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Abstract: Land cover is one of the essential climate variables of the ESA Climate Change
Initiative (CCI). In this context, the Land Cover CCI (LC CCI) project aims at building
global land cover maps suitable for climate modeling based on Earth observation by satellite
sensors. The challenge is to generate a set of successive maps that are both accurate
and consistent over time. To do so, operational methods for the automated classification
of optical images are investigated. The proposed approach consists of a locally trained
classification using an automated selection of training samples from existing, but outdated
land cover information. Combinations of local extraction (based on spatial criteria) and
self-cleaning of training samples (based on spectral criteria) are quantitatively assessed.
Two large study areas, one in Eurasia and the other in South America, are considered.
The proposed morphological cleaning of the training samples leads to higher accuracies
than the statistical outlier removal in the spectral domain. An optimal neighborhood has
been identified for the local sample extraction. The results are coherent for the two test
areas, showing an improvement of the overall accuracy compared with the original reference
datasets and a significant reduction of macroscopic errors. More importantly, the proposed
method partly controls the reliability of existing land cover maps as sources of training
samples for supervised classification.
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1. Introduction

Increasing significance is being placed on terrestrial data for impact and mitigation assessment in
the implementation plan for the Global Climate Observing System (GCOS, udpate 2010) in support
of the United Nations Framework Convention on Climate Change (UNFCC). Globally consistent sets
of land description are needed to quantify the sources of greenhouse gasses, to analyze the potential
impacts of climate change and to characterize extreme events, such as floods, droughts and heat waves.
Such baseline data should support climate modeling research and deliver information needed for
decision-making. The ambition of the Climate Change Initiative (CCI) funded by the European Space
Agency (ESA) is to provide key observational data in order to fulfil the requirements for a selection
of 14 Essential Climate Variables, including land cover [1].

The importance of regular and consistent land cover descriptions is widely recognized by various
scientific communities. These communities refer to land cover and land cover change as the most
obvious and detectable indicators of land surface characteristics, as well as associated human-induced
and natural processes [2]. Land cover change is acting as both a cause and a consequence of climate
change through the carbon, water and energy cycles. Reliable observations are crucial to monitor and
understand ongoing processes of deforestation, desertification, urbanization, land degradation, loss of
biodiversity and the influence of land cover on the physical climate system itself. However, unlike major
other Earth observation domains, such as oceans and atmosphere, regular land cover characterization at
the global scale is still to be developed.

Since the first global land cover map produced by DeFries and Townshend [3] at one-degree spatial
resolution, several global land cover maps have been generated at increasing spatial resolutions [4–8].
The two most recent global land cover products derived from moderate resolution are GlobCover
and MODIS Land Cover. The GlobCover 2005 and 2009 products were produced using unsupervised
classification applied on MERIS time series. A major originality consisted in capitalizing on already
existing (and sometimes outdated) land cover data for the cluster labeling [8]. Colditz et al. [9] also
extracted sample data from existing high-resolution maps to train multiple decision trees classifiers in
Germany and South Africa. Conversely, the MODIS land cover products were obtained from a supervised
approach, namely decision trees classification [10]. It relied on the System for Terrestrial Ecosystem
Parameterization [11] for the learning process. Such a database requires constant maintenance and
augmentation to meet the global mapping needs.

While fully automated processing chains are sensitive to the signal-to-noise ratio of the input images,
the quality of the reference dataset, used for training or labeling, is the key for the accuracy of each
classification result. Inappropriate training samples were indeed identified as the main source of errors in
many classification processes [12]. For instance, Foody and Arora [13] showed that the choice of training
samples had a significant effect on the classification results, whereas changing the classifier model (the
number of layers in a neural network) was not significant.
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Due to the cost of building reliable training databases, semi-supervised methods have been developed
to optimize the selection of training samples, achieving better results with less effort. Those methods,
known as active learning, consist in iteratively proposing training samples to an operator until a satisfying
classification is achieved [14]. They are, however, hardly applicable for the purpose of global land cover
classification, because of: (i) the large number of samples that is generally needed to characterize each
class; and (ii) the need to have photo-interpretation expertise everywhere in the world.

For the ESA Land Cover CCI (LC CCI) project, the scientific challenge of accurate global land cover
mapping from satellite observations is addressed by combining the automated unsupervised processing
strategy of GlobCover with a locally trained classification approach. This paper focuses on this second
supervised strategy.

Our hypothesis is that the automated extraction of knowledge from existing maps is a sound alternative
to the collection of highly reliable training samples from field surveys or from the most recent very
high-resolution image interpretation. Indeed, such an interactive and labor intensive selection can hardly
maintain up-to-date training sets on a long-term basis at a global scale. Furthermore, automatically
building on existing, but sometimes outdated, land cover maps requires setting up a quality control
mechanism. This mechanism should assess the quality and the topicality of the existing thematic data
in order to be able to discard them whenever they are found to be no longer relevant. Such an approach
should ensure that a map can evolve through time in a consistent manner.

