Livestock and Water Resources: A Comparative Study of Water Footprint in Different Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Description of the Livestock Production Systems Analysed
2.3. Functional Unit, System Boundaries, and Water Footprint Assessment Method
2.4. Water Footprint Assessment of the Steers on the Farm
2.4.1. Blue Water Footprint Associated with Drinking and Service Water
2.4.2. Water Footprint of Animal Feed
Water Footprint of Milk
Water Footprint of Animal Feed
Feed Mixing Water
2.4.3. Manure Water Footprint
Estimation of the Leaching–Runoff Fraction
Estimation of the Percentage Volatilisation of N
- The amount of kg of N in animal manure/year [53]. For the intensive production system, the value given for males between 1 and 2 years old is considered, as it refers to animals confined indoors, although in Argentina, the animals are confined outdoors.
- The percentage of manure N volatilisation, in order to calculate how much N remains in the manure and can infiltrate or run off. The outdoor volatilisation value of 19.77% [62] was taken for males between 1 and 2 years old.
Quantification of the Applied Pollutant Load
Assessment of the Grey Water Footprint of Manure
3. Results
3.1. Water Footprint of the Steers in Intensive System
3.2. Water Footprint of the Steer in Mixed System
3.3. Water Footprint of the Steer in Extensive System
4. Discussion
4.1. Comparison Between the Water Footprint of Steer Production Systems
4.2. Water Footprint of Livestock: A Comparison
4.3. Water Footprint Improvement and Reductions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Gerbens-Leenes, P.W.; Nonhebel, S.; Krol, M.S. Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 2010, 55, 597–608. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The Water Footprint of Global Food Production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015; Available online: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (accessed on 20 June 2024).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture of the United Nations: Paris, France, 2006. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Delgado, C.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020: The Next Food Revolution. Outlook Agric. 2001, 30, 27–29. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; John Wiley & Sons: London, UK, 2011. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2011, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). Livestock and Poultry: World Markets Trade; United States Department of Agriculture, Foreign Agricultural Service: Washington, DC, USA, 2018. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/73666448x/mg74qq69r/j6731729p/livestock_poultry.pdf (accessed on 20 June 2024).
- Instituto Nacional de Estadística y Censos (INDEC). Censo Nacional de Población, Hogares y Viviendas 2010. Available online: https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135 (accessed on 16 May 2023).
- Instituto Nacional de Estadística y Censos (INDEC). Censo Nacional Agropecuario 2018: Resultados Preliminares. Available online: https://www.indec.gob.ar/ftp/cuadros/economia/cna2018_resultados_preliminares.pdf (accessed on 16 May 2023).
- Ministerio de Agricultura, Ganadería y Pesca. Plan de Ganadería Argentina 2022–2030. Available online: https://magyp.gob.ar/ganar/_pdf/Plan_GanAr_27-04-2022_provisorio.pdf (accessed on 20 May 2023).
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). El Stock Ganadero Bovino Alcanzó los 54,8 Millones de Animales. Sanidad Animal. Available online: http://www.senasa.gob.ar/senasa-comunica/noticias/el-stockganadero-bovino-alcanzo-los-548-millones-de-animales (accessed on 15 May 2024).
- Pengue, W.A. La Apropiación y el Saqueo de la Naturaleza: Conflictos Ecológicos Distributivos en la ARGENTINA del Bicentenario; Lugar Editorial: Buenos Aires, Argentina, 2008. [Google Scholar]
- Zarilli, A. ¿Una Agriculturización Insostenible? La provincia del Chaco, Argentina (1980–2008). Hist. Agrar. 2010, 51, 143–176. [Google Scholar]
- Gilberti, H. La Argentina Agropecuaria Vista Desde las Provincias: Un Análisis de los Resultados Preliminares del CNA 2018; IADE: Buenos Aires, Argentina, 2021. [Google Scholar]
- Robert, S.; Santangelo, F.; Albornoz, I.; Dana, G. Estructura del Feedlot en Argentina-Nivel de Asociación Entre la Producción Bovina a Corral y los Titulares de Faena; Sitio Argentino de Producción Animal: Buenos Aires, Argentina, 2009; Available online: https://www.produccion-animal.com.ar/informacion_tecnica/invernada_o_engorde_a_corral_o_feedlot/141-estructura_feedlot.pdf (accessed on 30 September 2023).
