Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey
Abstract
:1. Introduction
2. Method
2.1. Related Literature
2.1.1. Criteria Selection
2.1.2. Topics of Interest
- (a)
- The role of individual and household characteristics in supporting RE.
- (b)
- The role of the perception of risk to amenity in attitude towards windmills.
- (c)
- The role of the local community attachment to the territory in attitude towards windmills.
- (d)
- The role played by the existing windmills in the analyzed area both in attitude towards windmills and in supporting RE.
2.1.3. The State of the Art
2.2. The Meta-Analysis
2.3. The Survey
3. Results and Discussion
3.1. WTP for RE
RHS | Unweighted OLS (uOLS) | Weighted OLS (wOLS) | |||
---|---|---|---|---|---|
Calculated | lnRE | −0.804 | *** | −0.611 | *** |
0.058 | 0.046 | ||||
Publication | PU: after 2007 | n.s. | n.s. | ||
PU: ISI journal | 0.111 | ** | 0.051 | * | |
0.053 | 0.033 | ||||
Factual | FAC: Europe | 0.515 | ** | 0.521 | ** |
0.122 | 0.037 | ||||
FAC: U.S. | −0.532 | * | −0.299 | * | |
0.299 | 0.087 | ||||
FAC: Wind | −0.622 | *** | −0.659 | *** | |
0.077 | 0.061 | ||||
FAC: Green generic | n.s. | n.s. | |||
FAC: Individual | n.s. | n.s. | |||
FAC: Env. Awareness | 0.045 | ** | 0.032 | * | |
0.021 | 0.019 | ||||
FAC: Knowledge RE | 0.025 | ** | 0.015 | * | |
0.011 | 0.009 | ||||
FAC: Specified target | n.s. | n.s. | |||
Methodological | MET: Payment card | −0.491 | *** | −0.467 | *** |
0.034 | 0.034 | ||||
MET: Choice experiment | n.s. | n.s. | |||
MET: Double bound DC | n.s. | n.s. | |||
MET: Face to Face | n.s. | n.s. | |||
MET: Uncertainty | 0.335 | ** | 0.387 | ** | |
0.148 | 0.122 | ||||
MET: Small sample | −0.276 | ** | −0.347 | *** | |
0.098 | 0.045 | ||||
Const. | 0.457 | *** | 0.502 | *** | |
0.054 | 0.071 |
3.2. WTA and WTP for On-Shore Wind Farm
RHS | Unweighted OLS (uOLS) | Weighted OLS (wOLS) | |||
---|---|---|---|---|---|
Calculated | lnRE | −0.361 | *** | −0.305 | *** |
0.031 | 0.023 | ||||
Publication | PU: after 2007 | n.s. | n.s. | ||
PU: ISI journal | n.s. | n.s. | |||
Factual | FAC: Europe | 0.253 | ** | 0.259 | ** |
0.056 | 0.021 | ||||
FAC: Nimby | −0.912 | ** | −0.969 | *** | |
0.023 | 0.015 | ||||
FAC: Distance | 0.832 | *** | 0.818 | *** | |
0.003 | 0.005 | ||||
FAC: Installed capacity | −0.053 | * | −0.077 | * | |
0.041 | 0.034 | ||||
FAC: Visual intrusion | −0.031 | * | −0.027 | * | |
0.021 | 0.020 | ||||
FAC: Individual | n.s. | n.s. | |||
FAC: Env. Awareness | −0.108 | * | −0.097 | * | |
0.075 | 0.052 | ||||
FAC: Knowledge of RES | n.s. | n.s. | |||
FAC: Experienced WF | 0.081 | ** | 0.075 | ** | |
0.033 | 0.030 | ||||
FAC: Local community | n.s. | n.s. | |||
FAC: Scenario | n.s. | n.s. | |||
Methodological | MET: Choice experiment | −0.473 | *** | −0.406 | *** |
0.038 | 0.032 | ||||
MET: Face to Face | −0.863 | *** | −0.925 | *** | |
0.008 | 0.008 | ||||
MET: WTA | 0.830 | ** | 0.617 | ** | |
0.012 | 0.018 | ||||
MET: Small sample | −0.130 | ** | −0.183 | *** | |
0.046 | 0.029 | ||||
Const. | 0.220 | *** | 0.247 | *** | |
0.030 | 0.042 |
3.3. Local Survey Results
Variables | Type | Acronym | Unit | Supporters (b) | Opponents (c) |
---|---|---|---|---|---|
Bimonthly Electricity bill | Continuous | bill | EUR | 73.062 | 72.232 |
9.256 | 9.210 | ||||
