluna vulgaris

LPH/EVR Low phanerophytes
(evergreen)

Low shrubs, buds between 30 and 60 cm.
e.g., adult Calluna vulgaris

FPH/CON Forest phanerophytes
(coniferous)

Coniferous trees between 5 and 40 m.
e.g., Pinus sylvestris

FPH/DEC Forest phanerophytes
(winter deciduous)

Broadleaved, winter deciduous trees between 5 and 40 m.
e.g., Quercus robur

Table 4. Rule set to convert the land/vegetation type (LVT) classes to life form compositions (%).
Rows represent the LVT classes (see Table 2), and columns represent life forms (see Table 3).

CRO FPH_CON FPH_DEC LPH_EVR SCH_EVR CHE CRY HEL TER AQU LHE

Acm_ 100
Aco_ 100
Fcpc 50 50
Fcps 50 50
Fdb_ 70 30
Fdqz 100
Gpap 80 20
Gpar 50 50
Gpj_ 50 50
Gpnd 50 50
Gt__ 100
Hdca 80 10 10
Hdcm 80 10 10
Hdco 60 10 30
Hdcy 80 10 10
Hgmd 100
Hgmw 100
Hwe_ 50 50
Sb__ 100
Sfgm 10 60 30
Sfmc 80 20
Sfmp 80 20
Wou_ 100
Wov_ 30 70
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Table 5. Definitions and rule set used to convert life forms to General Habitat Categories (GHC).

Definitions SPV = AQU + TER
FPH = FPH_CON + FPH_DEC
TRS = FPH_CON + FPH_DEC + LPH_EVR + SCH_EVR
HER = HEL + LHE + CHE + CRY

Life Form Rule General Habitat Category (GHC) 1 Rule

CRO × 100 >50 Unspecified

SPV × 100 >=30 Highest
(e.g., AQU, TER)

Highest×100
(Highest+2nd Highest) ≥ 70

Highest_2ndHighest
(e.g., AQU/TER, TER/AQU)

Highest×100
(Highest+2nd Highest) < 70

TRS × 100 >=30 FirstNonZero_Highest
(e.g., FPH_CON)

Highest×100
(Highest+2nd Highest) ≥ 70

FirstNonZero_ HighestNonZero/2ndHighestNonZero
(DEC, EVR, CON)

(e.g., FPH_DEC/CON)

Highest×100
(Highest+2nd Highest) < 70

HEL×100
(CHE+CRY+HEL+LHE) >=30 Unspecified

HEL×100
(CHE+CRY+HEL+LHE) <30 Highest

(e.g., CHE, CRY)
Highest×100

(Highest+2nd Highest) ≥ 70

Highest_2ndHighest
(e.g., CHE/LHE)

Highest×100
(Highest+2nd Highest) < 70

1 Legend to the GHCs: Highest: The life form with the highest proportion in the kernel becomes the GHC for
the central pixel. Highest_2ndHighest: The GHC of the central pixel is a combination of the two life forms with
highest proportions in the kernel (with order being of relevance, e.g., AQU/TER is different from TER/AQU).
FirstNonZero: In the TRS subcategory, life forms growing higher take precedence over lower life forms, thus FPH
> LPH > SCH. The first life form in this order that is not zero becomes the GHC for the central pixel. Highest
vs. HighestNonZero/2ndHighestNonZero: In the TRS subcategory, life forms are always accompanied by a leaf
type qualifier (DEC, CON, EVR). This can be either one such qualifier (e.g., FPH_DEC for a deciduous forest) or
a combination of two qualifiers accompanying a single life form (e.g., FPH_DEC/CON for a mixed forest with a
(slight) dominance of deciduous over coniferous trees).

2.7. Habitat Type Identification

The previous step resulted in a map with delineated habitat patches, but the patches did not
yet have a N2000 habitat type assigned to them. To achieve this, an additional rule set was defined
that characterizes each habitat using percentage ranges of LVT compositions. (Note that General
Habitat Categories (see Section 2.6) were not further used for N2000 habitat type identification, since
there is not a one-to-one correspondence between the typologies.) Using the descriptions of habitats
in [42,44,54], we identified which LVT classes (regardless of their hierarchical level) could occur in
each habitat type, and what the minimal and maximal expected percentage of occurrence within a
habitat patch were. A patch was only assigned to a habitat class when its LVT composition specifically
fell into the percentage ranges of that habitat. If it did not fit any of the percentage ranges, the patch
was considered not a N2000 habitat. Table 6 illustrates the rules to translate the LVT map to a N2000
habitat map. As a result of the high variability within each habitat, these translation rules had to be
further refined to first separate degraded (tree and grass-encroached) habitat occurrences. The full
table of LVT to N2000 habitat translation rules is available in the Supplementary Material of the paper.
The resulting habitat type maps were evaluated using the habitat types noted in the field for each plot.

