Performance of Large-Scale Ornamental Wetlands for Municipal Wastewater Treatment: A Case Study in a Polluted Estuary in the Gulf of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation and Description of the System
2.2. Selection of Ornamental Plant for TW
2.3. Measurement of Plant Growth
2.4. Characteristics and Measurement of Water Quality Parameters
2.4.1. Environmental Variables
2.4.2. Field Measurement of Water Quality Parameters
2.4.3. Laboratory Measurement of Water Quality Parameters
2.4.4. Statistical Analysis of Data
3. Results
3.1. Results of Environmental Parameters
3.2. Results of Water Quality Parameters Measured in the Field
3.3. Results of Parameters Measured in the Laboratory
3.4. Seasonal Variability in Pollutant Removal
3.5. Correlations Between Pollutants vs. (Water Quality Parameters, Environmental Variables and the Time)
3.6. Result of Vegetation Growth
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Y.; Chen, Y.; Wu, X.; Dang, H.; Zeng, T.; Ma, J.; Tang, C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. Environ. Res. 2023, 233, 116338. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. Unlocking the potential of wetland biomass: Treatment approaches and sustainable resource management for enhanced utilization. Bioresour. Technol. Rep. 2023, 23, 101553. [Google Scholar] [CrossRef]
- Hollstein, M.; Comerford, M.; Uhl, M.; Abel, M.; Egan, S.P.; Stadler, L.B. Impact of a natural disturbance on the performance and microbial communities in a full-scale constructed wetland for industrial wastewater treatment. Front. Environ. Sci. 2023, 11, 572. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Naeth, M.A.; Dhar, A. Potential of macrophytes for wastewater remediation with constructed floating wetlands in cold climates. Water 2023, 15, 2479. [Google Scholar] [CrossRef]
- Bydalek, F.; Ifayemi, D.; Reynolds, L.; Barden, R.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic dynamics in a free water surface constructed wetland. Sci. Total Environ. 2023, 858, 160113. [Google Scholar] [CrossRef]
- Peñacoba-Antona, L.; Ramirez-Vargas, C.A.; Wardman, C.; Carmona-Martinez, A.A.; Esteve-Núñez, A.; Paredes, D.; Brix, H.; Arias, C.A. Microbial electrochemically assisted treatment wetlands: Current flow density as a performance indicator in real-scale systems in Mediterranean and Northern European locations. Front. Microbiol. 2022, 13, 843135. [Google Scholar] [CrossRef]
- Song, S.; Wang, B.; Yang, T.; Gu, Y.; Sheng, S.; Zhao, D.; An, S.; Li, A. Performance and Bacteria Communities of a Full-Scale Constructed Wetland Treating the Secondary Effluent after Multi-Years’ Operation. Processes 2023, 11, 1469. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, C.; Wei, H.; Liu, H.; Wang, Z.; Hou, L.; Tie, J. Application of Subsurface Flow Constructed Wetland System for Purification of Secondary Effluent from Municipal Wastewater Treatment Plant. Pol. J. Environ. Stud. 2023, 32, 973–979. [Google Scholar] [CrossRef]
- Vymazal, J.; Láska, J.; Hnátková, T. The retention of nitrogen and phosphorus in aboveground biomass of plants growing in constructed wetlands treating agricultural drainage. Ecol. Eng. 2023, 194, 107044. [Google Scholar] [CrossRef]
- Lei, Y.; Wagner, T.; Rijnaarts, H.; de Wilde, V.; Langenhoff, A. The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands. Water Res. 2023, 230, 119494. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flo, E.; Romero, X.; García, J. Nature based-solutions for water reuse: 20 years of performance evaluation of a full-scale constructed wetland system. Ecol. Eng. 2023, 188, 106876. [Google Scholar] [CrossRef]