The main issue with the use of those existing maps is that they are composed of different
sources, whose legends are not always compatible. In addition, those data usually include labeling
errors, due to classification errors, changes that have occurred since the production date, differences of
spatial resolution between the datasets or geolocation errors. Another difficulty in using thematic maps
for training lies in the fact that the spectral signature of a specific land cover type varies over large
areas, due to latitudinal and altitude shifts or local conditions, and thus, the training sample has to be
spatially representative.

The objective of this research is to establish that supervised classifiers can be trained from existing
thematic maps. As a preliminary study for the global LC CCI project, this paper develops different
methods for the mitigation of the major issues hampering the use of land cover maps as a reference for
training global supervised classifiers:

• The training sample selection is developed as an automated process that extracts the spectral
signature for each land cover class present in the existing thematic data. In order to handle the
spatial variability of the land cover classes over very large regions, the signatures are extracted in
a neighborhood around the pixels to be classified.

• The training samples are cleaned in order to reduce the impact of misclassified or mislocated
reference pixels. In the case of mislabeled training instances, cleaning the training sample will
result in a classifier with higher predictive accuracy [15]. Two types of algorithms are assessed for
this purpose: one is based on the location of the reference pixels, and the other is based on the
distribution of the spectral signatures.

The proposed methods are compared over two large regions in order to guide the fine-tuning of the
parameters for the selected algorithms.
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2. Study Area and Data Used

Two study areas have been selected for the comparison of the different training sample extraction
methods. The first one covers a large part of Western Eurasia, and the second one includes most of the
Amazon basin in South America. Their locations are presented in Figure 1. Approximately one tenth of
the global land surface is covered by these two test areas.

Figure 1. Locations and extent of the two study areas used in the work as depicted by MERIS
infrared false color composites in the plate carrée projection.
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The Eurasian test area is mainly comprised of temperate ecosystems, such as evergreen coniferous
forests and deciduous broadleaved forest, but some Mediterranean and boreal ecosystems are also
represented. Most of the grasslands are used for pasture, and a large part of the territory is covered by
cropland (either irrigated or rainfed). In the western part, the landscape is very fragmented and densely
populated with a large number of urban areas.

The South American test area includes the largest contiguous extent of evergreen broadleaved forest,
part of it being regularly flooded. Mangroves are also present along the Eastern coastline, as well as drier
forests and shrublands in the West and the South. Some deforestation patches can be observed where the
forest has been converted into pasture or cropland.

All 300-m MERIS full resolution (FR) data acquired from 2008 to 2012 are used as input for the
classification experiment. This 5-year time series was preprocessed according the LC CCI specifications,
including radiometric calibration, cloud screening, atmospheric correction and accurate navigation.
The consistent outputs of the preprocessing steps allow for compositing the top-of-canopy surface
reflectances over a long period of time. Due to the temporal frequency of MERIS observations, i.e., every
2 to 3 days, the 5-year time series have been composited as a single year with a 7-day compositing
interval. Cloud-free image composites were generated using the mean compositing method [16].

The training dataset is compiled from freely available land cover maps. Two datasets of different
quality and spatial resolutions have been used for testing the generalization of the methods to different
contexts. The Global Land Cover (GLC) 2000 map is used over the Amazon basin. In Eurasia, the 2006
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Corine Land Cover (CLC) map was used for European countries and GLC 2000 was used where CLC
was not available. More recent and higher spatial resolution products (such as the 300-m GlobCover
or the 500-m MODIS maps) have been intentionally ignored. This aims at: (i) avoiding dependency
problems (the GlobCover maps are based on MERIS data, which are also the inputs of this study); and
(ii) making the experimental design more challenging (working with outdated coarse information as the
potential land cover information reference).

The selected maps were resampled to the resolution of the MERIS FR data and translated into the
legend defined for the LC CCI products. This legend has been defined according to the UN Land
Cover Classification System (LCCS) [17] in order to be compatible with previous existing global
products and easily interpreted in terms of plant function types. The LCCS has been designed as
a hierarchical classification. The thematic details of the legend can be adjusted to the amount of
information available to describe each land cover class, whilst following a standardized classification
approach. This standardization allows for a better comparison with other products [18].

Table 1. Short description of the land cover legend used in the study. Regional classes, used
only in the Eurasian region, are written in italics.