As a worked example, say a patch has an areal composition (in terms of corresponding pixels with
assigned LVT class) of 70% H (i.c. Hd: 20%; Hw: 30%; Hgmw: 20%), 10% S (i.c. Sfgm), 10% G (i.c. Gpj),
5% F (i.c. Fd) and 5% W (i.c. Wov). The percentage covers of H, Hd, Hw and Hgmw are all within
the ranges of habitats 2310, 4010 and 4030. Habitat 2330 is excluded because H has more than 50%
coverage. Furthermore, the covers of S, Gpj, F and W also comply with the named three habitats. The
lower-level LVT classes, Sfgm, Fd and Wov, are of no relevance here for the identification. Ultimately,
we can decide that the patch is of habitat type 4010 because Hw − Hd is positive (30 − 20 = 10). Had
there been more Hd than Hw (i.e., Hw − Hd = negative), then we would have had to conclude that the
patch was either 2310 or 4030, and in this particular case we would have needed additional information
(e.g., soil or geomorphology data) to distinguish these two habitat types.
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Table 6. Rule set illustrating the relation between land/vegetation type (LVT) classes and N2000 habitat
types. Rows consists of LVT classes, columns define the N2000 habitat types. Numbers represent
expected cover ranges (in %) in a patch (unless otherwise indicated).

Habitat 2310 2330 4010 4030

H 30–100 0–50 70–100 50–100
Hd 0–100 0–50 0–50 0–100
Hw 0–50 0–10 0–100 0–50
Hg 0–50 0–50 0–50 0–50

Hgmw 0–30 0–10 0–50 0–30
Hgmd 0–50 0–50 0–30 0–50

S 0–70 0–100 0–10 0–30
G 0–70 0–100 0–10 0–30

Gpnd 0–70 0–100 0–10 0–30
Gpj 0–10 0–10 0–10 0–10
Gpa 0–10 0–10 0–10 0–10
Gt 0–10 0–10 0–10 0–10

S + Gpnd 0–70 50–100 0–10 0–30
F 0–30 0–15 0–30 0–30
W 0–10 0–10 0–30 0–10
A 0–10 0–10 0–10 0–10

Hw − Hd negative negative positive negative
minimum patch size (m2) 400 400 400 400

2.8. Assessment of Habitat Quality

Assessing the quality of natural habitats is complex and not without discussion [55]. Rules for
assessing the quality of N2000 habitats (such as in [38,40,41,45]) are however mainly based on three sets
of characteristics. A first group are indicators related to the specific structural characteristics of habitats.
For example, the occurrence of different age classes of Calluna vulgaris is typical for a well-developed
dry heathland [26]. Second, indicators of the more general pressures on natural ecosystems are
considered (e.g., grass and tree encroachment for open ecosystems). The third important characteristic
is the number and cover of key species.

To illustrate the potential of IS for the derivation of certain habitat quality parameters, we
combined the information from the habitat patch map (output from 2.7) with the LVT maps
(output from 2.5) to derive the tree and grass coverage per patch. Tree or grass coverage is defined
as the percentage of trees (F class) or grass (Hgm class) cover within a habitat patch. To validate the
amount of cover obtained with the IS method, we compared the mapped percentage of tree and Molinia
coverage (the F and Hgm classes, respectively) with cover estimates made in the field, using a set of
habitat polygons delineated in the field in 2009.

2.9. Method Implementation

All analyses for this study were performed using our own code implementations in Matlab
R2014a. For the feature selection and classification of the LVT classes, we additionally made use of the
PRTools 4.2 package [56]. Our code can be shared upon e-mail request to the corresponding author.

3. Results

3.1. Land/Vegetation Type Classification Results

LVT classifications produced four LVT classification maps at four different levels of detail (Level 1:
lowest detail; Level 4: highest detail). Classifications were first performed on each level separately,
i.e., independent of the other levels, to gain insight into the performance at each level. Subsequently,
the hierarchical nature of the classification scheme was exploited to further improve classification
results. A true colour representation of a study area extract and the corresponding level-4 classification
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result are shown in Figure 4. Table 7 summarizes the overall accuracies (OA) and Kappa (KHAT) for
all levels of LVT detail, both when performed separately and when exploiting the hierarchical nature
of the classification scheme.

