Analysis of the Spatiotemporal Evolution Patterns and Driving Factors of Various Planting Structures in Henan Province Based on Mixed-Pixel Decomposition Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Descriptions
2.3. Research Methodology
2.3.1. The Mixed-Pixel Decomposition Method
2.3.2. Centroid Migration Model
2.3.3. Sen + Mann–Kendall Trend Test
2.3.4. Pearson’s Correlation Coefficient
3. Results
3.1. Spatial Distribution of Different Crop Planting Structures
3.2. Centroid Migration for Different Crop Planting Structures
3.3. Evolution Rrend for Different Crop Planting Structures
3.4. Analysis of Crop Planting Structure Driving Factors
4. Discussion
4.1. Evolution Trend Test and Driver Analysis at the Sub-Pixel Scale
4.2. Driving Factors’ Selection and Changes in Crop Planting Structure
4.3. Uncertainty and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Zhang, H.; Qi, Y.; Pei, H.; Shen, Y. Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China. Agric. Water Manag. 2022, 262, 107326. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; R. Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, W.; Di, L.; Üstündağ, B. Remote sensing for agricultural applications. J. Integr. Agric. 2017, 16, 239–241. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Liang, J.; Zhou, C.; Lei, B.; Luo, Y.; Feng, S. Spatial and Temporal Evolution of Crop Planting Structure in Guangdong-Hong Kong-Macao Greater Bay Area from 1990 to 2020. Guangdong Agric. Sci. 2023, 50, 13–27. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Huo, M.; Chen, F.; He, X. Changes of cropping structure lead diversity decline in China during 1985-2015. J. Environ. Manag. 2023, 346, 119051. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Feng, Y.; Zhang, J.; Wang, J. Analysis on the Characteristics and Tendency of Grain Production’s Spatial Distribution in China. Econ. Geogr. 2013, 33, 117–123. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Tan, M.; Wang, X.; Xin, L. The impact of cultivated land spatial shift on food crop production in China, 1990–2010. Land Degrad. Dev. 2018, 29, 1652–1659. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Li, J.; Lei, H. Tracking the spatio-temporal change of planting area of winter wheat-summer maize cropping system in the North China Plain during 2001–2018. Comput. Electron. Agric. 2021, 187, 106222. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Q.; Xiong, Y.; Yang, Q.; Li, H.; Hou, Z.; Huang, G. Tracking the spatio-temporal change of the main food crop planting structure in the Yellow River Basin over 2001–2020. Comput. Electron. Agric. 2023, 212, 108102. [Google Scholar] [CrossRef]
- Guo, W.; Huang, Y.; Huang, Y.; Li, Y.; Song, X.; Shen, J.; Qi, X.; Zhang, B.; Zhu, Z.; Peng, S.; et al. Develop agricultural planting structure prediction model based on machine learning: The aging of the population has prompted a shift in the planting structure toward food crops. Comput. Electron. Agric. 2024, 221, 108941. [Google Scholar] [CrossRef]
- Defries, R.S.; Belward, A.S. Global and regional land cover characterization from satellite data: An introduction to the Special Issue. Int. J. Remote Sens. 2000, 21, 1083–1092. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, T.; Wang, S.; Li, H. Fractional evergreen forest cover mapping by MODIS time-series FEVC-CV methods at sub-pixel scales. ISPRS-J. Photogramm. Remote Sens. 2020, 163, 272–283. [Google Scholar] [CrossRef]
- Foody, G.M.; Cox, D.P. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. Int. J. Remote Sens. 2007, 15, 619–631. [Google Scholar] [CrossRef]
- Gillespie, A.R. Spectral mixture analysis of multispectral thermal infrared images. Remote Sens. Environ. 1992, 42, 137–145. [Google Scholar] [CrossRef]
- Wei, Z.; Ji, D.; Yang, L. Comprehensive evaluation of water resources carrying capacity in Henan Province based on entropy weight TOPSIS—coupling coordination—obstacle model. Environ. Sci. Pollut. Res. 2023, 30, 115820–115838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, S.; Lu, X.; Liu, Y.; Wang, T.; Zhang, B.; Li, Z.; Wang, W.; Kong, M.; Chen, K. Establish of air pollutants and greenhouse gases emission inventory and co-benefits of their reduction of transportation sector in Central China. J. Environ. Sci. 2025, 150, 604–621. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tian, G.; Wu, H.; Ding, M.; Zhu, A.X.; Ma, T. Regional Assessment of Soil Moisture Active Passive Enhanced L3 Soil Moisture Product and Its Application in Agriculture. Remote Sens. 2024, 16, 1225. [Google Scholar] [CrossRef]
- Climate in Henan. Available online: www.henan.gov.cn (accessed on 25 July 2024).