- Nocetti, E.; Hadad, H.R.; Di Luca, G.A.; de las Mercedes Mufarrege, M.; Maine, M.A. Pollutant removal modeling in a hybrid wetland system for industrial wastewater treatment. J. Water Process Eng. 2023, 53, 103794. [Google Scholar] [CrossRef]
- Lavrnić, S.; Nan, X.; Blasioli, S.; Braschi, I.; Anconelli, S.; Toscano, A. Performance of a full scale constructed wetland as ecological practice for agricultural drainage water treatment in Northern Italy. Ecol. Eng. 2023, 154, 105927. [Google Scholar] [CrossRef]
- United Nations Children’s Fund; World Health Organization. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2022: Special Focus on Gender; World Health Organization: New York, NY, USA, 2023. [Google Scholar]
- Sandoval-Herazo, L.C.; Marín-Muñiz, J.L.; Alvarado-Lassman, A.; Zurita, F.; Marín-Peña, O.; Sandoval-Herazo, M. Full-Scale constructed wetlands planted with ornamental species and PET as a substitute for filter media for municipal wastewater treatment: An experience in a Mexican rural community. Water 2023, 15, 2280. [Google Scholar] [CrossRef]
- Vymazal, J. Do laboratory scale experiments improve constructed Wetland treatment technology? Environ. Sci. Technol. 2018, 52, 12956–12957. [Google Scholar] [CrossRef]
- Casierra-Martínez, H.A.; Charris-Olmos, J.C.; Caselles-Osorio, A.; Parody-Muñoz, A.E. Organic matter and nutrients removal in tropical constructed wetlands using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae). Water Air Soil Pollut. 2017, 228, 338. [Google Scholar] [CrossRef]
- Nyer, S.C.; Volkenborn, N.; Aller, R.C.; Graffam, M.; Zhu, Q.; Price, R.E. Nitrogen transformations in constructed wetlands: A closer look at plant-soil interactions using chemical imaging. Sci. Total Environ. 2022, 816, 151560. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T.; Mukherjee, S.; Sarkar, B. A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar 2022, 4, 22. [Google Scholar] [CrossRef]
- Ndayambaje, P.; MacIvor, J.S.; Cadotte, M.W. Plant diversity on green roofs: A review of the ecological benefits, challenges, and best management practices. Nat.-Based Solut. 2024, 6, 100162. [Google Scholar] [CrossRef]
- Vigevani, I.; Corsini, D.; Mori, J.; Pasquinelli, A.; Gibin, M.; Comin, S.; Szwałko, P.; Cagnolati, E.; Ferrini, F.; Fini, A. Captura de contaminación por partículas mediante diecisiete especies leñosas que crecen en parques o a lo largo de carreteras en dos ciudades europeas. Sustainability 2022, 14, 1113. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Gobinath, R.; Ganapathy, G.P.; Gayathiri, E.; Kırgız, M.S.; Naiboğlu, N.; de Sousa Galdino, A.G.; Khatib, J. Sustainable Ecosystem Development and Landscaping for Urban and Peri-Urban Areas. In Sustainability of Natural Resources; CRC Press: Boca Raton, FL, USA, 2024; pp. 61–74. [Google Scholar]
- García-Ávila, F.; Avilés-Añazco, A.; Cabello-Torres, R.; Guanuchi-Quito, A.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; Alvarez-Ochoa, R.; Zhindón-Arévalo, C. Application of ornamental plants in constructed wetlands for wastewater treatment: A scientometric analysis. Case Stud. Chem. Environ. Eng. 2023, 7, 100307. [Google Scholar] [CrossRef]
- CEIEG. Cuadernillos Municipales 2022. Comité de Información Estadística y Geográfica del Estado de Veracruz. 2022. Available online: http://ceieg.veracruz.gob.mx/wp-content/uploads/sites/21/2022/09/Nautla.CM_.Ver_.2022.4.pdf (accessed on 1 July 2024).