Table 7. Overview of overall classification accuracies (OA in %) and Kappa indices at all hierarchical
LVT class levels, without and with exploiting the hierarchical nature of the classification scheme.
All accuracy measures were calculated using leave-one-out cross-validation.

Level Number
of Classes

Non-Hierarchical Hierarchical L1 → L4 Hierarchical L2 → L4

OA (%) Kappa OA (%) Kappa OA (%) Kappa

1 6 93.82 0.93 93.82 0.93 - -
2 11 91.68 0.91 90.19 0.89 91.68 0.91
3 17 88.17 0.87 87.10 0.86 88.59 0.88
4 24 81.77 0.80 81.24 0.80 82.84 0.82
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result at Level 4 of the same extract, consisting of 24 classes (bottom). Full names of the Level 4 classes
can be found in Table 2. The LVT classification maps for Level 2 to 4 of the whole study area are
provided in the supplementary material.

Without incorporating the hierarchical information in the classification scheme, OA (and KHAT)
were already high at all levels, ranging from 81.8% (0.80) at Level 4 up to 93.8% (0.93) at Level 1.
Using the full hierarchical nature of the classification scheme from Level 1 down to Level 4 slightly
negatively influenced OA (and KHAT) for the more detailed Levels 2 to 4. With differences of 1.5%,
1.1% and 0.5% in OA at Levels 2, 3 and 4, respectively, the gap between the non-hierarchical and the
full hierarchical implementation narrows with the increase in class number and detail. On the one
hand, these results indicate that the LVT classification algorithm appears to adapt well to increasing
levels of complexity. On the other hand, it also suggests that including the hierarchical information
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becomes increasingly important with increasing levels of detail. The step from Level 1 to 2 in the
full hierarchical implementation resulted in the biggest decrease of OA (and KHAT), meaning there
is avoidable confusion introduced between classes at L1 that is carried throughout the hierarchy.
At Level 1, the LVT classes are still very broad, e.g., Grassland (G), Heathland (H), and Water Bodies
(W). At Level 2, we introduce some important distinctions that are likely to cause confusions at Level
1, e.g., the Grass-encroached heathland (Hg) class, which belongs to the Heathland (H) class at Level 1,
and is likely to cause confusion with the Grassland (G) class. Another example is the Wet heathland
(Hw) class, also belonging to the Heathland (H) class at Level 1, and likely to cause some confusion
with the Water bodies (W) class. Taking this into account, we also explored the hierarchy effect from
Level 2 to 4. Doing so resulted in a slight increase in OA (and KHAT) for Level 3 and 4, 88.6% and
82.8%, respectively. With differences in OA of 0.4% and 1.1% at Level 3 and 4, respectively, these
results show that a hierarchical implementation can benefit LVT map accuracy. Consequently, the
maps produced with the hierarchical LVT classification of Level 2 to 4 (not level 1) were used for
further analysis. Level 2 to 4 LVT classification maps for the entire study area are available in the
Supplementary Materials.

In Table 8, an overview is provided of the User’s and Producer’s accuracies (UA and PA) per
LVT class for Level 2 to 4, using the chosen classification implementation. The confusion matrix of
the Level 4 classification is shown in Table 9. At Level 2, UA and PA for all classes are higher than
84% and 77%, respectively. At Level 3, 14 of the 17 classes still have UA > 76% and PA > 71%, with the
majority >80% for both accuracies. The LVT classes Gpa and Gpj have UA of 63% and 55%, and PA of
60% and 33%, respectively. Aco has a PA ≈ 54%. Two of the three LVT classes that suffer from higher
confusion, i.e., Gpa and Aco, are agricultural types, and hence of less importance for the heathland
core area. At the most detailed level of LVT mapping, the majority of classes again shows UA and PA
of >70%. Most of the classes that score below 70% are actually child classes of the classes that were
already suffering from confusion at Level 3. A continuous trend over all levels, is that particularly the
classes that have a lower amount of training spectra, are likely to show some confusion.

Of particular interest in terms of conservation status assessment, is the relatively low success
in mapping the different Calluna heather age classes Hdca, Hdcm, Hdco and Hdcy. Confusion does
arise between the age classes, but given the low amount of training spectra for each class, and the
existence of the mixed-age Hdcm class, these results are not surprising. In a parallel study, we
applied a different strategy to improve the separation between these classes, using spectral unmixing
techniques to characterize the Calluna heath age classes, taking into account their specific morphological
characteristics [26]. Given this study, conservation status assessment using Calluna heather age classes
is not treated further in this study.