Code Short Description

10 Cropland, rainfed
11 Herbaceous rainfed cropland
12 Woody rainfed cropland
20 Cropland, irrigated or post-flooding
30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous) (<50%)
40 Mosaic natural vegetation (tree, shrub, herbaceous) (>50%)/cropland (<50%)
50 Tree cover, broadleaved, evergreen, closed to open (>15%)
60 Tree cover, broadleaved, deciduous, closed to open (>15%)
70 Tree cover, needle-leaved, evergreen, closed to open (>15%)
80 Tree cover, needle-leaved, deciduous, closed to open (>15%)
90 Tree cover, mixed leaf type (broadleaved and needle-leaved)

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
120 Shrubland
130 Grassland
140 Lichens and mosses
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
160 Tree cover, flooded, fresh or brackish water
170 Tree cover, flooded, saline water
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water
190 Urban areas
200 Bare areas
210 Water bodies
220 Permanent snow and ice
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The legend of the LC CCI global map is determined by the level of information that is available
from remote sensing and that is globally consistent with expert knowledge from all continents. The
Level 1 legend includes 22 global classes that are listed in Table 1, as well as the regional classes
for croplands that are used in this study. These two regional classes have been added to distinguish
herbaceous crops (mostly annual, e.g., cereal or potatoes) and shrub/tree crops (mostly perennial, e.g.,
orchards or vineyards).

3. Method

The proposed work-flow consisted of the automated extraction of training samples for global land
cover classification (Figure 2). After a preliminary regional feature selection (Section 3.1), training
samples were locally extracted (Section 3.3) from existing land cover maps. In order to mitigate the
effect of potential errors in those maps, two different methods were compared (Sections 3.4 and 3.5).
Finally, the modified samples were used to train the local classifiers (Section 3.2) and a confidence map
was derived from the classification process (Section 3.6).

Figure 2. Overview of the method, including the two options used to mitigate the errors in
the training datasets (MBRF stands for multiclass border reduction filter).
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3.1. Regional Optimization of the Classification Process

The two test regions contain two of the strata used in the GlobCover classification chain. This chain
was indeed designed to rely on an a priori stratification of the world into 22 equal-reasoning areas from
an ecological and remote sensing point of view [19]. The concept of stratification was used to produce
the Australian national land cover dataset and the USGS tree cover base map of 2000 [20]. The same
classification algorithms are then run independently (i.e., with specific parameters) for each stratum. The
objective of such an approach is twofold: (i) reducing the land surface variability in the dataset in order
to improve the classification accuracy; and (ii) tuning the classification parameters to take into account
the regional characteristics (vegetation seasonality, cloud coverage, etc.).

The 7-day composites resulting from the preprocessing were aggregated into new composites
associated with a longer (seasonal or annual) compositing period. These longer compositing periods, as
well as the spectral bands to use in the classification, are two meta-parameters that were tuned according
to the regions based on the main stratum in the GlobCover classification chain. The LC CCI project
(and, hence, this research) made use of the GlobCover results, while re-adjusting them if necessary. The
compositing period was mainly constrained by the number of valid observations, because of the limited
revisiting capacity of MERIS, pervasive cloud cover and temporary snow cover in Northern Eurasia [21].

The spectral bands were selected according to a separability analysis based on the Jeffreys-Matusita
(JM) distance. Among the 15 MERIS spectral bands, Bands 11 and 15 were excluded from this analysis,
because of their use for the atmospheric corrections (calibration of water vapor and oxygen content). The
performance in terms of class discrimination of all possible combinations of the 13 remaining spectral
bands was calculated by calculating the JM distance. The JM distances obtained for each pair of classes
were then averaged in order to account for a multi-class discrimination [22].

For the Eurasian study area, the best band combination resulting from the separability analysis
included Bands 3 (blue, 490 nm), 5 (green, 560 nm), 8 (red, 681.25 nm) and 12 (near-infrared, 778.75 nm).
Summer and autumn (respectively from 11 June to 3 September and the second from 3 September
to 11 November) composites provided the best separability among classes. These two seasons
indeed capture the phenological changes in croplands and deciduous forests, which should make the
discrimination easier with grasslands and evergreen (coniferous) forests, respectively. In order to keep
a limited number of bands and to avoid highly correlated spectral values, the spectral information was
extracted from the summer composite only, and an additional band was created as the spectral difference
between summer and autumn. This unique band was computed based on the Euclidean distance, in the
feature space, between all spectral values at the two seasons.