- Servicio Meteorológico Nacional (SMN). Descarga del Catálogo de Datos Abiertos del SMN. Available online: https://www.smn.gob.ar/descarga-de-datos (accessed on 1 February 2023).
- Di Yenno, F.; Lugones, A.; Terré, E. Exportación de Carne Bovina y Porcina de Argentina; Bolsa de Comercio de Rosario: Rosario, Argentina, 2021; Available online: https://www.bcr.com.ar/es/mercados/investigacion-y-desarrollo/informativo-semanal/noticias-informativo-semanal/exportacion-1 (accessed on 5 May 2024).
- Food and Agriculture Organization for the United Nations (FAO). FAOSTAT Database. Available online: http://www.fao.org/faostat/es/#home (accessed on 30 June 2024).
- Argentine Beef Promotion Institute (IPCVA). Informe de Exportaciones de Diciembre 2023: Exportaciones de Carne Vacuna Argentina. Available online: https://ipcva.agrositio.com/vertext.php?id=2793 (accessed on 15 May 2024).
- Hoekstra, A.Y.; Chapagain, A.K.; Van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Klopatek, S.C.; Oltjen, J.W. How advances in animal efficiency and management have affected beef cattle’s water intensity in the United States: 1991 compared to 2019. J. Anim. Sci. 2022, 100, 194. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Sanguansri, P.; Freer, M.; Harper, G.S. Water Footprint of Livestock: Comparison of Six Geographically Defined Beef Production System. Int. J. Life Cycle Assess. 2012, 17, 165–175. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Morelli, M.; Junior, C.C. Impact of roughage-concentrate ratio on the water footprints of beef feedlots. Agric. Syst. 2017, 155, 126–135. [Google Scholar] [CrossRef]
- Maré, F.A.; Jordaan, H.; Mekonnen, M.M. The water footprint of primary cow–calf production: A revised bottom-up approach applied on different breeds of beef cattle. Water 2020, 12, 2325. [Google Scholar] [CrossRef]
- González-Martínez, P.; Goenaga, I.; León-Ecay, S.; De las Heras, J.; Aldai, N.; Insausti, K.; Aldaya, M.M. The water footprint of Spanish Ternera de Navarra PGI beef: Conventional versus novel feeding based on vegetable by-products from the local food industry. Agric. Syst. 2024, 218. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos (INDEC). Censo Nacional de Población, Hogares y Viviendas 2022: Resultados Provisionales; Instituto Nacional de Estadística y Censos (INDEC): Buenos Aires, Argentina, 2023. Available online: https://censo.gob.ar/wp-content/uploads/2023/02/cnphv2022_resultados_provisionales.pdf (accessed on 20 June 2023).
- Ruiz de Galarreta, V.A.; Banda Noriega, R.B.; Barranquero, R.S.; Díaz, A.A.; Rodríguez, C.I.; Miguel, R.E. Análisis integral del sistema hídrico, uso y gestión. Cuenca del arroyo Langueyú, Tandil, Argentina. Bol. Geol. Min. 2010, 121, 343–356. [Google Scholar]
- Morello, J.; Matteuci, S.D.; Rodríguez, A.; Silva, M.E.; De Haro, C. Ecorregiones y Complejos Ecosistémicos Argentinos; Orientación Gráfica Editora: Buenos Aires, Argentina, 2012. [Google Scholar]
- Pordomingo, A.J. Gestión Ambiental en el Feedlot—Guía de Buenas Practices; INTA: Anguil, Argentina, 2003. [Google Scholar]
- Crisci, J.V.; Freire, S.E.; Sancho, G.; Katinas, L. Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia 2001, 23, 21–41. [Google Scholar]
- De la Sota, E.R.; Giuduce, G.E.; Ponce, M.; Ramos Giacosa, J.P.; Arturo, M. Relaciones fitogeográficas de la flora pteridofita serrana bonaerense. Soc. Argent. Bot. 2004, 39, 181–194. [Google Scholar]
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). Tablero Digital de Información de Datos Abiertos de SENASA. Available online: https://qliksensebycores.senasa.gob.ar/sense/app/6860cb89-6940-49a9-8deb-35c9c80404ca/overview (accessed on 28 June 2024).