The high accuracy results demonstrate that overall a robust LVT map can be obtained for further
processing to habitat maps, and that even specific habitat quality-indicating classes can be mapped
with moderate to high accuracy.
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Table 8. Overview of user’s and producer’s accuracies per class for Levels 2 to 4, using the hierarchical implementation from Level 2 to 4.

Level 2 Level 3 Level 4

Class # of Reference Plots UA PA Class # of Reference Plots UA PA Class # of Reference Plots UA PA

Ac 133 96.77 90.23 Acm 98 87.62 93.88 Acm- 98 87.62 93.88
Aco 35 100.00 54.29 Aco- 35 100.00 54.29

Fc 97 93.75 92.78 Fcp 97 93.75 92.78 Fcpc 44 70.21 75.00
Fcps 53 79.59 73.58

Fd 80 93.90 96.25 Fdb 32 90.63 90.63 Fdb- 32 90.63 90.63
Fdq 48 94.00 97.92 Fdqz 48 94.00 97.92

Gp 66 91.07 77.27 Gpa 25 62.50 60.00 Gpap 12 50.00 41.67
Gpar 13 35.71 38.46

Gpj 18 54.55 33.33 Gpj- 18 54.55 33.33
Gpn 23 90.48 82.61 Gpnd 23 90.48 82.61

Gt 97 94.90 95.88 Gt- 97 94.90 95.88 Gt– 97 94.90 95.88
Hd 84 85.39 90.48 Hdc 84 85.39 90.48 Hdca 28 68.97 71.43

Hdcm 23 60.00 65.22
Hdco 8 44.44 50.00
Hdcy 25 65.38 68.00

Hg 25 85.19 92.00 Hgm 25 85.19 92.00 Hgmd 15 68.75 73.33
Hgmw 10 72.73 80.00

Hw 88 84.09 84.09 Hwe 88 84.09 84.09 Hwe- 88 84.09 84.09
Sb 104 96.08 94.23 Sb- 104 96.08 94.23 Sb– 104 96.08 94.23
Sf 62 89.39 95.16 Sfg 14 76.92 71.43 Sfgm 14 76.92 71.43

Sfm 48 86.79 95.83 Sfmc 40 77.08 92.50
Sfmp 8 40.00 25.00

Wo 102 90.00 97.06 Wou 45 84.62 97.78 Wou- 45 84.62 97.78
Wov 57 86.21 87.72 Wov- 57 86.21 87.72

Total: 938 Total: 938 Total: 938
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Table 9. Confusion matrix of the Level 4 land/vegetation type classification, using the hierarchical implementation from Level 2 to 4.

Reference
Data

Classified Data
Acm- Aco- Fcpc Fcps Fdb- Fdqz Gpap Gpar Gpj- Gpnd Gt– Hdca Hdcm Hdco Hdcy Hgmd Hgmw Hwe- Sb– Sfgm Sfmc Sfmp Wou- Wov- Total PA

Acm- 92 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0 1 1 98 93.88
Aco- 9 19 1 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 35 54.29
Fcpc 0 0 33 8 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 44 75.00
Fcps 0 0 10 39 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 53 73.58
Fdb- 0 0 3 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 90.63
Fdqz 0 0 0 0 1 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 97.92
Gpap 0 0 0 0 0 0 5 2 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 12 41.67
Gpar 0 0 0 0 1 0 3 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 38.46
Gpj- 0 0 0 1 0 0 1 4 6 0 0 0 0 0 0 0 0 1 0 0 2 0 0 3 18 33.33

Gpnd 0 0 0 0 0 0 1 0 0 19 0 0 0 0 1 0 0 1 0 1 0 0 0 0 23 82.61
Gt– 0 0 0 0 0 0 0 2 0 0 93 0 0 0 0 1 0 0 0 0 0 0 1 0 97 95.88

Hdca 0 0 0 0 0 0 0 0 0 0 0 20 5 1 1 0 0 1 0 0 0 0 0 0 28 71.43
Hdcm 0 0 0 0 0 0 0 0 0 0 0 4 15 0 3 0 0 1 0 0 0 0 0 0 23 65.22
Hdco 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 1 0 0 1 0 0 1 8 50.00
Hdcy 0 0 0 0 0 0 0 0 1 0 0 2 3 0 17 0 0 2 0 0 0 0 0 0 25 68.00
Hgmd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 2 1 0 0 0 0 0 1 15 73.33
Hgmw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0 0 0 0 0 10 80.00
Hwe- 0 0 0 0 0 0 0 0 0 0 0 3 1 3 4 1 0 74 0 0 1 0 0 1 88 84.09
Sb– 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 1 1 0 0 0 104 94.23