In the Amazon basin, the number of valid observations was a major issue, because of the large cloud
cover and the poor coverage capacity of MERIS in this specific region. A 5-year annual composite
combining all the available observations between 2008 and 2012 is therefore needed. The lack of
phenological information (that was provided in the other region by seasonal composites) is not found
to be critical, because the seasonal component is not a major discriminant feature in this region, except
in the Western part. Yet, even over five years, MERIS FR images were missing in some places and were
therefore supplemented by MERIS reduced resolution (RR; approximately 1200 m). Between one and
six MERIS FR observations, a straightforward weighted sum is used to combine MERIS FR and MERIS
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RR surface reflectance composites. The spectral band selection for this region included Bands 5 (green,
560 nm), 6 (orange, 620 nm), 9 (near-infrared, 708.75 nm) and 14 (near-infrared, 885 nm).

3.2. Description of the Classifiers

Supervised classification success depends on the training dataset quality and on the ability of the
classifier to learn from this training dataset. The proposed methods to support the automated selection
of training samples rely on the local extraction of the spectral signatures and on the cleaning of the
training data, either in the spatial or in the spectral domains. The different strategies described hereafter
are systematically applied in both study areas and their respective outputs are validated.

Two different classifiers have been selected: the Gaussian maximum likelihood (GML) and the
support vector machine (SVM). The former is a standard method that aims at minimizing the
classification errors based on Bayes’ theorem of decision-making. The latter is an advanced machine
learning method that seeks the hyperplane with the largest separation margin between the outer points
(called support vector) of two sets of training samples [23].

With the GML, training samples are used to extract the two sets of parameters that define a
multidimensional Gaussian: the mean vector and the covariance matrix. In addition, the class frequency
is used to estimate the a priori probability of each class.

SVM was originally designed as a binary classifier. In order to extend it for multi-class classification,
the one-against-one method was found to be suitable for practical use [24]. After some preliminary tests
with linear, polynomial and radial basis function kernels, the radial basis function kernel was selected.
This kernel requires two parameters to be optimized, namely C (the regularization parameter) and λ
(the kernel parameter). For each tile, a ten-fold cross validation was used to find the optimal value of
these parameters. The optimization used an exhaustive grid search followed by a regular step gradient
descent optimization. Because the input data is made of spectral values, which are in the same range, no
additional normalization has been performed.

3.3. Local Training

Due to the low thematic accuracy (between 60% and 95%, depending on the region of the globe) of
the reference, the training dataset is contaminated by outliers. However, using a very large sample of
pixels (up to 50,000 pixels per class) helps to mitigate the impact of the mislabeled pixels in the training
sample as the confidence on the mean values increases.

However, the spectral signature of each land cover type could vary significantly when considering
areas far away from each other. A single spectral signature is insufficient to encompass the diversity of
land cover conditions in a large region. The training is therefore done locally within a sliding window in
order to adjust to the variability of the land cover classes over large extents. This local training also helps
to manage multiple sub-classes when their occurrence is spatially correlated. For instance, the primary
crops in the Netherlands are different, in their spectral characteristics and timing, from the primary
crops in the South of France. Different training samples should therefore be used for this single class in
different regions.
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The main drawbacks of a localized training are: (i) the increased sensitivity to the quality of the
training dataset; and (ii) the artificial boundaries that could occur along the edges of each tile. There is
also a risk that a land cover is absent from a small region of the classified area. Those issues are mitigated
by including a buffer area around the tile being processed, so that neighboring tiles have an overlapping
training area. However, large buffer zones have less specific training samples.

The parameter of the training process is the size of the window where the samples are selected. In this
study, the classification is performed on a central square tile. A buffer area of the same width as the tile
is added to the tile for defining the training sample extraction window. There is thus an overlap of 66%
between the training area of two adjacent tiles. The width of the central tile and of the corresponding
training area (indicated between parentheses) is set to 200 (600), 300 (900), 400 (1200), 500 (1500),
1000 (3000) and 2000 (6000) pixels.

3.4. Spatial Filtering of the Training Dataset

One method to clean training samples is related to the spatial dimension of the reference land cover
map. The idea is to remove the pixels from the reference map that are located along the boundaries
between two different land cover types. Those pixels are indeed assumed to be more often incorrectly
labeled due to inaccurate geolocation.

Mathematical morphology provides various tools to post-process classification results [25]. Most of
these tools are based on template matching for single-class filters. In this study, there are typically more
than one class to filter and no specific template can be applied to all classes. Furthermore, a classical
erosion filter would remove too many pixels in fragmented landscapes and, hence, could lead to the
absence of the classes that: (i) do not cover a large homogeneous area (for instance, the urban class); or
(ii) present a linear pattern (e.g., rivers or fishbone deforestation patterns).

A new multiclass border reduction filter (MBRF) was thus designed to remove boundary pixels, while
keeping at least one pixel among each group of adjacent pixels. Each class present in the training tile
was therefore maintained after filtering, independently of the landscape fragmentation and of the spatial
patterns of the class.

