Do NGOs and Development Agencies Contribute to Sustainability of Smallholder Soybean Farmers in Northern Ghana—A Stochastic Production Frontier Approach
Abstract
:1. Introduction
2. NGOs and Soybean Promotion in Ghana
3. Methods
3.1. Stochastic Frontier Analysis
3.2. Empirical Model
3.3. Study Area
3.4. Data
4. Results and Discussion
4.1. Model Specification
4.2. Production Function of Soybean in Northern Ghana
4.3. Technical Efficiency Estimates
4.4. Determinants of Technical Efficiency
5. Conclusions
Supplementary Material
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Development Planning (NDPC). Implementation of Ghana Shared Growth and Development Agenda (GSGDA) 2011–2013, Annual Report 2013; NDPC: Accra, Ghana, 2014. [Google Scholar]
- MoFA, Agriculture in Ghana. Facts and Figures (2010); Statistics, Research, and Information Directorate: Accra, Ghana, 2011. [Google Scholar]
- Akramov, K.; Malek, M. Analyzing Profitability of Maize, Rice, and Soybean Production in Ghana: Results of PAM and DEA Analysis; Ghana Strategy Support Program (GSSP) Working Paper No. 0028; International Food Policy Research Institute: Washington, DC, USA, 2012. [Google Scholar]
- Millennium Development Authority (MiDA). Investment Opportunity Ghana. In Maize, Soya and Rice Production and Processing Production and Processing; MiDA: Accra, Ghana, 2010. [Google Scholar]
- Rusike, J.; van den Brand, G.J.; Boahen, S.; Dashiell, K.; Katengwa, S.; Ongoma, J.; Mongane, D.; Kasongo, G.; Jamagani, Z.; Aidoo, R.; et al. Value Chain Analyses of Grain Legumes in N2Africa: Kenya, Rwanda, Eastern DRC, Ghana, Nigeria, Mozambique, Malawi and Zimbabwe. Available online: https://www.n2africa.org/sites/n2africa.org/files/images/N2Africa_Value%20chain%20analyses%20of%20grain%20legumes%20in%20N2Africa.pdf (accessed on 6 May 2016).
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Salifu, A.; Funk, R.L.; Keefe, M.; Kolavalli, S. Farmer Based Organizations in Ghana; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2012. [Google Scholar]
- Fischer, E.; Qaim, M. Linking smallholders to markets: Determinants and impacts of farmer collective action in Kenya. World Dev. 2012, 40, 1255–1268. [Google Scholar] [CrossRef]
- Arellano-López, S.; Petras, J.F. Non-Governmental Organizations and Poverty Alleviation in Bolivia. Dev. Chang. 1994, 25, 555–568. [Google Scholar] [CrossRef]
- Mohan, G. The disappointments of civil society: The politics of NGO intervention in Northern Ghana. Political Geogr. 2002, 21, 125–154. [Google Scholar] [CrossRef]
- Etwire, P.M.; Martey, E.; Dogbe, W. Technical Efficiency of Soybean Farms and Its Determinants in Saboba and Chereponi Districts of Northern Ghana: A Stochastic Frontier Approach. Sustain. Agric. Res. 2013, 2, 106–116. [Google Scholar] [CrossRef]
- Martey, E.; Dogbe, W.; Etwire, P.M.; Wiredu, A.N. Impact of Farmer Mentorship Project on Farm Efficiency and Income in Rural Ghana. J. Agric. Sci. 2015, 7, 79–93. [Google Scholar] [CrossRef]
- Djokoto, J.G. Technical Efficiency in Agriculture in Ghana-Analyses of Determining Factors. J. Biol. Agric. Healthc. 2012, 2, 1–10. [Google Scholar]
- Abatania, L.N.; Hailu, A.; Mugera, A.W. Analysis of farm household technical efficiency in Northern Ghana using bootstrap DEA. In Proceedings of the 56th Annual Conference of the Australian Agricultural and Resource Economics Society, Fremantle, Australia, 7–10 February 2012.