Sfgm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 1 1 0 0 14 71.43
Sfmc 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 37 2 0 0 40 92.50
Sfmp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 2 0 0 8 25.00
Wou- 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 44 0 45 97.78
Wov- 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 50 57 87.72
Total 105 19 47 49 32 50 10 14 11 21 98 29 25 9 26 16 11 88 102 13 48 5 52 58
UA 87.62 100.00 70.21 79.59 90.63 94.00 50.00 35.71 54.55 90.48 94.90 68.97 60.00 44.44 65.38 68.75 72.73 84.09 96.08 76.92 77.08 40.00 84.62 86.21
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3.2. Habitat Type Patch Map Results

Four N2000 habitat types that frequently occur in European heathlands were mapped (Table 1).
Figure 5a shows the habitat map re-classification result of the same study area excerpt as in Figure 4. We
tested different window sizes (5 × 5, 7 × 7, and 9 × 9) for the delineation of the habitat patches (for the
conversion of lifeforms to GHC classes; see Section 2.6), but the resulting habitat maps showed only
minor changes with different window sizes. Using a 5 × 5 window is hence preferable as this results in
a lower computational load. The habitat patch map consists of 22 classes in total, definitions of all these
classes, as well as a habitat map covering the whole study area, are available in the Supplementary
Materials. For accuracy assessment purposes, we have taken a subset consisting of the four habitat
type classes and a No N2000 habitat type class. The No N2000 habitat type class groups all patches that
do not match the definitions determined for the habitat types, e.g., agricultural area, urban area and
walking trails (see Table 6).

OA, UA and PA for all habitat types are summarized in Table 10. The obtained OA was 89%. For
three of the four mapped habitat types, a PA > 72% and UA > 80% was obtained. Habitat type 4030
showed a lower PA of 54%, with most confusion ending up in the ‘No habitat type’ class. The UA of
habitat type 4030 however equals 100%, so all of the patches that were mapped as 4030 were noted
in the field to be this habitat type, but the procedure fails to map all 4030 habitat patches. Habitat
type 2310, with a PA of 73% and UA of 69%, seems to confuse most with habitat type 4010. These
accuracy numbers were acquired in a slightly different manner than the conventional way, due to
fuzziness of the obtained habitat map. As the LVT range composition rules from Table 6 are not fully
mutually exclusive, the resulting habitat map can contain multiple possible habitat types for each
patch. We opted to give more importance to the habitat definitions given in the literature [42,44,54]
than to try to change the habitat composition definitions in such a way that they are mutually exclusive.
These habitat definitions are however not fully quantitatively described and can thus be subject to
interpretation. Similarly, field interpreters often take note of the several potential types. Taking this
into account, we considered the decision of the classification method as being correct, when one of
the habitat types the method had assigned the patch to, corresponded to the habitat type noted in
the field for that patch. In Figure 5, the patches that were constructed using the method described in
Section 2.6 are also depicted. Neighbouring patches can have the same habitat type assigned to them,
but each patch is maintained as an entity. As such, it is ensured that the assessment of conservation
status parameters can be done at patch level, instead of at a large continuous entity that may have
both well-developed and degraded forms of the habitat within it.
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Table 10. Confusion matrix for the mapped heathland habitat types present in the ‘Kalmthoutse Heide’
study area.

Mapped

Field No N2000 Habitat 2310 2330 4010 4030 # of Reference Plots PA (%)

No N2000 Habitat 542 1 4 3 0 550 98.55
2310 3 48 2 13 0 66 72.73
2330 24 9 143 1 0 177 80.79
4010 6 12 0 81 0 99 81.82
4030 15 0 3 3 25 46 54.35