Head of family age | Continuous | agehf | nr. | 54.030 | 48.595 |
19.771 | 14.72 | ||||
Gender | Dummy | sex | # | 0.455 | 0.486 |
(1 = female) | 0.505 | 0.506 | |||
Family years of residence (ancestors included) | Continuous | resanni | nr. | 41.545 | 33.297 |
21.21 | 18.65 | ||||
Household components | Continuous | ncomp | nr. | 2.939 | 2.757 |
1.058 | 0.954 | ||||
Household income (×10,000) | Continuous | incom | EUR | 2.781 | 2.500 |
1.156 | 1.001 | ||||
Left party affinity | Dummy | leftp | # | 0.697 | 0.189 |
(1 = yes) | 0.466 | 0.397 | |||
Amenity perception | Scale (1–10) | amenity | nr. | 4.909 | 6.432 |
(10 = max) | 1.588 | 1.993 | |||
Year of education | Continuous | educy | nr. | 9.545 | 11.541 |
4.024 | 4.226 | ||||
Environmental association membership | Dummy | assambcc | # | 0.091 | 0.189 |
(1 = yes) | 0.291 | 0.397 | |||
Homeowner | Dummy | homeow | # | 0.788 | 0.730 |
(1 = yes) | 0.415 | 0.450 | |||
Positive attitude vs. wind farm project in 1999. | Dummy | wfexp | # | 0.212 | 0.135 |
(1 = yes) | 0.415 | 0.346 | |||
Willingness to pay (mean WTP) | Continuous | mWTP | EUR | 7.003 | |
8.797 | |||||
Willingness to accept (mean WTA) | Continuous | mWTA | EUR | 7.935 | |
9.980 |
Variables | WTP | WTA |
---|---|---|
Bimonthly Electricity bill | 0.1573 | 0.1791 |
Head of family age | 0.2135 | 0.3040 |
Gender (1= female) | 0.2561 | 0.3926 * |
Family years of residence (ancestors included) | 0.4266 * | 0.4806 * |
Household components | −0.1892 * | 0.3276 * |
Household income (×10,000) | 0.3293 * | −0.3936 * |
Left party affinity (1 = yes) | 0.0859 | 0.0399 |
Amenity perception | −0.5690 * | 0.4957 * |
Year of education | 0.4833 * | 0.3671 * |
Environmental association membership (1 = yes) | −0.1510 | 0.4827 * |
Homeowner (1 = yes) | 0.2406 | 0.2637 |
Positive attitude vs. wind farm project in 1999 (1 = yes) | 0.3995* | −0.1018 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mu, Y.; Mu, X. Energy conservation in the Earth’s crust and climate change. J. Air Waste Manag. Assoc. 2013, 63, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Wolsink, M. Wind power and the NIMBY-myth: Institutional capacity and the limited significance of public support. Renew. Energy 2000, 21, 49–64. [Google Scholar] [CrossRef]
- Ek, K.; Söderholm, P. Norms and economic motivation in the Swedish green electricity market. Ecol. Econ. 2008, 68, 169–182. [Google Scholar] [CrossRef]
- Wüstenhagen, R.W.; Markard, J.; Truffer, B. Diffusion of green power products in Switzerland. Energy Policy 2003, 31, 621–632. [Google Scholar] [CrossRef]
- Stanley, T.D.; Doucouliagos, H.; Giles, M.; Heckemeyer, J.H.; Johnston, R.J.; Laroche, P.; Nelson, J.P.; Paldam, M.; Poot, J.; Pugh, G.; et al. Meta-analysis of economics research reporting guidelines: Reporting guidelines for meta-regression analysis in economics. J. Econ. Surv. 2013, 27, 390–394. [Google Scholar] [CrossRef]
- Edmonson, A.C.; McManus, S.E. Methodological fit in management field research. Academ. Manag. Rev. 2007, 32, 1115–1179. [Google Scholar]
- Holmgren, J. Meta-analysis of public transport demand. Transp. Res. Part A 2007, 41, 1021–1035. [Google Scholar] [CrossRef]
- Glass, G.V.; McGaw, B.; Smith, M.L. Meta-Analysis in Social Research; Sage: Beverly Hills, CA, USA, 1981. [Google Scholar]