- Ferrari, O.L.; Speroni, N.A. Feedlot Actual; La Nación-Difusión Ganadera: Buenos Aires, Argentina, 2008. [Google Scholar]
- Boyazoglu, J. Livestock farming as a factor of environmental, social and economic stability with special reference to research. Livest. Prod. Sci. 1998, 57, 1–14. [Google Scholar] [CrossRef]
- Catrileo, S.A. Oferta exportable de carne bovina: La alternativa de los sistemas mixtos. Agron. For. 2006, 28, 10–13. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Water use of livestock production systems and supply chains. In Guidelines for Assessment; Livestock Environmental Assessment and Performance (LEAP) Partnership, FAO: Rome, Italy, 2019. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle; The National Academies Press: Washington, DC, USA, 2000. [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Value of Water Research Report Series No. 48; UNESCO-IHE: Delft, The Netherlands, 2010; Available online: https://waterfootprint.org/resources/Report-48-WaterFootprint-AnimalProducts-Vol2_1.pdf (accessed on 13 June 2023).
- Ossa, S.G.; Suárez, T.M.; Pérez, G.J. Efectos del medio y herencia sobre el peso al nacimiento de terneros de la raza romosinuano. MVZ Córdoba 2005, 10, 564–572. [Google Scholar] [CrossRef]
- Schindler, V.; Feola, I. Comparación del peso desde el nacimiento hasta el destete de terneros de biotipos Braford y cuarterones en la región del NEA, Argentina. Zootec. Trop. 2012, 30, 327–333. [Google Scholar]
- Bavera, G.A. Lactancia y Destete Definitive; Sitio Argentino de Producción Animal: Buenos Aires, Argentina, 2005; Available online: https://www.produccion-animal.com.ar/ (accessed on 13 June 2023).
- Alvarez, F.; De la Orden, M.V. Destete en Terneros de Carne—Distintas Técnicas e Impacto en el Sistema de Producción; Sitio Argentino de Producción Animal: Buenos Aires, Argentina, 2013; Available online: https://www.produccion-animal.com.ar/informacion_tecnica/destete/118-Destete_tecnicas_impacto.pdf (accessed on 13 June 2023).
- Veneciano, J.H.; Frasinelli, C.A. Cría y Recría de Bovinos; Sitio argentino de Producción Animal: Buenos Aires, Argentina, 2014; Available online: https://www.produccion-animal.com.ar/informacion_tecnica/cria/177-TextoCriaRecria.pdf (accessed on 14 February 2023).
- Rodríguez, C.I.; Arrien, M.M.; Silva, S.H.; Aldaya, M.M. Global relevance of Argentinean rainfed crops in a climatic variability context: A water footprint assessment in Buenos Aires province. Sci. Total Environ. 2024, 27. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization for the United Nations (FAO). CROPWAT Version 8.0. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 14 February 2023).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Balance de N en la agricultura Española. Metodología y Resultados 2021. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/productos-fertilizantes/ (accessed on 20 September 2023).
- Aldaya, M.M.; Rodríguez, C.I.; Fernández Poulussen, A.; Merchán, E.D.; Beriain Apesteguía, M.J.; Llamas, R. Grey water footprint as an indicator for diffuse nitrogen pollution: The case of Navarra, Spain. Sci. Total Environ. 2020, 698. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Technical Conversion Factors for Agricultural Commodities; FAO: Rome, Italy, 2003. [Google Scholar]
- Klopatek, S.C.; Marvinney, E.; Duarte, T.; Kendall, A.; Yang, X.; Oltjen, J.W. Grass-fed vs. grain-fed beef systems: Performance, economic, and environmental trade-offs. J. Anim. Sci. 2022, 100, skab374. [Google Scholar] [CrossRef]
- Borrajo, C.I. Importancia de la Calidad de Semillas; Sitio Argentino de Producción Animal: Buenos Aires, Argentina, 2006; Available online: https://www.produccion-animal.com.ar/produccion_y_manejo_pasturas/pasturas_cultivadas_megatermicas/79-semilla.pdf (accessed on 13 June 2023).