- Rodriguez-Dominguez, M.A.; Konnerup, D.; Brix, H.; Arias, C.A. Constructed wetlands in Latin America and the Caribbean: A review of experiences during the last decade. Water 2020, 12, 1744. [Google Scholar] [CrossRef]
- García-Valero, A.; Acosta, J.A.; Faz, Á.; Gómez-López, M.D.; Carmona, D.M.; Terrero, M.A.; El Bied, O.; Martínez-Martínez, S. Swine Wastewater Treatment System Using Constructed Wetlands Connected in Series. Agronomy 2024, 14, 143. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.N.M.; Dos Reis, M.V.; Gomes, M.P. Phytoremediation by ornamental plants: A beautiful and ecological alternative. Environ. Sci. Pollut. Res. 2022, 29, 3336–3354. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Sepúlveda, R.; Leiva, A.M.; Vidal, G. Performance of Cyperus papyrus in constructed wetland mesocosms under different levels of salinity. Ecol. Eng. 2020, 151, 105820. [Google Scholar] [CrossRef]
- Rodrigo, M.A. Wetland restoration with hydrophytes: A review. Plants 2021, 10, 1035. [Google Scholar] [CrossRef]
- SEMARNAT. Norma Oficial Mexicana NOM-001-SEMARNAT-2021, que Establece los Límites Permisibles de Contaminantes en las Descargas de Aguas Residuales en Cuerpos Receptores Propiedad de la Nación. Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, 11 March 2021. [Google Scholar]
- Rice, E.W.; Bridgewater, L.; American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Colares, G.S.; Dell’Osbel, N.; Barbosa, C.V.; Lutterbeck, C.; Oliveira, G.A.; Rodrigues, L.R.; Bergmann, C.P.; Lopez, D.R.; Rodriguez, A.L.; Vymazel, J.; et al. Floating treatment wetlands integrated with microbial fuel cell for the treatment of urban wastewaters and bioenergy generation. Sci. Total Environ. 2021, 766, 142474. [Google Scholar] [CrossRef]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812. [Google Scholar] [CrossRef] [PubMed]
- Rajpurohit, P.; Behera, M. High-strength domestic wastewater treatment using Epipremnum aureum as the cathodic plant in a constructed wetland-microbial fuel cell. J. Water Process Eng. 2025, 69, 106724. [Google Scholar] [CrossRef]
- Pico-Macias, J.J.; Cruz-Macias, B.A. Caracterización de aguas residuales en el Hospital Oncológico Solca-Manabí. MQRInvestigar 2024, 8, 839–858. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Martinuzzi, N.; Masi, F. Online monitoring of a long-term full-scale constructed wetland for the treatment of winery wastewater in Italy. Appl. Sci. 2020, 10, 555. [Google Scholar] [CrossRef]
- Chen, C.; Yang, G.; Chen, X.; Li, P.; Chen, J.; Yan, M.; Guo, C. Treatment Effect of Long-Term Subsurface-Flow Constructed Wetland on Mariculture Water and Analysis of Wetland Bacterial Community. Water 2024, 16, 1054. [Google Scholar] [CrossRef]
- Karungamye, P.N. Potential of Canna indica in constructed wetlands for wastewater treatment: A review. Conservation 2022, 2, 499–513. [Google Scholar] [CrossRef]