The MBRF works by keeping the pixels that have the largest number of neighbors of the same class.
It is composed of two passes operating independently of the number of classes. The first pass consists of
counting the number of pixels that belong to the class of the central pixel inside a moving window. The
second pass sets the central pixel to a “No Data” value if it has not reached the largest count of neighbors
amongst the pixels that belong to the same class inside the moving window.

Overall, the MBRF removed 5% less pixels than the classical erosion filter. These 5% belonged to
the classes that are the least frequent or present linear patterns. For instance, the MBRF maintained
twice as much pixels in the urban areas compared with the classical erosion filter. Furthermore, the
spatial distribution of the training pixels was maintained with the MBRF. This is illustrated in Figure 3,
where an exaggerated (four pixels) erosion is applied using both filters. The use of the MBRF filter led
to a small, yet statistically significant (α = 0.05), improvement of one percent of the overall accuracy
compared to the whole reference dataset.
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Figure 3. Results of the erosion filters for an area in Eurasia. The reference (A) shows a
fragmented landscape that was nearly erased by the classical erosion (B), but the diversity of
classes was maintained with the proposed multi-class border reduction filter (C).

(A) (B) (C)

The impact of the morphological filter on the cleaning of the training samples is assessed for window
sizes of 3 × 3, 5 × 5 and 7 × 7 pixels, which correspond to a maximum erosion of up to one, two and
three pixels, respectively. It is worth noting that three MERIS pixels (≈900 m) are the closest match
to the coarsest spatial resolution that is present in the reference dataset (≈1000 m when the source
is GLC 2000).

3.5. Spectral Filtering of the Training Dataset

The second approach for cleaning the training datasets proceeds by excluding outliers from the
distribution of the spectral signatures. The proposed strategy made use of a probabilistic iterative
trimming. This method has already been used in remote sensing for change detection [26,27]. However,
it has rarely been applied for training sample cleaning in this field, which was its initial purpose.

Iterative trimming consists of two iterative steps: (i) estimate the distribution of the spectral values
within the training sample for a given land cover class; and (ii) remove outliers from the sample based
on a constant probability threshold (α). The iteration stops when no more outliers are detected.

The iterative trimming is performed with the same assumption as the GML classifier, i.e., the
normality of the distribution. The outliers are thus removed using a Chi-squared test on the Mahalanobis
distance between the instance and the model distribution. Three values for α have been selected for
the experiment: 0.05, 0.1 and 0.2. These values are larger than the optimal values for change detection,
where the level of false alerts has to remain low. In the case of spectral filtering, the false detection of
outliers does not markedly affect the estimation of the parameters of the distribution.

3.6. Quality Control

A built-in process to prevent the inappropriate use of existing land cover information as the
reference is required in such an automated training sample selection. The a posteriori probability of the
classification (which is a classical output of the maximum likelihood classification algorithm)
is proposed to determine the scope of the automated training sample extraction method.
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Similar per-pixel confidence maps are also derived for other classifiers [28]. Low
a posteriori probabilities are expected in areas of low consistency between the reference
map and the spectral signature distributions. These low values can indicate either that the
reference map poorly represents the current land cover or that the classifier cannot discriminate
between classes based on the input dataset. This probability allows for the unreliably classified
pixels to be masked out and left explicitly undetermined. In this study, the overall accuracy was computed
for different levels of a posteriori probability to assess their impact on the confidence in the land
cover classification.

4. Validation

Two datasets were used for the validation of the classification outputs. Those datasets were
based on random point-based sampling and were independent of the reference dataset used for the
training of the classifiers.

Over the South American region, the validation dataset was a subset of a global validation dataset
collected by regional experts in the framework of the GlobCover initiative [29]. Those regional experts
visually photo-interpreted the sample points, based on a very high resolution image, NDVI annual
profiles and their knowledge of the area. For each interpretation, the experts were asked to indicate
their level of certainty. Only the points flagged as certain were used in this paper. This dataset is thus
highly reliable, but limited to a set of 149 points.

Over Eurasia, the validation dataset is made of a simple random sample of points that were
visually interpreted by the authors using the “Bing Map” web service. In total, a set of 700 points was
photo-interpreted, from which 43 points have been discarded, because of ambiguity about their actual
land cover class (low spatial resolution of the available imagery, remaining clouds or the absence of
agreement between the authors).