- Fossati, J. Evaluación de híbridos comerciales de maíz en la estación experimental agropecuaria Rafaela, campaña 1999/2000. Hoja informativa n° 3. Instituto Nacional de Tecnología Agropecuaria (INTA). Nuestro Agro 2001, 7, 81. [Google Scholar]
- Noutary, J. Ventajas de las Siembras Tempranas de Avena; Sitio Argentino de Producción Animal: Buenos Aires, Argentina, 2014; Available online: https://www.produccion-animal.com.ar/produccion_y_manejo_pasturas/pasturas_cultivadas_verdeos_invierno/101.pdf (accessed on 13 June 2023).
- Plan Agropecuario. Siembra y Manejo de Verdeos: Manejo de Pasturas. Ministerio de Ganadería, Agricultura y Pesca, Programa Ganadero, Instituto Plan Agropecuario, BID, Uruguay. 2011. Available online: https://www.planagropecuario.org.uy/uploads/filemanager/source/2021/Librillos/pdf/Siembra%20y%20manejo%20de%20verdeos.pdf (accessed on 13 June 2023).
- Ciampitti, A.I.; García, F.O. Requerimientos Nutricionales—Absorción y Extracción de Macronutrientes y Nutrientes Secundarios: I. Cereales, Oleaginosas e Industrials; IPNI Cono Sur: Norcross, GA, USA, 2007; Available online: https://es.scribd.com/document/354026409/Requerimientos-nutricionales-Absorcion-y-extraccion-de-macronutrientes-y-nutrientes-secundarios (accessed on 13 June 2023).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Balance de N en la Agricultura Española. Metodología y Resultados. 2017. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/productos-fertilizantes/ (accessed on 20 May 2023).
- Alvarez, R. Balance de Nitrógeno en el cultivo de Trigo. INTA Estac. Exp. Agropecu. Rafaela 2007, 105, 23–35. Available online: https://www.engormix.com/agricultura/articulos/nitrogeno-en-trigo-t27047.htm (accessed on 13 June 2023).
- Barbieri, P.A.; Echeverria, H.E.; Sainz Rozas, H.R. Pérdidas por volatilización y eficiencia de uso de nitrógeno en maíz en función de la fuente, dosis y momento de aplicación. Rev. De La Fac. De Agron. 2018, 117, 111–116. [Google Scholar]
- Ferraris, G.N.; Couretot, L.A.; Toribio, M. Pérdidas de Nitrógeno por Volatilización y su Implicancia en el Rendimiento del Cultivo de Maíz: Efectos de Fuente, Dosis y uso de Inhibidores; International Plant Nutrition Institute (IPNI): Norcross, GA, USA, 2009; Available online: https://fertilizar.org.ar/wp-content/uploads/2009/09/19.pdf (accessed on 15 June 2023).
- Fontanetto, H.; Keller, O.; Negro, C.; Belotti, L. Pérdidas por volatilización de amoníaco de diferentes fuentes nitrogenadas en trigo bajo siembra directa. INTA Estac. Exp. Agropecu. Rafaela 2006, 105, 23–35. Available online: https://www.profertil.com.ar/wp-content/uploads/2020/08/perdidas-por-volatilizacion-de-amoniaco-de-diferentes-fuentes-nitrogenadas-en-trigo.pdf (accessed on 13 June 2023).
- Guiotto, C.O.; Riola, F.G. Pérdidas de fertilizantes nitrogenados, por volatilización, utilizando urea y fosfato diamónico en dos sistemas de labranza. Rev. Fac. De Agron. 2005, 16, 35. Available online: https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/4622/4767 (accessed on 13 June 2023).
- Franke, N.A.; Boyacioglu, H.; Hoekstra, A.Y. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value of Water Research Report Series Nº 65; UNESCO-IHE: Delft, The Netherlands, 2013. [Google Scholar]
- IPCC. Chapter 10: Emissions from Livestock and Manure Management. In Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006. [Google Scholar]
- Gobierno de la Provincia de San Luis. Cálculo y Análisis de la Huella Hídrica de la Provincia de San Luis. Sectores Agrícola y Pecuario. 2014. Available online: https://www.naturalezaparaelfuturo.org/assets/pdfs/LIBRO-HUELLA-HIDRICA.pdf (accessed on 25 June 2024).