# of reference plots 590 70 152 101 25 938
UA (%) 91.86 68.57 94.08 80.20 100.00 OA = 89.45%

3.3. Assessment of Habitat Quality at the Patch Level

Figure 5b,c provide an example of the results obtained by combining the habitat patch map
with the LVT Level-4 map to derive conservation status indicator maps. In Figure 5b, Molinia
cover per patch (in %) is depicted. In Figure 5c, the example is converted to an easily interpretable
favourable/unfavourable conservation status indicator map, using the terminology of N2000 that terrain
managers and monitoring experts are accustomed to. To this end, identical rules are applied as in
the field, i.e., for the habitats 2310, 4010 and 4030, the conservation status is unfavourable when
Molinia covers over 50%, otherwise it is favourable for this indicator. For habitat 2330, the reasoning
is identical but the threshold is at 30% Molinia cover. To validate the conservation status indicator
results, a comparison was made between the percentages of tree and Molinia cover estimated by the
IS method and those recorded in the field in 2009 (see Section 2.2.1). In Figure 6a,b, the coverage
distribution of the ground reference patches and those obtained using the IS method are given for tree
and grass encroachment, respectively. Percentages of cover are grouped into six classes (0%, 0–20%,
20%–40%, etc.). In Figure 6c, the difference between the corresponding cover estimates per patch is
shown (calculated as the estimate obtained in the field minus the estimate from the IS method).

For tree cover, the observed distribution patterns recorded in the field and with the IS method are
highly similar (Figure 6a). The amount of tree cover is low (0–20%) in most of the heathland habitat
validation patches. The only difference is found in the 0% class: field observers tend to score the tree
encroachment more often as being completely absent. As this is normally easy to assess in the field,
this difference between both methods is likely related to the presence of a few misclassified pixels of
forest types (e.g., due to shadow). These minor errors, however, rarely lead to big differences. Figure 6c
indeed confirms the agreement in estimates in each patch. For 91% of the validation patches, the
difference between the field estimate and the IS method is less than 20%. When the conservation status
is considered (favourable vs. unfavourable amount of tree encroachment), the overall accuracy is 93%.
The distribution pattern of estimates of grass encroachment, i.e., Molinia-cover, observed in the field
and those obtained with the IS method (Figure 6b), show a larger dissimilarity. There are a lot more
patches estimated to have little Molinia-cover (0% and 0–20%) according to the IS method. The numbers
in the 20%–40% and 40%–60% cover classes are similar, while the cover classes of >60% number only
about half the amount found in the field estimates. The latter might be related to an overestimation of
the Molinia-cover by field observers in the classes with a higher Molinia-cover due to the surveyor’s
oblique view in the field [28]. Figure 6c reveals that only 40% of the difference in estimates per patch
is less than 20%. Another 25% of the patches has a cover estimate with the IS method that is 20% to
40% lower than made by visual interpretation in the field (20% to 40% class). The remaining patches
have estimates that are >40% lower than those made in the field. These discrepancies between the
field estimates and the estimates with IS-based method also impact the conservation status evaluation:
when patches are classified as favourable or unfavourable, an overall accuracy of 62% is reached. These
results point to either an underestimation of Molinia-cover with the IS method, or an overestimation
by the field interpreter. On the one hand, field estimates were made using visual interpretation, and
are hence inherently subjective, i.e., dependent on the field interpreter [57]. On the other hand, the
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minimum mapping unit in the LVT classification is equal to the pixel size. Each pixel is assigned to
only one of the LVT classes, even though subpixel differences might exist. This means that pixels
classified as Hd or Hw in the LVT classification might contain low amounts of Molinia cover, but this is
not reflected in the class of the pixel and will not be included in the estimate of the amount of grass
encroachment in the habitat patch. Nevertheless, the results indicate a high correlation in Molinia-cover
estimates between both methods in 60% to 80% of the patches.
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Figure 6. (a) Distribution of the tree encroachment estimates in the ground reference and mapped
habitat patches; (b) distributions of the grass encroachment, i.e., Molinia cover, estimates in the ground
reference and mapped habitat patches; (c) differences between the tree and grass encroachment
estimates obtained per patch in the field in 2009, and with the IS-based method. Applicable threshold
values for discerning favourable and unfavourable status are: tree encroachment in habitats 2310, 4010
and 4030: 30%; and in habitat 2330: 10%; Grass encroachment, i.e., Molinia cover, in habitats 2310, 4010
and 4030: 50%; and in habitat 2330: 30% [45].