- Hidayah, E.N.; Cahyonugroho, O.H.; Pachwarya, R.B.; Ramanathan, A.L. Efficiency of a pilot hybrid wastewater treatment system comprising activated sludge and constructed wetlands planted with Canna lily and Cyperus papyrus. Water Environ. J. 2021, 35, 647–656. [Google Scholar] [CrossRef]
- Di Luca, G.A.; de las Mercedes Mufarrege, M.; Hadad, H.R.; Maine, M.A.; Nocetti, E.; Campagnoli, M.A. Floating treatment wetlands with Canna indica for the removal of Cr (III) and Cr (VI) from water: A comprehensive study. Sci. Total Environ. 2024, 940, 173642. [Google Scholar] [CrossRef]
- Phewnil, O.; Chunkao, K.; Prabhuddham, P.; Pattamapitoon, T. Application of different aquatic plants in an alternated fill and drain wetland system of Phetchaburi municipal wastewater treatment in Thailand. Environ. Sci. Pollut. Res. 2024, 31, 1304–1313. [Google Scholar] [CrossRef]
- Aboulsoud, Y.I.; Elkhouly, A.A. A Literature Review on Potentiality of Some Egyptian Halophytes in Wastewater Treatment in Constructed Wetland. J. Environ. Sci. Mansoura Univ. 2023, 52, 70–87. [Google Scholar] [CrossRef]
- Yu, G.; Zheng, D.; Wang, W.; Long, Y.; Chen, J.; Chen, H.; Wang, Y.; He, S. Effects of micro/nanoplastics on microorganisms and plants in constructed wetlands during the nitrogen removal process: A review. Chem. Eng. J. 2024, 496, 153778. [Google Scholar] [CrossRef]
- Malyan, S.K.; Yadav, S.; Sonkar, V.; Goyal, V.C.; Singh, O.; Singh, R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environ. Res. 2021, 93, 1882–1909. [Google Scholar] [CrossRef] [PubMed]
- Udom, I.J.; Mbajiorgu, C.C.; Oboho, E.O. Development and evaluation of a constructed pilot-scale horizontal subsurface flow wetland treating piggery wastewater. Ain Shams Eng. J. 2018, 9, 3179–3185. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Zhu, L.; Chen, H.; Du, G.; Gao, X.; Pu, Y. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland–pond system: A case study. Bioresour. Technol. 2020, 309, 123310. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Chen, Q.; Xia, H.; Zhang, Y. Novel Chitosan-FeS@ biochar-added constructed wetland microcosms for NH4+/NO3− and Pb removal: Performance and mechanism. J. Environ. Chem. Eng. 2023, 11, 110400. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, L.; Li, J.; Wang, R.; Vymazal, J.; Li, W.; Lei, Y.; Zhang, M.; Hao, T.; Wei, J. Long-term performance of nutrient removal in an integrated constructed wetland. Sci. Total Environ. 2021, 779, 146268. [Google Scholar] [CrossRef]
# | Plant Species | Number of Individuals | Zone | |
---|---|---|---|---|
1 | Sansevieria trifasciata | 80 | A, B & D | |
2 | Canna indica | 128 | B | |
3 | Canna hybrids | 112 | A, B & D | |
4 | Colocasia esculenta | 128 | A, B & D | |
5 | Ruellia sp. | 64 | B & D | |