For each output, the overall accuracy value was computed, estimating the proportion of correctly
classified pixels. In addition, an “adjusted accuracy measure” was computed, which tolerates errors with
little impact on the description of the landscape [30]. Indeed, due to the high fragmentation level in
the area and the discrete nature of the classes defined using LCCS, the boundary between adjacent
classes is not always obvious. Typically, these minor errors include confusion between classes that are
semantically close. This is the case for the confusion between Classes 30 and 40, which only differ from
a cropland dominance point of view (more than 50% cropland in Class 30 and less than 50% in Class 40).
The same reasoning can be applied to Classes 100 and 110, which describe combinations of vegetation
types with a dominance of either woody or herbaceous vegetation. The other “minor” errors include
confusion between mosaic classes and their “pure” dominant component: Classes 10/30, 30/40, 40/60,
40/70, 40/90, 100/90, 100/70, 100/60, 100/110 and 110/130. Confusion between “mixed forests” and
“pure forests” were also considered as minor errors: classes 60/90, 70/90. The definition of each class
was given in Table 1.

In addition to the quantitative accuracy assessment, a systematic quality control was also
recommended to detect macroscopic errors [31] and build confidence in the results. This qualitative
validation was based on a systematic descriptive protocol, in which each part of the map was visually
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examined and its accuracy documented in terms of type of error, landscape pattern, discrepancy between
input images and classification results, etc. Macroscopic errors may indeed have little impact on the
confusion matrix, but significantly decrease the overall acceptance of a land cover product by users.
We focused on omissions of small, yet important, landscape structures (water bodies, urban areas,
deforestation patterns, etc.) and the presence of visual artifacts.

5. Results

5.1. Eurasia

In Eurasia, the overall accuracy of the GML was significantly higher than that of the SVM.
However, the quantitative difference is quite small, and visual inspection showed two very similar results
(Figure 4).

Figure 4. Classification results with (A) SVM and (B) Gaussian maximum likelihood in
Western Europe. The Globcover 2009 product is provided for comparison on the right.
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A set of 42 classification results corresponding to six sizes of local windows for the training, three
α values for the iterative trimming, three different window sizes for the MBRF and a control without
self-cleaning have been obtained, validated and visually checked. These results are only shown for the
GML classifier, because of their higher overall accuracy.

The results of the Eurasian test area (Tables 2 and 3) show a significant improvement in the overall
accuracies compared with thematic data used as a training reference. The overall accuracy of the GML
classification results is indeed between 2.4% and 5.8% better than the overall accuracy of the reference
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dataset (65.2%). For the adjusted accuracy, the classification results are on average 2.5% better. These
two differences are statistically significant with a confidence level of 99%.

Table 2. Overall accuracy values (n = 657) for the Eurasian region according to the
automated sample selection methods.

200 300 400 500 1000 2000

Control 69.3 69.5 70.0 69.5 68.0 67.6
MBRF 3 × 3 71.0 70.4 70.9 70.3 69.7 69.2
MBRF 5 × 5 70.3 70.7 70.6 70.1 69.8 69.2
MBRF 7 × 7 68.9 70.1 70.0 69.8 69.5 68.6

Trimming 0.05 69.3 69.5 69.8 69.8 68.6 67.5
Trimming 0.10 68.7 68.7 69.3 68.9 68.4 67.8
Trimming 0.20 69.2 69.3 69.7 69.2 68.1 67.6

Table 3. Adjusted accuracy values (n = 657) for the Eurasian region according to the
automated sample selection methods.

200 300 400 500 1000 2000

Control 81.6 80.9 82.3 81.2 79.4 78.6
MBRF 3 × 3 82.3 81.4 82.6 82.2 80.3 80.3
MBRF 5 × 5 81.4 81.2 82.8 82.0 80.8 80.2
MBRF 7 × 7 80.9 81.4 82.3 81.4 80.9 79.9

Trimming 0.05 81.6 81.1 82.2 80.8 79.9 78.5
Trimming 0.10 80.9 80.9 81.2 80.9 79.4 78.6
Trimming 0.20 81.4 80.9 81.9 80.9 79.4 78.6

Compared with other global products, the resulting map is also better in the study area. Due to the
different thematic precision of the products, only the adjusted overall accuracy was relevant. However,
these results should still be considered with care because of the matching between the legends. The
adjusted overall accuracy of the MODIS product in this study area was 69.1% using the same validation
protocol after legend translation. This is mainly due to a poor distinction between croplands and pastures,
which represent approximately 80% of the errors. In the case of the GlobCover 2009 product, the adjusted
overall accuracy was 62.3%. The main confusion was between grassland and sparse vegetation, and more
than 50% of the errors occurred with the mosaic classes.