4. Discussion

Different heathland habitat types, despite being to some extent dominated by the same plant
species, were successfully discerned, and spatially explicit quality-indicating parameters were mapped
at the patch level, such as tree and grass cover. Our results show that using a three-step approach
(LVT → habitat patch and type → habitat conservation status) with high spatial resolution IS in
a heathland area, can produce both quantitative information on the N2000 habitat types present
(e.g., area, extent, and occurrence), as well as flexible habitat conservation status indicators. The applied
hierarchical land/vegetation type (LVT) classification scheme and the three-step approach provide the
advantage of accurate extraction of habitat classes and conservation status parameters of ecological
importance, which typically occur at different spatial scales. Large continuous parts of one habitat
type can be mapped, but assessment of conservation status is maintained within smaller patches in
the entity. This provides information at various levels of detail which can serve several information
and stakeholder needs. For example, statistical and qualitative information (e.g., area per habitat,
percentage of patches affected by tree and grass encroachment) can be extracted at the level of the
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protected site to serve the reporting needs of the HabDir, while more detailed maps can provide a
terrain manager with essential spatially explicit information to guide the site management.

In designing our method, we explicitly chose to strive for habitat patch mapping and assessment
as is done when mapping in the field. Although a continuous approach (like in [29]) is better at
visualizing e.g., transitions between habitats, our three-step approach offers the advantage of producing
outputs that look familiar to site managers, and at the same time feed well into the reporting needs of
monitoring experts. The LVT classification maps allow for a flexible assessment of patch quality, both in
space (e.g., thresholds in bare sand, ericoid cover, or tree and grass encroachment vary between habitat
types) and in time (applied thresholds may change in future, and the method allows for re-evaluation
of past situations). The main limitation is set by the available spatial resolution: at the present
pixel size of 2.4 by 2.4 m2, we were unable to adequately map fine-scale habitat types (e.g., habitat
7150—Rhynchosporion) and conservation status indicators (e.g., presence of key species, Calluna age
classes, cover of lichens). However, in earlier work [27], we showed that to a certain degree (35%–39%)
these fine-scale structures can be modelled from the coarser-scale remotely sensed data. Hence, our
method provides a good overview of the site with sufficient detail for many reporting and management
needs. When very specific questions about specific locations arise however, additional information in
the form of a field visit remains necessary.

In terms of assessing habitat quality at the patch level, it is clear that assessments based on our
IS method may differ from field assessments, and that these differences may be smaller or greater
depending on the indicator (e.g., OA of tree (93%) versus grass encroachment (62%) in Section 3.3).
However, this need not necessarily compromise further use of the IS method for habitat monitoring,
reporting and management, for several reasons. First, it is impossible to tell which approach is ‘right’
and which is ‘wrong’. Current field-based assessments also suffer from a great deal of uncertainty due
to observer effects in cover estimates [58]. As a result, data that are now used routinely are already
partly ‘wrong’. Second, assessments are usually based on a threshold cover value (often 10, 30% or 50%).
This implies that an erroneous assessment is unlikely for patches where the indicator value deviates
far (e.g., 80% or 90%) from that threshold value. Third, assessments of single indicators at single
habitat patches are not reported as such to the European Commission, but are further integrated in two
different ways. In a first step, the assessments of several indicators (e.g., tree and grass encroachment,
key species, and structural complexity) of the same patch are first integrated at the level of the patch,
where ‘unfavourable’ usually takes precedence over ‘favourable’. Indicators are known to correlate
to a certain degree [27], which means that the likelihood that any single indicator will lead to an
erroneous assessment at the patch level is lowered. In a second step, these patch assessments are
further integrated–weighted by patch area–to an assessment per habitat at the N2000 site or even the
member state level, which is the final assessment that will be reported to the European Commission.
A fourth reason why the differences between the field and IS-based habitat quality not necessarily
compromise further use of the IS method is that, for management purposes, the interests of the site
managers are most of the time not in the binary assessment (favourable–unfavourable) of each patch,
but rather in getting insight in the patterns and processes behind it. As a consequence, managers
are interested in the relative or even absolute estimates of e.g., tree and grass encroachment, and
perhaps more importantly, how these evolve over time. In this context, remote sensing offers the
advantage over field work in providing an objective, repeatable method of obtaining estimates, which
will ultimately lead to more reliable monitoring of trends over time.

The three-step approach might have additional advantages towards transferability and
implementation in other similar habitat areas. While the method has been demonstrated in this
study for a number of heathland habitats, other habitat types exist for which similar composition and
several quality-indicators could potentially be mapped using the proposed method (e.g., coastal dune
habitats). This would at least require an adaptation and re-tuning of the LVT classification and habitat
re-classification schemes, but without altering the overall strategy. The method is however not deemed
appropriate for habitat types for which the identification or quality depend on the presence of key



Remote Sens. 2017, 9, 266 21 of 25

species in low numbers (e.g., certain grassland habitat types), or structural layers that are not visible
from above (e.g., certain forest habitat types). As such, this method contributes to the toolset useful for
N2000 habitat mapping using remote sensing, but does not claim to be a one-size-fits-all solution for
all N2000 habitat types.