6 | Sagittaria graminea | 64 | B & D | |
7 | Pontederia cordata | 64 | D | |
8 | Heliconia psittacorum | 128 | A, B & D | |
9 | Croposma sp. | 32 | B | |
10 | Berberis sp. | 32 | B | |
11 | Berberis thunbergii | 32 | B | |
12 | Cyperus papyrus | 112 | A, B &D | |
13 | Eichhornia crassipes | 846 | C |
Parameter | Influent | Settler | Zone A | Zone B | Zone C | Zone D (Effluent) |
---|---|---|---|---|---|---|
TDS (mg L−1) | 170.93 ± 1.61 | 168.24 ± 1.62 | 171.41 ± 2.00 | 159.84 ± 1.76 | 161.95 ± 1.67 | 160.94 ± 1.68 |
EC (μS cm−1) | 1236.4 ± 10.96 | 1373.0 ± 12.4 | 1263.4 ± 20.4 | 1173.4 ± 22.36 | 1251.4 ± 18.64 | 1197.2 ± 25.84 |
Temperature (°C) | 25.39 ± 0.11 | 25.30 ± 0.16 | 25.12 ± 0.20 | 24.61 ± 0.15 | 24.57 ± 0.17 | 24.41 ± 0.11 |
DO (mg L−1) | 3.53 ± 0.29 | 3.49 ± 0.22 | 3.52 ± 0.21 | 2.99 ± 0.29 | 2.58 ± 0.26 | 2.56± 0.31 |
Parameter | Units | Influent | Settler | Zone A | Zone B | Zone C | Zone D (Effluent) | Maximum Permissible Limits NOM-001-SEMARNAT-2021. |
---|---|---|---|---|---|---|---|---|
COD | Concentration (mg L−1) | 443.56 ± 14.47 2 | 237.58 ± 15.16 2 | 152.56 ± 12.36 2 | 94.26 ± 7.32 1 | 40.96 ± 5.57 1 | 29.39 ± 3.61 1 | 150 |
Removal (%) | 0 | 46.44 | 65.61 | 78.75 | 90.77 | 93.37 | ||
NH3-N | Concentration (mg L−1) | 22.81 ± 0.90 | 15.66 ± 0.86 | 11.1 ± 0.68 | 8.38 ± 0.68 | 5.19 ± 0.60 | 1.97 ± 0.57 | N.A. |
Removal (%) | 0 | 31.35 | 51.34 | 63.26 | 77.25 | 91.36 | ||
NH4-N | Concentration (mg L−1) | 57.85 ± 1.61 | 39.36 ± 1.92 | 29.31 ± 1.40 | 18.78 ± 1.31 | 11.03 ± 1.40 | 5.04 ± 1.24 | N.A. |
Removal (%) | 0 | 31.96 | 49.33 | 67.54 | 80.93 | 91.29 | ||
NO2-N | Concentration (mg L−1) | 9.93 ± 0.63 | 5.65 ± 0.53 | 4.01 ± 0.32 | 2.04 ± 0.23 | 0.96 ± 0.12 | 0.45 ± 0.08 | N.A. |
Removal (%) | 0 | 43.1 | 59.62 | 79.46 | 90.33 | 95.47 | ||
NO3-N | Concentration (mg L−1) | 23.77 ± 1.34 | 15.82 ± 1.18 | 9.43 ± 0.98 | 5.69 ± 0.69 | 3.02 ± 0.67 | 2.05 ± 0.60 | N.A. |
Removal (%) | 0 | 33.45 | 60.33 | 76.06 | 87.29 | 91.38 | ||
TN | Concentration (mg L−1) | 35.71 ± 0.87 2 | 22.23 ± 1.01 1 | 17.76 ± 0.91 1 | 12.54 ± 0.92 1 | 8.26 ± 1.04 1 | 3.08 ± 0.77 1 | 25 |
Removal (%) | 0 | 37.75 | 50.27 | 64.88 | 76.87 | 91.37 | ||
PO4-P | Concentration (mg L−1) | 19.13 ± 0.57 | 12.25 ± 0.76 | 8.44 ± 0.53 | 5.25 ± 0.61 | 2.8 ± 0.57 | 1.48 ± 0.64 | N.A. |
Removal (%) | 0 | 35.96 | 55.88 | 72.56 | 85.36 | 92.26 | ||
TP | Concentration (mg L−1) | 16.73 ± 0.66 2 | 11.01 ± 0.66 1 | 7.26 ± 0.63 1 | 5.54 ± 0.61 1 | 3.62 ± 0.51 1 | 1.43 ± 0.36 1 | 15 |
Removal (%) | 0 | 34.19 | 56.6 | 66.89 | 78.36 | 91.45 |
Variable | Light Intensity | Temperature | Relative Humidity | Precipitation | pH | DO | EC | TDS | Water Temperature | Time (Months) |
---|---|---|---|---|---|---|---|---|---|---|
COD | −0.7716 (**) | −0.8027 (**) | −0.2119 (ns) | −0.2267 (ns) | 0.5704 (ns) | 0.6249 (*) | 0.0367 (ns) | −0.1868 (ns) | −0.2507 (ns) | −0.9598 (***) |