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; Van Hal, O.; Virkki, V.; Kummu, M. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Van Hal, O.; De Boer, I.J.M.; Muller, A.; De Vries, S.; Erb, K.H.; Schader, C.; Gerrits, W.J.J.; Van Zanten, H.H.E. Upcycling food leftovers and grass resources through livestock: Impact of livestock system and productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Wang, K.; Du, C.; Guo, X.; Xiong, B.; Yang, L.; Zhao, X. Crop byproducts supplemented in livestock feeds reduced greenhouse gas emissions. J. Environ. Manag. 2024, 355. [Google Scholar] [CrossRef]
- Yang, K.; Qing, Y.; Yu, Q.; Tang, X.; Chen, G.; Fang, R.; Liu, H. By-Product Feeds: Current Understanding and Future Perspectives. Agriculture 2021, 11, 207. [Google Scholar] [CrossRef]
Extensive | Mixed | Intensive | |||
---|---|---|---|---|---|
Location | Azul | Ayacucho | Tandil | ||
Number of steers | 225 | 240 | 9000 | ||
Area (hectares/animal) | 0.35 | 0.83 | 0.003 | ||
Days of live | Breastfeeding | 180 | 270 | 180 | |
Rearing | 180 | 30 | - | ||
Fattening | Grazing | 180 | 150 | - | |
Pen | - | 80 | 180 | ||
Total | 540 | 530 | 360 | ||
Type of feeding | Depending on the availability of pasture, it can be a mixture of grasses, wheat grass and maize, or oats. | Grazing period: whole plant maize silage in the morning; oats or ryegrass in the afternoon; and natural grass in the evening. Intensive farming period: maize grain and concentrated feed. | Maize grain, soybean cake, minerals/vitamins, and other crops (barley; whole plant maize silage). | ||
Weight at the beginning of fattening (kg) | 290 | 300 | 280 | ||
Weight at the end of fattening (kg) | 445 | 440 | 550 | ||
Destination of manure | Directly into the soil as organic fertilizer during grazing. | Directly into the soil as organic fertilizer during the grazing period. In the intensive period, the manure is directly on the floor of the pen, on a smaller surface without vegetation, draining by gravity to the lower areas. | Directly on the ground, and then manure is discharged in effluent ponds without liners or treatment. |
Production System | Scenario | Diet |
---|---|---|
Extensive | E1 | Mixture of pasture in rearing and oats in fattening |
E2 | Mixture of pasture in rearing and maize plant in fattening | |
E3 | Wheat pasture in rearing and oats in fattening | |
E4 | Wheat pasture in rearing and maize plant in fattening | |
Intensive | I1 | Maize, soya cake, minerals/vitamins, barley, whole plant maize silage |
I2 | Maize, soya cake, minerals/vitamins, whole plant maize silage | |
I3 | Maize, soya cake, minerals/vitamins, barley | |
Mixed | M1 | Rearing feed based on rye grass, whole plant maize silage, and natural grass |
M2 | Rearing feed based on oat pastures, whole plant maize silage, and natural grass |
Production System | Ingredients of Feed | Scenarios | Percentage of Ingredients in the Daily Diet | |
---|---|---|---|---|
Intensive (I) | Maize grain, soybean cake, minerals/vitamins, barley, and whole plant maize silage | Scenario I1 | 70–9–3–8–8 | |
Maize grain, soybean cake, minerals/vitamins, whole plant maize silage | Scenario I2 | 70–9–3–16 | ||
Maize grain, soybean cake, minerals/vitamins, barley | Scenario I3 | 70–9–3–16 | ||
Extensive (E) | Rearing | Natural grass | Scenario E1–E2 | ad libitum |
Pasture wheat | Scenario E3–E4 | ad libitum | ||