We used IS data with a spatial resolution of about 2.4 m and 63 spectral wavelength bands in
the visual and near-infrared spectral domain (400 to 2500 nm) to achieve the necessary thematic
detail in the LVT classifications. Such spectrally detailed image data is however not always available,
but this does not necessarily mean the method cannot be applied using different image sources
(e.g., multispectral data). As the IS data contains sufficient spectral detail to discern the necessary
thematic detail, we relied solely on spectral features (i.e., the information in the different wavelength
bands), in combination with the hierarchy of the classes, to perform the LVT classifications that result
in the first maps that are the basis of the rest of the habitat mapping method. Although sufficient
spatial detail, i.e., a spatial resolution roughly <3 m, might be a prerequisite to be able to map the
habitat types and conservation status indicators at a similar spatial detail with the method proposed
in this study, the necessary thematic detail might be achieved with imagery that has less spectral
information by using different information present in these images. One possible approach is to take
advantage of multi-temporal or phenological information. Highly accurate tree species classifications
have, for example, been achieved in savannah habitats using multi-temporal WorldView-2 imagery
(spatial resolution ~= 2m in multispectral mode) [59]. Another approach is to take into account spatial
information for the classification, e.g., using object-based analysis (e.g., [60]). As such, we believe the
method also has potential to be used with image sources other than IS, given the LVT classifications
are properly adjusted to the available image source. Additionally, using a hierarchical approach for
the LVT classification also provides opportunities to develop dedicated class splitting methods at each
node. In this paper, we actually already do so by using different spectral features for every split, but a
variety of approaches could be taken to achieve similar or better results. We have for example shown
that discerning the different heather age structures (i.e., the split from Hdc at Level 3 to Hdca, Hdco,
Hdcy, and Hdcm at Level 4) could be improved by combining spectral unmixing with a decision tree
classifier [26].

The IS data for this study were acquired in the summer of 2007, while the habitat conservation
status indicator validation data were acquired in the summer of 2009. As natural changes in heathland
habitats are a rather slow process (except for fires), we do not expect the two-year time gap between
the 2007 image acquisition and the 2009 conservation status validation dataset to have caused large
inaccuracies due to changes in the conservation status indicators during this period. This means
that, although field data acquired at comparable times of the image acquisition are preferable, some
flexibility is present in the acquisition of field data for similar, naturally slowly changing habitats.

In this study, we used an extensive LVT reference dataset of 1325 plots. However, such a number
is often not achievable, especially when considering the routine application of the method. Further
research could consider several options to lower the method’s dependency on ground reference data,
such as the use of spectral libraries [29,61], classifiers that are robust in dealing with small sample
sizes [14], or techniques like active learning and domain adaptation [62].

5. Conclusions

Direct heathland habitat mapping using remote sensing is hampered by the high intra-variability
of habitat patches, as well as the low inter-variability between different habitat types. This study
illustrates a method, using high spatial resolution imaging spectroscopy (IS) data, that actually exploits
these inherent characteristics, not only to obtain a habitat distribution map, but also to assess the
habitat quality through indicators that monitoring experts are accustomed to. We showed that a land
and vegetation type (LVT) classification map, which is typically achievable using IS, can be used to
delineate habitat patches, as well as determine the NATURA 2000 (N2000) habitat type. As we were
able to achieve high thematic detail in the LVT maps, we were also able to illustrate that the derived
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habitat patch maps can then again be combined with the LVT maps to derive typical N2000 habitat
conservation status indicators. As such, we use IS and field data in combination with knowledge-based
rules to produce the full set of information that is necessary to report on a N2000 area under the
Habitats Directive.

Given that our method does not require any additional input data (except for knowledge-based
rule sets), once LVT maps are achieved with sufficient thematic detail, it has the potential to also be
applied successfully using other image sources than IS. If the prerequisite of LVT maps with sufficient
thematic and spatial detail can be achieved using other image sources, the method has the potential to
be applied more frequently in both time and space for heathland habitats. Applying the method to
other similar habitat types, such as coastal dune regions, should in principle also be possible, but will
require adaptations and fine-tuning of the knowledge based rule sets.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2072-
4292/9/3/266/s1.
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