Effect of the ICT Ecosystem Structure on the Sustainable Growth of ICT Firms: A Metafrontier Analysis on China, South Korea, the United States, and Japan
Abstract
:1. Introduction
2. Methodology
2.1. Measuring Efficiency
2.1.1. Stochastic Frontier Analysis (SFA)
2.2.2. Metafrontier Analysis (MFA)
2.2. Identifying the Link between the ICT Ecosystem Structure and Firm Efficiency
3. Data
4. Results
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Hagedoorn, J.; Duysters, G. External sources of innovative capabilities: The preference for strategic alliances or mergers and acquisition. J. Manag. Stud. 2002, 39, 168–188. [Google Scholar] [CrossRef]
- Arlandis, A.; Ciriani, S. How firms interact and perform in the ICT ecosystem? Commun. Strateg. 2010, 79, 121–141. [Google Scholar]
- Fransman, M. Innovation in the New ICT Ecosystem. Commun. Strateg. 2007, 68, 89–110. [Google Scholar]
- Fransman, M. The New ICT Ecosystem: Implications for Policy and Regulation; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kaplan, J.A. Roadmap for Open ICT Ecosystems; Berkman Center for Inetrnet and Society at Harvard School: Cambridge, MA, USA, 2005. [Google Scholar]
- Bauer, J.M. Bundling, Differentiation, Alliances and Mergers: Convergence Strategies in U.S. Communication Markets. Commun. Strateg. 2005, 60, 59–83. [Google Scholar]
- ThomsonONE Database. Available online: http://www.thomsonone.com (accessed on 10 May 2016).
- Barua, A.; Brockett, P.L.; Cooper, W.W.; Deng, H.; Parker, B.R.; Ruefli, T.W.; Whinston, A. DEA evaluations of long-and short-run efficiencies of digital vs. physical product “dot com” companies. Soc.-Econ. Plan. Sci. 2004, 38, 233–253. [Google Scholar] [CrossRef]
- Giokas, D.I.; Pentzaropoulos, G.C. Efficiency ranking of the OECD member states in the area of telecommunications: A composite AHP/DEA study. Telecommun. Policy 2008, 32, 672–685. [Google Scholar] [CrossRef]
- Ho, C.B. Measuring dot com efficiency using a combined DEA and GRA approach. J. Oper. Res. Soc. 2010, 62, 776–783. [Google Scholar]
- Li, K.; Lin, B. Measuring green productivity growth of Chinese industrial sectors during 1998–2011. China Econ. Rev. 2015, 36, 279–295. [Google Scholar] [CrossRef]
- Serrano-Cinca, C.; Fuertes-Callin, Y.; Mar-Molinero, C. Measuring DEA efficiency in internet companies. Decis. Support Syst. 2005, 38, 557–573. [Google Scholar] [CrossRef]
- Thompson, H.G., Jr.; Garbacz, C. Mobile, fixed line and Internet service effects on global productive efficiency. Inform. Econ. Policy 2007, 19, 189–214. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.; Hwang, J. Measuring the Efficiency of Standardisation Policy Using Meta-Frontier Analysis: A Case of Mobile Platform Standardisation. Int. J. Mobile Commun. 2016, 14, 79–98. [Google Scholar] [CrossRef]
- Lee, C.; Lee, D.; Hwang, J. Platform openness and the productivity of content providers: A meta-frontier analysis. Telecommun. Policy 2015, 39, 553–562. [Google Scholar] [CrossRef]
- Lee, D.; Hwang, J. Network neutrality and difference in efficiency among Internet application service providers: A meta-frontier analysis. Telecommun. Policy 2011, 35, 764–772. [Google Scholar] [CrossRef]
- Yang, A.; Lee, D.; Hwang, J.; Shin, J. The influence of regulations on the efficiency of telecommunications operators: A meta-frontier analysis. Telecommun. Policy 2013, 37, 1071–1082. [Google Scholar] [CrossRef]