Fattening | Pasture oats | Scenario E1–E3 | ad libitum | |
Plant of maize | Scenario E2–E4 | ad libitum | ||
Mixed (M) | Rearing | Natural grass | Scenario M1–M2 | ad libitum |
Extensive phase | Plant maize silage, rye grass, natural grass | Scenario M1 | ad libitum | |
Plant maize silage, pasture oats–natural grass | Scenario M2 | ad libitum | ||
Intensive phase | Maize grain, concentrate feed | Scenario M1–M2 | 90–10 |
Intensive System | Mixed System | Extensive System | |||
---|---|---|---|---|---|
WF (m3/Animal) | |||||
WF of feed | Milk | Green | 887 | 640 | 640 |
Blue | 26 | 18 | 18 | ||
Grey | 9 | 7 | 7 | ||
Lactation grazing | Green | 3067 | 2015 | 1926 | |
Grazing in rearing | Green | - | 174 | E1 − E2 = 1392.50 E3 − E4 = 1849.12 | |
Fattening grazing | Green | - | M1 = 843.7 M2 = 870 | E1 − E3 = 2682.2 E2 − E4 = 131 | |
Grey | - | 0 | E2 − E4 = 83.4 | ||
Supplementary feed | Green | I1 = 812 I2 = 755 I3 = 870 | 387 | - | |
Blue | I1 − I2 − I3 = 5 | 0.128 | - | ||
Grey | I1 = 775 I2 = 544 I3 = 1007 | 0 | - | ||
Service water | Blue | 3.52 | 3.71 | 2.32 | |
Drinking water | Blue | 13.44 | 14.94 | 16.55 | |
Manure | Grey | 313 | 130 | 0 | |
WF of a live steer (average) | Green | 4767 | 4073 | 5593 | |
Blue | 47 | 37 | 38 | ||
Grey | 1098 | 137 | 48.5 | ||
Total | 5912 | 4247 | 5679.5 |
Livestock System | WF | Present Study (Average) | Mekonnen and Hoekstra [9] | Government of San Luis Province [70] | Klopatek and Oltjen [27] | Palhares et al. [30] | González–Martínez et al. [32] | ||
---|---|---|---|---|---|---|---|---|---|
Country | Buenos Aires–Argentina | Argentina | World Average | San Luis | United States | Brazil | Navarra, Spain | ||
Animal Category | Steer | Bovine Carcasses and Half Carcass | Bovine of Beef Meat | Beef Cow | Beef Cattle | Ternera of Navarra PGI | |||
Functional Unit | m3/Animal | L/kg of Animal | L/kg of Meat | L/kg of Animal | L/kg of Meat | L/kg of Meat | L/kg Meat | ||
Intensive | Green | 4767 | 8667 | 1973 | 6283 | 12,322 | not included | 5038 | 9955 |
Blue | 47 | 85 | 120 | 483 | 5436 | 2275 | 769 | 1577 | |
Grey | 1098 | 1996 | 42 | 505 | not included | not included | not included | 1731 | |
Mixed | Green | 4073 | 9256 | 4436 | 10,510 | not included | not included | ||
Blue | 37 | 84 | 143 | 359 | |||||
Grey | 137 | 311 | 10 | 285 | |||||
Extensive | Green | 5593 | 12,568 | 5069 | 14,996 | 9500 | |||
Blue | 38 | 85 | 112 | 328 | 269 | ||||
Grey | 48 | 107 | 3 | 172 | not included |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrien, M.M.; Aldaya, M.M.; Rodríguez, C.I. Livestock and Water Resources: A Comparative Study of Water Footprint in Different Farming Systems. Sustainability 2025, 17, 2251. https://doi.org/10.3390/su17052251
Arrien MM, Aldaya MM, Rodríguez CI. Livestock and Water Resources: A Comparative Study of Water Footprint in Different Farming Systems. Sustainability. 2025; 17(5):2251. https://doi.org/10.3390/su17052251
Chicago/Turabian StyleArrien, María Macarena, Maite M. Aldaya, and Corina Iris Rodríguez. 2025. "Livestock and Water Resources: A Comparative Study of Water Footprint in Different Farming Systems" Sustainability 17, no. 5: 2251. https://doi.org/10.3390/su17052251
APA StyleArrien, M. M., Aldaya, M. M., & Rodríguez, C. I. (2025). Livestock and Water Resources: A Comparative Study of Water Footprint in Different Farming Systems. Sustainability, 17(5), 2251. https://doi.org/10.3390/su17052251