- Feng, X.; Li, Y.; Zhao, Y.; Chen, J. Spatial Variability Analysis of Wheat Nitrogen Yield Response: A Case Study of Henan Province, China. Agronomy 2023, 13, 1796. [Google Scholar] [CrossRef]
- Xiao, J.; Qiao, J.; Han, D.; Ma, Y.; Zhu, Q.; Wang, W. Spatial distribution and transformation mechanism of specialized villages in typical agricultural areas: Case study of Henan province, China. Habitat Int. 2024, 146, 103034. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Sun, X.; Yan, J.; Sun, Y.; Chen, J. Mapping topsoil pH using different predictive models and covariate sets in Henan Province, Central China. Ecol. Inform. 2023, 78, 102290. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations--a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proceedings of the Imaging Spectrometry V, Denver, CO, USA, 18–23 July 1999; pp. 266–275. [Google Scholar]
- Heinz, D.C.; Chang, C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Yang, J.; Wu, T.; Wang, S.; Zhao, X.; Xiong, H. Extraction of multiple cropping information at the Sub-pixel scale based on phenology and MODIS NDVI time-series: A case study in Henan Province, China. Geocarto Int. 2022, 37, 15999–16019. [Google Scholar] [CrossRef]
- Smith, M.O.; Johnson, P.E.; Adams, J.B. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. J. Geophys. Res. 1985, 90, 797–804. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, T.; Jin, Q.; Lin, Y.; Shi, Q. A centroid movement analysis of land uses in the North China Plain during 1988-2020. J. Food Agric. Environ. 2012, 10, 802–807. [Google Scholar]
- Liu, C.; Zhang, H.; Zhai, G.; Liao, B.; Wu, L.; Zhang, P. Landscape Pattern Changes in Xianghai Wetland in Recent 40 Years. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3005–3008. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Liu, S.; Li, W.; Qiao, W.; Wang, Q.; Hu, Y.; Wang, Z. Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol. Indic. 2019, 103, 331–345. [Google Scholar] [CrossRef]
- Liu, B.; Peng, W.; Zhang, Y. Disparities between climate change facts and farmer’s awareness and perception in an arid region: A case study of the middle and lower reaches of the Heihe River Basin in northwest China. Clim. Risk Manag. 2024, 43, 100588. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W. The spatiotemporal assessments for tidal flat erosion associated with urban expansion in the conterminous coastal United States from 1985 to 2015. Sci. Total Environ. 2023, 899, 165660. [Google Scholar] [CrossRef] [PubMed]
- Kibret, K.S.; Marohn, C.; Cadisch, G. Use of MODIS EVI to map crop phenology, identify cropping systems, detect land use change and drought risk in Ethiopia—An application of Google Earth Engine. Eur. J. Remote Sens. 2020, 53, 176–191. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, T.; Wang, S.; Liu, K.; Yang, J. Cropland abandonment mapping at sub-pixel scales using crop phenological information and MODIS time-series images. Comput. Electron. Agric. 2023, 208, 107763. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; Xiang, K.; Wang, S.; Han, W.; Yuan, W. A sub-pixel method for estimating planting fraction of paddy rice in Northeast China. Remote Sens. Environ. 2018, 205, 305–314. [Google Scholar] [CrossRef]
- Du, Z.; Yang, J.; Ou, C.; Zhang, T. Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method. Remote Sens. 2019, 11, 888. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, X.; Wang, S.; Zhang, X.; Liu, K.; Yang, J. Phenology-based cropland retirement remote sensing model: A case study in Yan’an, Loess Plateau, China. GISci Remote Sens. 2022, 59, 1103–1120. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Tian, S. Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020. Comput. Electron. Agric. 2023, 212, 108105. [Google Scholar] [CrossRef]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T.; Li, J. Sustainable management of land, water, and fertilizer for rice production considering footprint family assessment in a random environment. J. Clean Prod. 2020, 258, 120785. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, J.; Zhuang, D.; Frolking, S.; Boles, S.; Xu, B.; Liu, M.; Salas, W.; Moore, B.; Li, C. Uncertainties in estimates of cropland area in China: A comparison between an AVHRR-derived dataset and a Landsat TM-derived dataset. Glob. Planet. Change 2003, 37, 297–306. [Google Scholar] [CrossRef]