- Battesse, G.E.; Rao, D.S.P. Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2002, 1, 87–93. [Google Scholar]
- Battesse, G.E.; Rao, D.S.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Vogel, S.K. Japan’s Information Technology Challenge. In The Third Globalization: Can Wealthy Nations Stay Rich in the Twenty-First Century? Breznitz, D., Zysman, J., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 350–372. [Google Scholar]
- Lee, C.; Chan-Olmsted, S.M. Competitive advantage of broadband Internet: a comparative study between South Korea and the United States. Telecommun. Policy 2004, 28, 649–677. [Google Scholar] [CrossRef]
- OECD. OECD Digital Economy Outlook 2015; OECD: Paris, France, 2015. [Google Scholar]
- Ferreira, N.B.; Oliveira, M.M. Portfolio efficiency analysis with SFA: The case of PSI-20 companies. Appl. Econ. 2016, 48, 1–6. [Google Scholar] [CrossRef]
- Janang, J.T.; Suhaimi, R.; Salamudin, N. Technical efficiency estimation of government linked companies in Malaysia. J. Modern Account. Audit. 2011, 7, 555–564. [Google Scholar]
- Stiakakis, E.; Sifaleras, A. Combining the priority rankings of DEA and AHP methodologies: A case study on an ICT industry. Int. J. Data Anal. Tech. Strateg. 2013, 5, 101–114. [Google Scholar] [CrossRef]
- Tsai, H.C.; Chen, C.M.; Tzeng, G.H. The comparative productivity efficiency for global telecoms. Int. J. Prod. Econ. 2006, 103, 509–526. [Google Scholar] [CrossRef]
- Reynolds, D.; Biel, D. Incorporating satisfaction measures into a restaurant productivity index. Hosp. Manag. 2007, 26, 351–361. [Google Scholar] [CrossRef]
- De Vries, G.J.; Koetter, M. ICT Adoption and Heterogeneity in Production Technologies: Evidence for Chilean Retailers. Oxf. Bull. Econ. Stat. 2011, 73, 539–555. [Google Scholar] [CrossRef]
- Karabarbounis, L.; Neiman, B. The Global Decline of the Labor Share. Quart. J. Econ. 2014, 129, 61–103. [Google Scholar] [CrossRef]
Variable (Unit) | South Korea | China | US | Japan | |
---|---|---|---|---|---|
Net sales (USD Millions) | Mean | 1124.396 | 594.383 | 1877.467 | 1609.621 |
std. dev. | 8899.146 | 2936.219 | 9263.516 | 8645.458 | |
Max | 216,698.431 | 53,120.139 | 182,795.000 | 127,679.229 | |
Min | 0.321 | 0.010 | 0.001 | 0.004 | |
Median | 55.883 | 89.384 | 102.143 | 113.108 | |
Capital (K) (USD Millions) | Mean | 1109.834 | 883.235 | 3334.627 | 1973.734 |
std. dev. | 8209.110 | 4964.031 | 16,582.400 | 12,260.308 | |
Max | 209,637.409 | 90,469.703 | 292,829.000 | 237,277.973 | |
Min | 2.727 | 0.002 | 0.001 | 0.062 | |
Median | 66.556 | 181.898 | 135.958 | 106.120 | |
Labor (L) (persons) | Mean | 1045.742 | 4933.722 | 5880.108 | 5031.013 |
std. dev. | 5878.119 | 20,232.424 | 25,034.968 | 24,657.301 | |
Max | 101,970.000 | 314,541.000 | 434,246.000 | 361,796.000 | |
Min | 2.000 | 2.000 | 1.000 | 1.000 | |
Median | 168.000 | 1162.000 | 408.000 | 504.000 | |
Cost (M) (USD Millions) | Mean | 780.936 | 414.536 | 995.690 | 1064.218 |
std. dev. | 6167.136 | 1914.335 | 5144.182 | 5673.457 | |
Max | 130,474.555 | 39,735.625 | 112,258.000 | 92,047.101 | |
Min | 0.002 | 0.001 | 0.001 | 0.013 | |
Median | 42.369 | 58.943 | 50.372 | 77.997 | |
Observation (# of firms × time) | 1212 × 15 | 406 × 15 | 579 × 15 | 511 × 15 |
Parameter | South Korea | China | U.S. | Japan | Metafrontier | |||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate | S.E. | Estimate | S.E. | Estimate | S.E. | Estimate | S.E. | LP | QP | |