As expected, the agreement between the training dataset and the classification results decreases when
the size of the classification tiles increases. There is indeed a drop of 2% of agreement between the
classifications with central tiles of 200-by-200 pixels and compared with those with central tiles of
2000 pixels. However, the quantitative assessment of the classification results using the independent
dataset shows that the optimal window size for the training is around 1200 pixels (tiles of 400 pixels).
This window size indeed turns out to be the best for all methods in terms of adjusted accuracy and in
all, but two, cases for the overall accuracy. Qualitatively, artificial boundaries between tiles are better
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reduced with this window size, while they are visible for smaller and larger windows. Furthermore,
400-by-400-pixel tiles seem to provide the best compromise between keeping locally important features,
such as cities, and adjusting to land cover changes based on information from outside the area
that is classified.

Concerning the self-cleaning strategy, MBRF performs better than trimming for the small tiles, even
if trimming is interesting in the case of outdated reference data. A combination of the best spatial
and spectral filters achieved the same thematic accuracy as the best MBRF. In any case, the overall
accuracy decreases when the size of the MBRF increases, but using 3-by-3 or 5-by-5 MBRF improved
the classification results compared with the original reference dataset. On the other hand, there is no
clear trend due to the change in the trimming parameter in the Eurasia test area. The removal of outliers
seems to have a limited impact on the estimation of the distribution parameters of the spectral values
within each class.

Despite the small differences in overall accuracies, some important macroscopic changes can be
highlighted in Eurasia (Figure 5). Obviously, the spatial resolution of some classes has been improved
in the areas where GLC 2000 is used as a reference. Furthermore, the city, mislocated in the reference,
is correctly located in the classification results.

Figure 5. Qualitative difference, in the Eurasian region, between the classification result with
a tile of 400 pixels (A) and the original reference data (GLC 2000) (B). An orthophoto (C)
(from ESRI online imagery, 2012) is shown for comparison.
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More importantly, the overall accuracy is strongly and positively correlated with the a posteriori
probability, as shown in Figure 6. These probabilities appear to be a good indicator of the classification
reliability. By thresholding this probability, the most reliable classification results can be selected
and the others discarded. In the Eurasian test area, for instance, the overall accuracy of the pixels
with a membership probability above 0.6 reaches 85.6%, which is significantly better than the widely
accepted 80% target [32] with a 95% confidence level. In terms of coverage, these pixels represent
about 70% of the Eurasian region, which is similar to the proportion of the map above 60% confidence
in a comparable study in South America [33]. The areas of low probability, colored in grey in Figure 7,
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should then be processed with alternative classification methods. These are the limits of applicability of
the proposed method of automated training sample selection.

Figure 6. Overall accuracies for the Eurasian test area as a function of the a posteriori
probability with a tile of 400 pixels. The proportion of the map covered by each interval
is 8%, 22%, 26% and 44% for [0.2,0.4], [0.4,0.6], [0.6,0.8] and [0.8,1] respectively.
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The qualitative analysis of the impact of the tile size on the classification results also reveals
macroscopic errors that are not highlighted by the overall accuracy. The three main issues are illustrated
in Figure 7.

• The first example (in black) illustrates a macroscopic change in the landscape due to a natural
hazard. The needle-leaved forest in the Western region of the subset was indeed devastated by fire
and replaced with broadleaved forest after the reference dataset was completed. This change is
not captured by the small training sample window, which, therefore, simply copied the reference
inside the forest class.

• The second subset (in red) illustrates the need of very local training samples to capture the
variability of some land cover classes. The urban areas are the best examples of such variability,
as they are composed of a mixture of dense and sparse urban areas together with vegetation.
Schneider et al. [34] used “urban ecoregions” to stratify the classification, but the results of the
present study suggest that even more local training sets are necessary.

• The third case (in green) highlights the presence of artificial boundaries between adjacent
processing tiles in classification outputs. As already mentioned, tile boundaries are less present
with the 400 tiles than with smaller or larger tiles. These tile features appear where the training
samples do not provide enough class separation for the classification, either due to erroneous
training data or non-informative spectral data in the images. The artificial tile limits (corresponding
to tile boundaries) occurred in areas of low a posteriori probability and could be discarded by
applying the a posteriori probability threshold to screen out poor classification outputs.
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Figure 7. Classification results in Eurasia illustrate three typical issues of the proposed
method. (A) In the black frame, a large change of forest type is not captured when using
small tiles; (B) in the red frame, large tiles are unable to capture small cities; (C) in the
green frame, residual artificial boundaries are visible between two tiles. The grey pixels in
the overall view are uncertain based on the a posteriori probability.
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5.2. South America

In South America, the overall accuracy of the SVM was one percent lower than for the GML, but
this difference was not statistically significant. However, the GML classification outperformed the SVM
classification in terms of macroscopic errors. The SVM failed to detect deforested areas when they were
under-represented in the training dataset, as shown in Figure 8.

