Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV/KAP Data Acquisition
2.3. Dune Movement from UAV Data
2.3.1. Datasets Created to Assess Dune Movements
2.3.2. Erosion and Deposition Decision Tree
2.4. Image Classification for Invasive/Native Species
2.4.1. Supervised Classification
2.4.2. Feature Extraction
3. Results
3.1. Dune Movement Estimates
3.2. Erosion and Deposition Classification
3.3. Invasive Species Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shanmugam, S.; Lucas, N.; Phipps, P.; Richards, A.; Barnsley, M. Assessment of Remote Sensing Techniques for Habitat Mapping in Coastal Dune Ecosystems. J. Coast. Res. 2003, 19, 64–75. [Google Scholar]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Madurapperuma, B.; Close, P.; Fleming, S.; Collin, M.; Thuresson, K.; Lamping, J.; Dellysse, J.; Cortenbach, J. Habitat mapping of Ma-le’l Dunes coupling with UAV and NAIP imagery. Proceedings 2018, 2, 368. [Google Scholar] [CrossRef] [Green Version]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Pagán, J.I.; Bañón, L.; López, I.; Bañón, C.; Aragonés, L. Monitoring the dune-beach system of Guardamar del Segura (Spain) using UAV, SfM and GIS techniques. Sci. Total Environ. 2019, 687, 1034–1045. [Google Scholar] [CrossRef]
- De Giglio, M.; Greggio, N.; Goffo, F.; Merloni, N.; Dubbini, M.; Barbarella, M. Comparison of Pixel-and Object-Based Classification Methods of Unmanned Aerial Vehicle Data Applied to Coastal Dune Vegetation Communities: Casal Borsetti Case Study. Remote Sens. 2019, 11, 1416. [Google Scholar] [CrossRef] [Green Version]
- Madurapperuma, B.D.; Dellysse, J.E. Coastal fringe habitat monitoring using Kite Aerial Photography: A Remote Sensing-based case study. J. Trop. For. Environ. 2018, 8. [Google Scholar] [CrossRef]
- Archibald, D. The Story of the Earth’s Atmosphere, 3rd ed.; George Newnes Ltd.: London, UK, 1897; p. 174. [Google Scholar]
- Madurapperuma, B.; Barger, J.; Collin, M.; Emerson, C.; Fleming, S.; Murphy, B.A. Geospatial recipe for identifying social values and fragmentation issues of the Friends of the Dunes Land Trust. Humboldt. J. Soc. Relat. 2019, 1, 8–21. [Google Scholar]
- Friends of the Dunes. Coastal Development PERMIT application Notice. 2015. Available online: http://www.friendsofthedunes.org/nature-center/FOD_CDP_Application_5_19_15%20WEB.pdf (accessed on 25 October 2018).
- Marion, J.L.; Leung, Y.-F.; Nepal, S.K. Monitoring trail conditions: New methodological considerations. George Wright Forum 2006, 23, 36–49. [Google Scholar]
- Lamping, J.; Murphy, B.; McFarland, J.; Porteous, Z.; Smith, C.; Monroe, S.; Kennedy, J.; MacAdam, S.; Bueche, S.; Becker, R.; et al. UAV photogrammetry for surveying dune habitats: A review of research needs of the Friends of the Dunes Land Trust. In Proceedings of the INRSEP/CNRS UG Scientific Research Symposium, Arcata, CA, USA, 28 September 2018. [Google Scholar]
- Del Vecchio, S.; Prisco, I.; Acosta, A.T.; Stanisci, A. Changes in plant species composition of coastal dune habitats over a 20-year period. AoB Plants 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Leung, Y.; Newburger, T.; Jones, M.; Kuhn, B.; Woiderski, B. Developing a Monitoring Protocol for Visitor-Created Informal Trails in Yosemite National Park, USA. Environ. Manag. 2010, 47, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Casasola, P. Sand Movement as a Factor in the Distribution of Plant Communities in a Coastal Dune System. Vegetation 1986, 65, 67–76. [Google Scholar] [CrossRef]
- Sloss, C.R.; Shepherd, M.; Hesp, P. Coastal Dunes: Geomorphology. Nat. Educ. Knowl. 2012, 3, 2. [Google Scholar]
- Effat, H.A.; Hegazy, M.; Behr, F.J. Cartographic modelling of potential sand dunes movement risk using remote sensing and geographic information systems in Sinai, Egypt. In Applied Geoinformatics for Society and Environment, I, 2nd ed.; Stuttgart University of Applied Sciences: Karlsruhe, Germany, 2012; pp. 139–148. [Google Scholar]
- Hesp, P.A.; Davidson-Arnott, R.; Walker, I.J.; Ollerhead, J. Flow dynamics over a Foredune at Prince Edward Island, Canada. Geomorphology 2005, 65, 71–84. [Google Scholar] [CrossRef]
- Friends of the Dunes. Public Access Trail Plan for the Friends of the Dunes; Humboldt Coastal Nature Center, Friends of the Dunes: Arcata, CA, USA, 2010; pp. 1–32. [Google Scholar]
- Leppig, G.; Pickart, A. Vascular Plants of Humboldt Bay’s Dunes and Wetlands; U.S Fish and Wildlife Service and California Department of Fish Game, 2014; pp. 1–24. Available online: www.fws.gov/refuge/humboldt_bay/ (accessed on 21 March 2020).