- Donkoh, S.A.; Ayambila, S.; Abdulai, S. Technical efficiency of rice production at the Tono irrigation scheme in Northern Ghana. Am. J. Exp. Agric. 2013, 3, 25–42. [Google Scholar] [CrossRef]
- Yegon, P.K.; Kibet, L.K.; Lagat, J.K. Determinants of technical efficiency in smallholder soybean production in Bomet District, Kenya. J. Dev. Agric. Econ. 2015, 7, 190–194. [Google Scholar]
- Otitoju, M.; Adebo, G.; Arene, C. Identification and Stochastic Analysis of Factors Influencing Technical Inefficiency of Nigerian Smallholder Soybean Farmers. Tropicultura 2014, 32, 197–204. [Google Scholar]
- Alwarritzi, W.; Nanseki, T.; Chomei, Y. Analysis of the factors influencing the technical efficiency among oil palm smallholder farmers in Indonesia. Procedia Environ. Sci. 2015, 28, 630–638. [Google Scholar] [CrossRef]
- Binam, J.N.; Tonye, J.; Nyambi, G.; Akoa, M. Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon. Food Policy 2004, 29, 531–545. [Google Scholar] [CrossRef]
- Abdulai, A.; Eberlin, R. Technical efficiency during economic reform in Nicaragua: Evidence from farm household survey data. Econ. Syst. 2001, 25, 113–125. [Google Scholar] [CrossRef]
- Wilson, P.; Hadley, D.; Ramsden, S.; Kaltsas, I. Measuring and explaining technical efficiency in UK potato production. J. Agric. Econ. 1998, 49, 294–305. [Google Scholar] [CrossRef]
- Sherlund, S.M.; Barrett, C.B.; Adesina, A.A. Smallholder technical efficiency controlling for environmental production conditions. J. Dev. Econ. 2002, 69, 85–101. [Google Scholar] [CrossRef]
- Lohr, L.; Park, T. Local selling decisions and the technical efficiency of organic farms. Sustainability 2010, 2, 189–203. [Google Scholar] [CrossRef]
- Asogwa, B.; Umeh, J.; Okwoche, V. Poverty and Efficiency among the Farming Households in Nigeria: A Guide for Poverty Reduction Policy. Curr. Res. J. Econ. Theory 2012, 4, 6–10. [Google Scholar]
- Asante, B.O.; Afari-Sefa, V.; Sarpong, D.B. Determinants of small scale farmers’ decision to join farmer based organizations in Ghana. Afr. J. Agric. Res. 2011, 6, 2273–2279. [Google Scholar]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Statistical Approaches for Non-parametric Frontier Models: A Guided Tour. Int. Stat. Rev. 2015, 83, 77–110. [Google Scholar] [CrossRef]
- Battese, G.E.; Corra, G.S. Estimation of a production frontier model: With application to the pastoral zone of Eastern Australia. Aust. J. Agric. Econ. 1977, 21, 169–179. [Google Scholar] [CrossRef]
- Battese, G. On the Estimation of Production Functions Involving Explanatory Variables Which Have Zero Values; Working Paper in Econometrics and Applied Statistics No. 86; Department of Econometrics, University of New England: Armidale, Australia, 1996. [Google Scholar]
- Xu, T.; Sun, F.-F.; Zhou, Y.-H. Technical efficiency and its determinants in China’s hog production. J. Integr. Agric. 2015, 14, 1057–1068. [Google Scholar]
- Abdulai, S.; Nkegbe, P.K.; Donkoh, S.A. Technical efficiency of maize production in Northern Ghana. Afr. J. Agric. Res. 2013, 8, 5251–5259. [Google Scholar]
- Asante, B.; Osei, M.; Dankyi, A.; Berchie, J.; Mochiah, M.; Lamptey, J.; Haleegoah, J.; Osei, K.; Bolfrey-Arku, G. Producer characteristics and determinants of technical efficiency of tomato based production systems in Ghana. J. Dev. Agric. Econ. 2013, 5, 92–103. [Google Scholar] [CrossRef]
- Asogwa, B.; Ihemeje, J.; Ezihe, J. Technical and allocative efficiency analysis of nigerian rural farmers: Implication for poverty reduction. Agric. J. 2011, 6, 243–251. [Google Scholar] [CrossRef]
- Kaur, M.; Mahal, A.K.; Sekhon, M.; Kingra, H. Technical Efficiency of Wheat Production in Punjab: A Regional Analysis. Agric. Econ. Res. Rev. 2010, 23, 173–179. [Google Scholar]
- Horrace, W.C.; Schmidt, P. Confidence statements for efficiency estimates from stochastic frontier models. J. Product. Anal. 1996, 7, 257–282. [Google Scholar] [CrossRef]