- Groothius, P.A.; Groothuis, J.D.; Whitehead, J.C. Green vs. green: Measuring the compensation required to site electrical generation windmills in a viewshed. Energy Policy 2008, 36, 1545–1550. [Google Scholar] [CrossRef]
- Ek, K.; Matti, S. Valuing the local impacts of a large scale wind power establishment in northern Sweden: Public and private preferences toward economic, environmental and sociocultural values. J. Environ. Manag. 2014, 58, 1–19. [Google Scholar] [CrossRef]
- Nelson, J.P.; Kennedy, P.E. The use (and abuse) of meta-analysis in environmental and natural resource economics: An assessment. Environ. Resour. Econ. 2009, 42, 345–377. [Google Scholar] [CrossRef]
- Álverez-Farizo, B.; Hanley, N. Using conjoint analysis to quantify public preferences over the environmental impcts of wind farms. An example from Spain. Energy Policy 2002, 30, 107–116. [Google Scholar] [CrossRef]
- Batley, S.L.; Fleming, P.D.; Urwin, O. Willingness to pay for renewable energy: Implications for UK green tariff offerings. Indoor Built. Environ. 2000, 9, 157–170. [Google Scholar] [CrossRef]
- Batley, S.L.; Colbourne, D.; Fleming, P.D.; Urwin, O. Citizen versus consumer: Challenges in the UK green power market. Energy Policy 2001, 29, 479–487. [Google Scholar] [CrossRef]
- Bergmann, A.; Hanley, N.; Wright, R. Valuing the attributes of renewable energy investments. Energy Policy 2006, 34, 1004–1014. [Google Scholar] [CrossRef]
- Borchers, A.M.; Dukea, J.M.; Parsons, G.R. Does willingness to pay for green energy differs by source? Energy Policy 2007, 35, 3327–3334. [Google Scholar] [CrossRef]
- Botetzagias, I.; Malesios, C.; Kolokotroni, A.; Moysiadis, Y. The role of NIMBY in opposing the siting of wind farms: Evidence from Greece. J. Environ. Plann. Manag. 2013, 58, 252–269. [Google Scholar]
- Byrnes, B.; Jones, C.; Goodman, S. Contingent valuation and real economic commitments: Evidence from electric utility green pricing programs. J. Environ. Plan. Manag. 1999, 42, 149–166. [Google Scholar] [CrossRef]
- Goett, A.A.; Hudson, K.; Train, K.E. Customers’ choice among retail energy suppliers: The willingness to pay for service attributes. Energy J. 2000, 4, 1–28. [Google Scholar] [CrossRef]
- Hanemann, M.; Labandeira, X.; Loureiro, M.L. Climate change, energy and social preferences on policies: Exploratory evidence for Spain. Clim. Res. 2011, 48, 343–348. [Google Scholar] [CrossRef]
- Hansla, A.; Gamble, A.; Juliusson, A.; Garling, T. Psychological determinants of attitude towards and willingness to pay for green electricity. Energy Policy 2008, 36, 768–774. [Google Scholar] [CrossRef]
- Koundouri, P.; Kountouris, Y.; Remoundou, K. Valuing a wind farm construction: A contingent valuation study in Greece. Energy Policy 2009, 37, 1939–1944. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Ohl, C.; Hartje, V. Landscape externalities from onshore wind power. Energy Policy 2010, 38, 82–92. [Google Scholar] [CrossRef]
- Meyerhoff, J. Do turbines in the vicinity of respondents’ residences influence choices among programs for future wind power generation? J. Choice Model. 2013, 7, 58–71. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Tourkolias, C.; Tzovla, E.; Diakoulaki, D. Valuing the visual impact of wind farms: An application in South Evia, Greece. Renew. Sustain. Energy Rev. 2014, 39, 296–311. [Google Scholar] [CrossRef]