Constant | 3.802 *** | 0.459 | 5.952 *** | 0.678 | 9.298 *** | 0.353 | 9.595 *** | 0.446 | 9.594 | 9.595 |
lnx1 | 0.006 | 0.082 | 0.667 *** | 0.108 | 0.374 *** | 0.048 | 0.849 *** | 0.063 | 0.374 | 0.326 |
lnx2 | 0.386 *** | 0.046 | 0.352 *** | 0.094 | 1.008 *** | 0.063 | 0.613 *** | 0.064 | 0.888 | 0.887 |
lnx3 | 0.528 *** | 0.064 | −0.349 *** | 0.071 | −0.540 *** | 0.042 | −0.997 *** | 0.063 | −0.530 | −0.487 |
(lnx1)2 | 0.089 *** | 0.005 | 0.009 | 0.006 | 0.012 *** | 0.002 | 0.052 *** | 0.004 | 0.114 | 0.093 |
(lnx2)2 | 0.012 *** | 0.002 | 0.018 *** | 0.004 | 0.025*** | 0.003 | 0.009 *** | 0.003 | 0.036 | 0.048 |
(lnx3)2 | 0.122 *** | 0.002 | 0.104 *** | 0.003 | 0.077*** | 0.002 | 0.151 *** | 0.003 | 0.192 | 0.161 |
lnx1 × lnx2 | 0.093 *** | 0.005 | 0.119 *** | 0.008 | 0.064*** | 0.005 | 0.090 *** | 0.005 | 0.086 | 0.065 |
lnx2 × lnx3 | −0.119 *** | 0.005 | −0.152 *** | 0.006 | −0.130*** | 0.004 | −0.129 *** | 0.006 | −0.154 | −0.142 |
lnx3 × lnx1 | −0.196 *** | 0.005 | −0.089 *** | 0.007 | −0.050 *** | 0.003 | −0.167 *** | 0.006 | −0.267 | −0.213 |
Group | Mean | St. dev. | Minimum | Maximum | ||||
---|---|---|---|---|---|---|---|---|
TE | ||||||||
S. Korea | 0.851 | 0.105 | 0.394 | 0.980 | ||||
China | 0.810 | 0.132 | 0.133 | 0.960 | ||||
US | 0.721 | 0.189 | 0.001 | 0.965 | ||||
Japan | 0.891 | 0.069 | 0.451 | 0.965 | ||||
TGR | LP | QP | LP | QP | LP | QP | LP | QP |
S. Korea | 0.673 | 0.631 | 0.011 | 0.008 | 0.654 | 0.619 | 0.686 | 0.686 |
China | 0.515 | 0.503 | 0.016 | 0.015 | 0.488 | 0.482 | 0.550 | 0.550 |
US | 0.830 | 0.795 | 0.009 | 0.009 | 0.817 | 0.782 | 0.845 | 0.845 |
Japan | 0.744 | 0.707 | 0.004 | 0.003 | 0.739 | 0.704 | 0.749 | 0.749 |
TE* | LP | QP | LP | QP | LP | QP | LP | QP |
S. Korea | 0.572 | 0.537 | 0.010 | 0.006 | 0.556 | 0.526 | 0.584 | 0.549 |
China | 0.417 | 0.408 | 0.013 | 0.012 | 395 | 0.390 | 0.446 | 0.435 |
US | 0.599 | 0.573 | 0.006 | 0.006 | 0.589 | 0.564 | 0.609 | 0.584 |
Japan | 0.663 | 0.630 | 0.003 | 0.002 | 0.658 | 0.627 | 0.667 | 0.635 |
TE-POOL | ||||||||
S. Korea | 0.298 | 0.113 | 0.023 | 0.958 | ||||
China | 0.350 | 0.143 | 0.061 | 1.000 | ||||
US | 0.356 | 0.155 | 0.004 | 1.000 | ||||
Japan | 0.381 | 0.174 | 0.002 | 0.979 |
Coef. | Std. Err | t Value | |
---|---|---|---|
0.010 *** | 0.001 | 8.260 | |
−0.036 *** | 0.001 | −31.800 | |
0.016 *** | 0.001 | 15.150 | |
−1.261 *** | 0.017 | −73.070 | |
0.002 *** | 0.001 | 6.160 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Park, Y.; Lee, D. Effect of the ICT Ecosystem Structure on the Sustainable Growth of ICT Firms: A Metafrontier Analysis on China, South Korea, the United States, and Japan. Sustainability 2016, 8, 469. https://doi.org/10.3390/su8050469
Lee K, Park Y, Lee D. Effect of the ICT Ecosystem Structure on the Sustainable Growth of ICT Firms: A Metafrontier Analysis on China, South Korea, the United States, and Japan. Sustainability. 2016; 8(5):469. https://doi.org/10.3390/su8050469
Chicago/Turabian StyleLee, Kyoungsun, Yuri Park, and Daeho Lee. 2016. "Effect of the ICT Ecosystem Structure on the Sustainable Growth of ICT Firms: A Metafrontier Analysis on China, South Korea, the United States, and Japan" Sustainability 8, no. 5: 469. https://doi.org/10.3390/su8050469
APA StyleLee, K., Park, Y., & Lee, D. (2016). Effect of the ICT Ecosystem Structure on the Sustainable Growth of ICT Firms: A Metafrontier Analysis on China, South Korea, the United States, and Japan. Sustainability, 8(5), 469. https://doi.org/10.3390/su8050469