- Seyoum, E.; Battese, G.E.; Fleming, E. Technical efficiency and productivity of maize producers in eastern Ethiopia: A study of farmers within and outside the Sasakawa-Global 2000 project. Agric. Econ. 1998, 19, 341–348. [Google Scholar] [CrossRef]
- Addai, K.N.; Owusu, V.; Danso-Abbeam, G. Effects of Farmer—Based-Organization on the Technical Efficiency of Maize Farmers across Various Agro-Ecological Zones of Ghana. J. Econ. Dev. Stud. 2014, 2, 141–161. [Google Scholar]
- Mbeche, R.M.; Dorward, P. Privatisation, empowerment and accountability: What are the policy implications for establishing effective farmer organisations? Land Use Policy 2014, 36, 285–295. [Google Scholar] [CrossRef]
- Amoah, S.T.; Debrah, I.A.; Abubakari, R. Technical efficiency of vegetable farmers in Peri-Urban Ghana influence and effects of resource inequalities. Am. J. Agric. For. 2014, 2, 79–87. [Google Scholar]
- Bozoğlu, M.; Ceyhan, V. Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey. Agric. Syst. 2007, 94, 649–656. [Google Scholar] [CrossRef]
- Nowak, A.; Kijek, T.; Domańska, K. Technical efficiency and its determinants in the European Union agriculture. Agric. Econ. (Zemědělská Ekonomika) 2015, 6, 275–283. [Google Scholar] [CrossRef]
- Bhatt, M.S.; Bhat, S.A. Technical Efficiency and Farm Size Productivity-Micro Level Evidence From Jammu & Kashmir. Int. J. Food Agric. Econ. 2014, 2, 27–49. [Google Scholar]
- Chiona, S.; Kalinda, T.; Tembo, G. Stochastic Frontier Analysis of the Technical Efficiency of Smallholder Maize Farmers in Central Province, Zambia. J. Agric. Sci. 2014, 6, 108–118. [Google Scholar] [CrossRef]
- Chirwa, E.W. Sources of Technical Efficiency among Smallholder Maize Farmers in Southern Malawi; African Economic Research Consortium Nairobi: Nairobi, Kenya, 2007. [Google Scholar]
Variable | Dimension | Definition | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|---|
Output | kg | Total quantity harvested | 801.30 | 822.67 | 50.0 | 7207.0 |
Labor | days | Number of days spent working on farm | 38.20 | 30.58 | 3.0 | 235.0 |
Agro-chemicals | L | Quantity of plant protection chemicals used | 2.09 | 2.28 | 1.0 | 30.0 |
Fertilizer | kg | Quantity of fertilizer used | 28.86 | 77.64 | 1.0 | 900.0 |
Seed | kg | Quantity of seeds used | 25.49 | 22.73 | 2.5 | 240.0 |
Land | ha | Cultivated area of soybean | 0.89 | 0.85 | 0.2 | 8.0 |
Gender | dummy | Sex of farmer; M = 0, F = 1 | 0.49 | 0.50 | 0 | 1 |
Age | years | Age of farmers in years | 41.76 | 11.28 | 20.0 | 79.0 |
Experience | years | Number of years while farming soybean | 5.56 | 3.36 | 1.0 | 18.0 |
Education | years | Schooling years | 2.46 | 4.44 | 0.0 | 20.0 |
Farmer Group | dummy | Indicates if farmer belongs to a FBO; member = 1 | 0.70 | 0.46 | 0 | 1 |
Credit | dummy | Indicates whether farmer accessed formal credit; accessed = 1 | 0.42 | 0.50 | 0 | 1 |
Extension | units | Number of visits by extension officers | 3.08 | 6.18 | 0.0 | 50.0 |
NGO facilitation | dummy | Indicates whether farmer is facilitated by NGOs; facilitated = 1 | 0.62 | 0.49 | 0 | 1 |
Household size | units | Number persons in farmer household | 11.16 | 8.34 | 3.0 | 70.0 |
Fertilizer use | dummy | Indicates application of fertilizers; fertilizer = 1 | 0.23 | 0.42 | 0 | 1 |
Improved seeds | dummy | Indicates the use of improved/certified seeds use improve seeds = 1 | 0.30 | 0.46 | 0 | 1 |
Northern Region | dummy | Farmer is located in the northern region = 1 | 0.44 | 0. 49 | 0 | 1 |
Output sold | kg | Total quantity of soybean sold | 671.18 | 691.17 | 0 | 7207.00 |
Perception on farming | dummy | Farmer perceives farming as a business = 1; otherwise = 0 | 0.68 | 0.47 | 0 | 1 |
Gender of household head | dummy | M = 0; F = 1 | 0.06 | 0.23 | 0 | 1 |