- Strazzera, E.; Mura, M.; Contu, D. Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach. Energy Policy 2012, 48, 334–347. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y. Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province. Energy Policy 2012, 51, 514–523. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kwak, S.Y. Willingness to pay for green electricity in Korea: A contingent valuation study. Energy Policy 2009, 37, 5408–5416. [Google Scholar] [CrossRef]
- Ek, K. Public and private attitudes towards “green” electricity: The case of Swedish wind power. Energy Policy 2005, 33, 1677–1689. [Google Scholar] [CrossRef]
- Bigerna, S.; Polinori, P. A bidding game for Italian households’ WTP for RES. Atl. Econ. J. 2013, 41, 189–190. [Google Scholar] [CrossRef]
- Bigerna, S.; Polinori, P. Italian households’ willingness to pay for green electricity. Renew. Sustain. Energy Rev. 2014, 34, 110–121. [Google Scholar] [CrossRef]
- Bollino, C.A. The willingness to pay for renewable energy sources: The case of Italy with socio demographic determinants. Energy J. 2009, 30, 81–96. [Google Scholar]
- Dimitropoulos, A.; Kontoleon, A. Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands. Energy Policy 2009, 37, 1842–1854. [Google Scholar] [CrossRef]
- Grösche, P.; Schröder, C. Eliciting public support for greening the electricity mix using random parameter techniques. Energy Econ. 2011, 33, 363–370. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Kim, H.; Heo, E. Assessment of Korean customers’ willingness to pay with RPS. Renew. Sustain. Energy Rev. 2012, 16, 695–703. [Google Scholar] [CrossRef]
- Ivanova, G. Queensland consumers’ willingness to pay for electricity from renewable energy sources. In Proceedings of the Ecological Economics in Action Conference, Massey University, Palmerston North, New Zealand, 11–12 December 2005.
- Ivanova, G. Are consumers’ willingness to pay extra for the electricity from renewable energy sources. An example of Queensland Australia. Int. J. Renew. Res. 2012, 4, 758–766. [Google Scholar]
- Nomura, N.; Akay, M. WTP for green electricity in Japan as estimated through contingent valuation method. Appl. Energy 2004, 78, 453–463. [Google Scholar] [CrossRef]
- Zoric, J.; Hrovatin, N. Household willingness to pay for green electricity in Slovenia. Energy Policy 2012, 47, 180–187. [Google Scholar] [CrossRef]
- Casimir, G.J.; Tobi, H. Defining and using the concept of household: A systematic review. Int. J. Consum. Stud. 2011, 35, 498–506. [Google Scholar] [CrossRef]
- Portney, P.R. The contingent valuation debate: Why economists should care. J. Econ. Perspect. 1994, 8, 3–17. [Google Scholar] [CrossRef]
- Blamey, R.; Common, M.; Quiggin, J. Respondents to contingent valuation surveys: Consumers or citizens. Aust. J. Agric. Econ. 1995, 39, 263–288. [Google Scholar] [CrossRef]
- Sagoff, M. Aggregation and deliberation in valuing environmental public goods: A look beyond contingent pricing. Ecol. Econ. 1998, 24, 213–230. [Google Scholar] [CrossRef]
- Huijts, N.M.A.; Molin, E.J.E.; Steg, L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renew. Sustain. Energy Rev. 2012, 16, 525–531. [Google Scholar] [CrossRef]
- Groothuis, P.A. Land use issues: The last settler’s syndrome. J. Agric. Appl. Econ. 2010, 42, 357–365. [Google Scholar]