- Pickart, A. Site Summary and Preserve Design, Lanphere-Christensen Dunes Preserve, the Nature Conservancy; On file at the Lanphere Unit of the USFWS Humboldt Bay Wildlife Refuge; Friends of the Dunes: Arcata, CA, USA, 1987; 29p. [Google Scholar]
- Bryson, M.; Duce, S.; Harris, D.; Webster, J.M.; Thompson, A.; Vila-Concejo, A.; Williams, S.B. Geomorphic changes of a coral shingle cay measured using kite aerial photography. Geomorphology 2016, 270, 1–8. [Google Scholar] [CrossRef]
- Ghadiry, M.; Shalaby, A.; Koch, B. A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt. Egypt. J. Remote Sens. Space Sci. 2012, 15, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Al-Hashemi, H.M.B.; Al-Amoudi, O.S.B. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397–417. [Google Scholar] [CrossRef]
- Srinivasan, G.N.; Shobha, G. Statistical texture analysis. Proc. World Acad. Sci. Eng. 2008, 36, 1264–1269. [Google Scholar]
- Delalieux, S.; Somers, B.; Haest, B.; Spanhove, T.; Vanden Borre, J.; Mücher, C.A.; Vanden Borre, J.; Mücher, C.A. Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers. Remote Sens. Environ. 2012, 126, 222–231. [Google Scholar] [CrossRef]
- Marzialetti, F.; Giulio, S.; Malavasi, M.; Sperandii, M.G.; Acosta, A.T.R.; Carranza, M.L. Capturing coastal dune natural vegetation types using a phenology-based mapping approach: The potential of Sentinel-2. Remote Sens. 2019, 11, 1506. [Google Scholar] [CrossRef] [Green Version]
- Mücher, C.A.; Kooistra, L.; Vermeulen, M.; Vanden Borre, J.; Haest, B.; Haveman, R. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol. Indic. 2013, 33, 71–81. [Google Scholar] [CrossRef]
- Mbolambi, C. Assessment of Coastal Vegetation Degradation Using Remote Sensing in False Bay, South Africa. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Xia, J.; Dong, P. A GIS add-in for automated measurement of sand dune migration using LiDAR-derived multitemporal and high-resolution digital elevation models. Geosphere 2016, 12, 1316–1322. [Google Scholar] [CrossRef]
- Ayoub, F.; Bridges, N.T.; Avouac, J.P.; Leprince, S.; Lucas, A. Measuring sand flux and its seasonality from a time series of HiRISE images. In Proceedings of the Third International Planetary Dunes Workshop: Remote Sensing and Data Analysis of Planetary Dunes, Flagstaff, AZ, USA, 12–15 June 2012; Volume 1673, pp. 1–2. [Google Scholar]
- Moloney, J.G.; Hilton, M.J.; Sirguey, P.; Simons-Smith, T. Coastal Dune Surveying Using a Low-Cost Remotely Piloted Aerial System (RPAS). J. Coast. Res. 2018, 34, 1244–1255. [Google Scholar] [CrossRef]
- Łabuz, T.A. Coastal dunes: Changes of their perception and environmental management. In Environmental Management and Governance; Springer: Cham, Switzerland, 2015; pp. 323–410. [Google Scholar]
- Mitasova, H.; Overton, M.; Harmon, R.S. Geospatial analysis of a coastal sand dune field evolution: Jockeys Ridge, North Carolina. Geomorphology 2005, 72, 204–221. [Google Scholar] [CrossRef]
- Mull, J.; Ruggiero, P. Estimating storm-induced dune erosion and overtopping along U.S. West Coast Beaches. J. Coast. Res. 2014, 30, 1173–1187. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Madurapperuma, B.D.; Dellysse, J.E.; Zahir, I.L.M.; Aathamlebbe, I. Mapping shoreline vulnerabilities using kite aerial photographs at Oluvil Harbour in Ampara. In Proceedings of the 7th International Conference of South Eastern University of Sri Lanka, Oluvil, Sri Lanka, 7–8 December 2017; pp. 197–204. [Google Scholar]
Map Layer | Area m2 | Std. dev. (m) | Mean Elevation Change (m) |
---|---|---|---|
Erosion | 11,962 | 0.52 | 0.55 |
Deposition | 18,333 | 0.60 | 0.97 |
Image | No. of Random Points | Correctly Identified | Percent Accurate |
---|---|---|---|
NIR/RGB composite image | 130 | 75 | 58% |
Only using RGB image | 160 | 86 | 54% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madurapperuma, B.; Lamping, J.; McDermott, M.; Murphy, B.; McFarland, J.; Deyoung, K.; Smith, C.; MacAdam, S.; Monroe, S.; Corro, L.; et al. Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote Sens. 2020, 12, 1536. https://doi.org/10.3390/rs12101536
Madurapperuma B, Lamping J, McDermott M, Murphy B, McFarland J, Deyoung K, Smith C, MacAdam S, Monroe S, Corro L, et al. Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote Sensing. 2020; 12(10):1536. https://doi.org/10.3390/rs12101536
Chicago/Turabian StyleMadurapperuma, Buddhika, James Lamping, Michael McDermott, Brian Murphy, Jeremy McFarland, Kristy Deyoung, Colleen Smith, Sam MacAdam, Sierra Monroe, Lucila Corro, and et al. 2020. "Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species" Remote Sensing 12, no. 10: 1536. https://doi.org/10.3390/rs12101536
APA StyleMadurapperuma, B., Lamping, J., McDermott, M., Murphy, B., McFarland, J., Deyoung, K., Smith, C., MacAdam, S., Monroe, S., Corro, L., Magstadt, S., Dellysse, J., & Mitchell, S. (2020). Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote Sensing, 12(10), 1536. https://doi.org/10.3390/rs12101536