Farmer’s exposure | dummy | Farmer has ever travelled outside the district = 1 | 0.42 | 0.49 | 0 | 1 |
Null Hypothesis | DF | Chi Square | Prob > Chi2 | Decision |
---|---|---|---|---|
15 | 53.92 | 0.0000 | Translog is preferred to Cobb–Douglas. | |
20 | 503.82 | 0.0000 | Presence of technical inefficiencies (SFA is preferred to deterministic production function). | |
16 | 34.30 | 0.0050 | The socioeconomic variables explain technical inefficiency. | |
5 | 40.06 | 0.0000 | Factor inputs explain technical efficiency. |
Variables | Coefficients | t-Statistic |
---|---|---|
Intercept | −2.726 | −1.181 |
Labor | 1.793 *** | 3.127 |
Agro-Chemicals | −1.666 ** | −2.277 |
Fertilizer | −0.006 | −0.025 |
Seed | 3.643 ** | 2.567 |
Land | −2.217 * | −1.718 |
Labor Square | 0.048 | 0.573 |
Agro-Chemicals Square | 0.036 | 0.488 |
Fertilizer Square | 0.071 *** | 3.837 |
Seed Square | −0.094 | −0.415 |
Land Square | −0.276 | −1.355 |
Labor × Agro-Chemicals | 0.129 | 0.990 |
Labor × Fertilizer | −0.068 * | −1.697 |
Labor × Seed | −0.712 *** | −3.463 |
Labor × Land | 0.276 | 1.453 |
Agro-Chemicals × Fertilizer | 0.050 | 1.530 |
Agro-Chemicals × Seed | 0.356 * | 1.692 |
Agro-Chemicals × Land | −0.429 ** | −2.375 |
Fertilizer × Seed | −0.047 | −0.893 |
Fertilizer × Land | 0.026 | 0.512 |
Seed × Land | 0.580 | 1.428 |
Sigma_U | 0.204 *** | 0.071 |
Sigma_V | 0.42 *** | 0.017 |
Variable | Input Elasticity |
---|---|
Labor | −0.33 |
Agro-chemicals | 0.22 |
Fertilizer | 0.10 |
Seed | 0.48 |
Land size | 0.50 |
Scale elasticity | 0.97 |
Group | Distribution across Groups (%) | Average | |||
---|---|---|---|---|---|
TE ≤ 0.60 | 0.60 < TE ≤ 0.90 | 0.90 < TE | Point Estimate | Confidence Interval | |
Facilitated | 6 | 20 | 74 | 0.902 | (0.915, 0.995) |
Non-facilitated | 14 | 19 | 67 | 0.858 | (0.920, 1.000) |
Total | 9 | 19 | 71 | 0.885 | (0.918, 0.998) |
p-value (t-test) | 0.0254 |
Variables | Coefficient | t-Statistic |
---|---|---|
Ln Labor | −0.980 *** | −3.390 |
Ln Agro-Chemicals | −0.173 | −0.857 |
Ln Fertilizer | 0.257 * | 1.864 |
Ln Seeds | 2.672 *** | 4.037 |
Ln Land | −1.023 * | −1.839 |
Gender | 0.306 * | 1.809 |
Age | 0.023 *** | 2.787 |
Experience | −0.024 | −1.052 |
Education | 0.035 ** | 1.980 |
Farmer Group | 0.639 ** | 1.994 |
Credit | −0.140 | −0.764 |
Extension | −0.085 ** | −2.137 |
NGO facilitation | −0.656 ** | −2.192 |
Household size | −0.010 | −0.525 |
Fertilizer use | −1.250 ** | −2.247 |
Improved seeds | −0.462 ** | −2.023 |
Northern Region | −0.553 ** | −2.137 |
intercept | −6.138 *** | −2.661 |
N | 349.000 | - |
Log likelihood | −221.584 | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avea, A.D.; Zhu, J.; Tian, X.; Baležentis, T.; Li, T.; Rickaille, M.; Funsani, W. Do NGOs and Development Agencies Contribute to Sustainability of Smallholder Soybean Farmers in Northern Ghana—A Stochastic Production Frontier Approach. Sustainability 2016, 8, 465. https://doi.org/10.3390/su8050465
Avea AD, Zhu J, Tian X, Baležentis T, Li T, Rickaille M, Funsani W. Do NGOs and Development Agencies Contribute to Sustainability of Smallholder Soybean Farmers in Northern Ghana—A Stochastic Production Frontier Approach. Sustainability. 2016; 8(5):465. https://doi.org/10.3390/su8050465
Chicago/Turabian StyleAvea, Aniah Dominic, Jing Zhu, Xu Tian, Tomas Baležentis, Tianxiang Li, Michael Rickaille, and William Funsani. 2016. "Do NGOs and Development Agencies Contribute to Sustainability of Smallholder Soybean Farmers in Northern Ghana—A Stochastic Production Frontier Approach" Sustainability 8, no. 5: 465. https://doi.org/10.3390/su8050465
APA StyleAvea, A. D., Zhu, J., Tian, X., Baležentis, T., Li, T., Rickaille, M., & Funsani, W. (2016). Do NGOs and Development Agencies Contribute to Sustainability of Smallholder Soybean Farmers in Northern Ghana—A Stochastic Production Frontier Approach. Sustainability, 8(5), 465. https://doi.org/10.3390/su8050465