- Asdrubali, F.; Baldinelli, G.; D’Alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Navrud, S.; Bråten, K.G. Consumers’ preferences for green and brown electricity: A choice modeling approach. Rev. Econ. Politique 2007, 117, 795–811. [Google Scholar] [CrossRef]
- Lancaster, K.J. A new approach to consumer theory. J. Political. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Hanley, N.; MacMillan, D.; Wright, R.E.; Bullock, C.; Simpson, I.; Parsisson, D.; Crabtree, B. Contingent valuation versus choice experiment: Estimating benefits of environmentally sensitive areas in Scotland. J. Agric. Econ. 1998, 49, 1–15. [Google Scholar] [CrossRef]
- Sovacool, B.K. Exploring and contextualizing public opposition to renewable electricity in the United States. Sustainability 2009, 1, 702–721. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Wolsink, M.; Bürer, M.J. Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M.; Katsanou, E. Renewable energy applications in Greece—What is the public attitude? Energy Policy 2012, 42, 37–48. [Google Scholar] [CrossRef]
- Aitken, M. Wind power and community benefits: Challenges and opportunities. Energy Policy 2010, 38, 6066–6075. [Google Scholar] [CrossRef]
- Cass, N.; Walker, G. Emotion and rationality: The characterization and evaluation of opposition to renewable energy projects. Emot. Space Soc. 2009, 2, 62–69. [Google Scholar] [CrossRef]
- Devine-Wright, P. Reconsidering Public Attitudes and Public Acceptance of Renewable Energy Technologies: A Critical Review; University of Manchester: Manchester, UK, 2007. [Google Scholar]
- Jobert, A.; Laborgne, P.; Mimler, S. Locla acceptance of wind energy: Factors of success identified in French and German case studies. Energy Policy 2007, 35, 2751–2760. [Google Scholar] [CrossRef]
- Read, D.L.; Brown, R.F.; Thorsteinsson, E.B.; Morgan, M.; Price, I. The theory of planned behavior as a model for predicting public opposition to wind farm development. J. Environ. Psychol. 2013, 36, 70–76. [Google Scholar] [CrossRef]
- Van Rensburg, T.M.; Kelley, H.; Jeserich, N. What influences the probability of wind farm planning approval: Evidence from Ireland. Ecol. Econ. 2015, 111, 12–22. [Google Scholar] [CrossRef]
- Rowlands, I.H.; Scott, D.; Parker, P. Consumers and green electricity: Profiling potential purchasers. Bus. Strategy Environ. 2003, 12, 36–48. [Google Scholar] [CrossRef]
- Stigka, E.K.; Paravantis, J.A.; Mihalakakou, G.K. Social acceptance of renewable energy sources: A review of contingent valuation applications. Renew. Sustain. Energy Rev. 2014, 32, 100–106. [Google Scholar] [CrossRef]
- Ek, K.; Persson, L. Wind farms—Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 2014, 105, 193–203. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Rothstein, H. Introduction to Meta-Analysis, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Dimitropoulos, A.; Rietveld, P.; van Ommeren, J.N. Consumer valuation of changes in driving range: A meta-analysis. Transp. Res. Part A 2013, 55, 27–45. [Google Scholar] [CrossRef]
- Stanley, T.D.; Doucouliagos, H. Better Than Random: Weighted Least Squares Meta-Regression Analysis. Available online: http://www.deakin.edu.au/buslaw/aef/workingpapers/papers/2013_2.pdf (accessed on 24 April 2013).