NH3-N | −0.7704 (**) | −0.7416 (**) | −0.2207 (ns) | −0.2518 (ns) | 0.5530 (ns) | 0.6800 (*) | 0.0267 (ns) | −0.2428 (ns) | −0.1802 (ns) | −0.9695 (***) |
NH4-N | −0.6774 (*) | −0.6281 (*) | −0.2911 (ns) | −0.3506 (ns) | 0.6617 (*) | 0.7066 (*) | 0.1610 (ns) | −0.1192 (ns) | −0.0177 (ns) | −0.9400 (***) |
NO2-N | −0.4974 (ns) | −0.6655 (*) | 0.0489 (ns) | −0.1119 (ns) | 0.5674 (ns) | 0.3783 (ns) | −0.1608 (ns) | −0.0489 (ns) | −0.3217 (ns) | −0.6635 (*) |
NO3-N | −0.6758 (*) | −0.5917 (*) | −0.0085 (ns) | −0.0648 (ns) | 0.4281 (ns) | 0.6789 (*) | 0.1144 (ns) | 0.0128 (ns) | −0.1831 (ns) | −0.7469 (**) |
TN | −0.8457 (***) | −0.7703 (**) | −0.1853 (ns) | −0.1333 (ns) | 0.4842 (ns) | 0.6743 (*) | 0.0807 (ns) | −0.2156 (ns) | −0.2527 (ns) | −0.9430 (***) |
PO4-P | −0.6770 (*) | −0.4059 (ns) | −0.1337 (ns) | 0.1253 (ns) | 0.2244 (ns) | 0.6975 (*) | 0.2930 (ns) | 0.0257 (ns) | −0.0131 (ns) | −0.5763 (*) |
TP | −0.6574 (*) | −0.4334 (ns) | −0.5075 (ns) | −0.5863 (ns) | 0.6325 (*) | 0.6358 (*) | 0.1379 (ns) | −0.4779 (ns) | 0.1330 (ns) | −0.7416 (**) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lomeli, J.S.; Zamora-Castro, S.A.; Zamora-Lobato, T.; Sandoval-Herazo, E.J.; Adame-García, J.; Zurita, F.; Monroy-Pineda, M.C.; Aguilar-Cortés, G.; Rivera, S.; Sandoval-Herazo, M. Performance of Large-Scale Ornamental Wetlands for Municipal Wastewater Treatment: A Case Study in a Polluted Estuary in the Gulf of Mexico. Sustainability 2025, 17, 2120. https://doi.org/10.3390/su17052120
Lomeli JS, Zamora-Castro SA, Zamora-Lobato T, Sandoval-Herazo EJ, Adame-García J, Zurita F, Monroy-Pineda MC, Aguilar-Cortés G, Rivera S, Sandoval-Herazo M. Performance of Large-Scale Ornamental Wetlands for Municipal Wastewater Treatment: A Case Study in a Polluted Estuary in the Gulf of Mexico. Sustainability. 2025; 17(5):2120. https://doi.org/10.3390/su17052120
Chicago/Turabian StyleLomeli, Joaquin Sangabriel, Sergio Aurelio Zamora-Castro, Teresa Zamora-Lobato, Elber José Sandoval-Herazo, Jacel Adame-García, Florentina Zurita, Maria Cecilia Monroy-Pineda, Graciano Aguilar-Cortés, Saúl Rivera, and Mayerlín Sandoval-Herazo. 2025. "Performance of Large-Scale Ornamental Wetlands for Municipal Wastewater Treatment: A Case Study in a Polluted Estuary in the Gulf of Mexico" Sustainability 17, no. 5: 2120. https://doi.org/10.3390/su17052120
APA StyleLomeli, J. S., Zamora-Castro, S. A., Zamora-Lobato, T., Sandoval-Herazo, E. J., Adame-García, J., Zurita, F., Monroy-Pineda, M. C., Aguilar-Cortés, G., Rivera, S., & Sandoval-Herazo, M. (2025). Performance of Large-Scale Ornamental Wetlands for Municipal Wastewater Treatment: A Case Study in a Polluted Estuary in the Gulf of Mexico. Sustainability, 17(5), 2120. https://doi.org/10.3390/su17052120