Figure 8. Classification results with (A) SVM and (B) GML in an area of the Amazon
deforested between 2000 and 2010. The (C) training dataset (Global Land Cover (GLC)
2000) and the (D) Globcover 2009 products are provided for comparison.
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Based on the 149 points photo-interpreted by local experts, the best methods are the trimming with
α = 0.05 or 0.1 and the 3-by-3 MBRF. The size of the classification tile has also an impact on the
classification results, and the best quantitative results are achieved with a tile size of 400 pixels. The
combination between a tile size of 400 pixels and each of the three best methods for sample cleaning
achieved an overall accuracy of 91.9%. The differences between the training sample selection methods
are however not statistically significant at a confidence level of 90%, but this is probably due to the small
sample size. Compared with the overall accuracy of the training dataset (89.2%), the best classification
results are significantly higher at a 90% confidence level.

The detection of new patterns of deforestation is found to be accurate. Indeed, 10 out of 10 randomly
located points that fell in an area labeled as forest in the reference, but actually deforested in the
classification results, were correctly classified as crop. Figure 8 shows that the deforestation, often
missing in the reference due to its coarser spatial resolution and the older date, is precisely delineated by
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the automated classification. The detection of rivers has also been improved thanks to the better spatial
resolution of MERIS data.

6. Discussion

This study shows that the automation of the training sample extraction allows capitalizing on the
available land cover information. On the one hand, in the two case studies, the thematic accuracy of
the new maps is higher than the original reference datasets used for training. On the other hand, the
main issue of the proposed approach is its sensitivity to systematic errors in the training dataset. The
results showed that this issue can be partly detected based on the low a posteriori probabilities of the
classification (which is characteristic of uncertain areas).

The lower quality of the SVM-based results compared with the GML was unexpected, because SVM
was found as the most accurate classifier in previous comparative studies [35,36]. However, this can be
explained by a combination of unfavorable conditions for the SVM and favorable ones for the GML. On
the one hand, there is indeed a large number of classes (22) for an SVM that is originally designed for
two-class problems. In addition, SVM is based on extreme values to define its support vectors. Mixed
pixels on the edge of the distribution therefore provide useful information [37], but large error rates in
the training datasets affect both the learning and the optimization process, even with the soft margin
used in this study. On the other hand, the GML could rely on good estimates of the a priori probability
of each class, which are not directly available for samples of existing signatures. GML could also take
advantage of the large number of training samples to increase the confidence on the parameters of the
Gaussian distributions. Finally, the preliminary feature selection is advantageous for GML, knowing that
SVM could have managed a larger feature space.

The results show that local training data and a priori probability extraction increase the performance
of the maximum likelihood classification over large areas. The same set of parameters has been identified
as the best choice for the two contrasting study areas with different training sample precisions and
landscape complexities. Because it was also approximatively 20 times faster than SVM training, the local
training method with GML was selected to be applied at the global scale. The results were encouraging,
but a complementary classification approach still needed to be combined with this first land cover output
in the case of low a posteriori probability, in order to improve the overall accuracy. The final product will
be freely distributed in the frame of the ESA LC CCI project, after validation by international experts.

The relatively small tile size of the best training configuration highlights the need for locally relevant
training samples. Such a need had already been pointed out in previous studies, but rarely at such a small
scale factor. These results confirm that the collection of training samples remains a major challenge,
especially for global applications, and that the location of these samples is an important factor to take
into account during the classification process.

The tile-based processing yields artificial boundaries in areas of low consistency, especially between
classes that are distinguished by a single gradient. In a production phase, this problem can be mitigated by
increasing the overlap between adjacent tiles, for instance by reducing the size of the tile, but keeping the
same area for the training sample selection (Figure 9). However, removing artificial tile boundaries does
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not solve the spatial consistency problem that is the original source of the artifacts. A combination with
other methods therefore remains necessary in those areas in order to achieve higher thematic accuracy.

Figure 9. Detail, in the south of the South American region, of the classification results with
training area of 1200 × 1200 pixels. Increasing the overlaps between successive windows
removed the tiling artifacts. Processing tiles of 400 pixels (66% of overlap) are on top and
processing tiles of 40 pixels (97% of overlap) at the bottom.
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7. Conclusions

The aim of this study was to evaluate the potential use of training dataset extraction methods from an
existing database for global land cover mapping. It showed that the quality of the classification results
based on local training set selection and self-cleaning could automatically yield a more accurate map
than the original reference dataset and higher thematic accuracy than other global land cover products.
The results also suggest that the same set of parameters could be applied globally for optimal results.

Further work is necessary to identify the best add-in methods in regions where the use of existing LC
map is not appropriate. The geographic scope of the proposed automated approach is indeed determined
by its built-in quality control, which detects largely inconsistent areas between the existing land cover
maps and the remote sensing time series.
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