- Frew, E.J.; Wolstenholme, J.L.; Whynes, D.K. Comparing willingness-to-pay: Bidding game format versus open-ended and payment scale formats. Health Policy 2004, 68, 289–298. [Google Scholar]
- Lunander, A. Inducing incentives to understate and to overstate willingness to pay within the open-ended and the dichotomous-choice elicitation formats: An experimental study. J. Environ. Econ. Manag. 1998, 35, 88–102. [Google Scholar] [CrossRef]
- World Energy Perspective. Energy Efficiency Policies. Available online: http://www.worldenergy.org/wp-content/uploads/2013/09/WEC-Energy-Efficiency-Policies-report.pdf (accessed on 12 September 2013).
- Department of Energy & Climate Change. Quarterly energy prices; December 2012. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65940/7341-quarterly-energy-prices-december-2012.pdf (accessed on 20 February 2013).
- Terna. Available online: http://www.terna.it/Default.aspx?tabid=101 (accessed on 20 March 2013).
- GSE (Gestore servizi Energetici). Available online: http://www.gse.it/en/Pages/default.aspx (accessed on 13 March 2013).
- EIA–U.S. Energy Information administration. Available online: http://www.eia.gov (accessed on 11 April 2013).
- IEA Wind. Available online: http://www.ieawind.org (accessed on 14 April 2013).
- Bloomberg Business. Available online: http://www.bloomberg.com/europe (accessed on 14 June 2014).
- OANDA. Available online: http://www.oanda.com/lang/it/ (accessed on 15 April 2013).
- European Environmental Bureau (EEB). Future of EU Environmental Policy. Towards the 7th Environmental Action Programme—Sustainability—Annual Conference Report; European Environmental Bureau (EEB): Brussels, Belgium, 2010. [Google Scholar]
- Kontogianni, A.; Tourkolias, C.; Skourtos, M.; Damigos, D. Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms. Renew. Energy 2014, 66, 170–177. [Google Scholar] [CrossRef]
- Ladenburg, J. Attitudes towards on-land and offshore wind power development in Denmark; choice of development strategy. Renew. Energy 2008, 33, 111–118. [Google Scholar] [CrossRef]
- Krueger, A.D.; Parsons, G.R.; Firestone, J. Valuing the visual disamenity of offshore wind power projects at varying distances from the shore: An application on the Delaware shoreline. Land Econ. 2011, 87, 268–283. [Google Scholar] [CrossRef]
- Ladenburg, J.; Lutzeyer, S. The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field. Renew. Sustain. Energy Rev. 2012, 16, 6793–6802. [Google Scholar] [CrossRef]
- Devine-Wright, P. Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy 2005, 8, 125–139. [Google Scholar] [CrossRef]
- Devine-Wright, P. Rethinking NIMBYism. J. Community Appl. Soc. Psicol. 2009, 19, 426–441. [Google Scholar] [CrossRef]
- Landry, C.E.; Allen, T.; Cherry, T.; Whitehead, J.C. Wind turbine and coastal recreation demand. Esour. Energy Econ. 2012, 34, 93–111. [Google Scholar] [CrossRef]
- Ladenburg, J. Visual impact assessment of offshore wind farms and prior experience. Appl. Energy 2009, 86, 380–387. [Google Scholar] [CrossRef]
- Wosink, M. Wind power implementation: The nature of public attitudes: Equity and fairness instead of “backyard motives”. Energy Policy 2007, 11, 1188–1207. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigerna, S.; Polinori, P. Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey. Sustainability 2015, 7, 11909-11932. https://doi.org/10.3390/su70911909
Bigerna S, Polinori P. Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey. Sustainability. 2015; 7(9):11909-11932. https://doi.org/10.3390/su70911909
Chicago/Turabian StyleBigerna, Simona, and Paolo Polinori. 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey" Sustainability 7, no. 9: 11909-11932. https://doi.org/10.3390/su70911909
APA StyleBigerna, S., & Polinori, P. (2015). Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey. Sustainability, 7(9), 11909-11932. https://doi.org/10.3390/su70911909