- Fan, L.; Liang, S.; Chen, H.; Hu, Y.; Zhang, X.; Liu, Z.; Wu, W.; Yang, P. Spatio-temporal analysis of the geographical centroids for three major crops in China from 1949 to 2014. J. Geogr. Sci. 2018, 28, 1672–1684. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Tong, J.; Bai, Y.; Alatalo, J.M.; Liu, G.; Fang, Z.; Zhang, F. Impacts of environment and human activity on grid-scale land cropping suitability and optimization of planting structure, measured based on the MaxEnt model. Sci. Total Environ. 2022, 836, 155356. [Google Scholar] [CrossRef]
- Qu, Y.; Li, E.; Fan, H. The pattern evolution and influencing factors of the county-level grain production in Henan Province. Areal Res. Dev. 2017, 36, 148–153. [Google Scholar]
- Liu, Z.; Yang, P.; Wu, W.; Li, Z.; You, L. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geogr. Sin. 2016, 71, 840–851. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Y.; Hu, R.; Shi, G.; Xin, J.; Chen, K.; Meng, Y. Heterogeneous effects of information provision on fertilizer use in China’s rice production. Environ. Dev. Sustain. 2023, 26, 9045–9068. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, L.; Qian, Y.; Wan, X. Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction. Sustainability 2022, 14, 15362. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Li, G.; Zhuang, P.; Hou, G.; Zhang, Q.; Li, C. GACNet: Generate Adversarial-Driven Cross-Aware Network for Hyperspectral Wheat Variety Identification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5503314. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, W.; Li, J.; Zhuang, P.; Sun, H.; Xu, Y.; Li, C. CVANet: Cascaded visual attention network for single image super-resolution. Neural Netw. 2024, 170, 622–634. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, G.; Zhuang, P.; Zhao, W.; Zhou, L. CATNet: Cascaded attention transformer network for marine species image classification. Expert Syst. Appl. 2024, 256, 124932. [Google Scholar] [CrossRef]
Data Type | Data Description | Units |
---|---|---|
NDVI (normalized difference vegetation index) data | MOD13Q1 | NDVI |
Natural factors | Annual average temperature (AAT) | °C |
Annual cumulative precipitation (ACP) | mm | |
Population factors | Urbanization rate (UR) | % |
Sex ratio (SR) | Female = 100 | |
Natural growth rate (NGR) | ‰ | |
Resident rural population (RRP) | 10,000 persons | |
Economic factors | Gross domestic product (GDP) | 100 million yuan |
Disposable income of rural residents (DIR) | 10,000 yuan | |
Agricultural production factors | Consumption of chemical fertilizers (CCF) | 10,000 tons |
Total power of agricultural machinery (TPAM) | 10,000 kW |
Sen’s β | |Z| | Trend Features |
---|---|---|
β > 0.001 | 1.96 < Z | Significant increase |
Z ≤ 1.96 | Weak increase | |
−0.001 ≤ β ≤ 0.001 | Z | No change |
β < 0.001 | Z ≤ 1.96 | Weak decrease |
1.96 < Z | Significant decrease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Yang, J.; Liu, C. Analysis of the Spatiotemporal Evolution Patterns and Driving Factors of Various Planting Structures in Henan Province Based on Mixed-Pixel Decomposition Methods. Sustainability 2025, 17, 1227. https://doi.org/10.3390/su17031227
Han K, Yang J, Liu C. Analysis of the Spatiotemporal Evolution Patterns and Driving Factors of Various Planting Structures in Henan Province Based on Mixed-Pixel Decomposition Methods. Sustainability. 2025; 17(3):1227. https://doi.org/10.3390/su17031227
Chicago/Turabian StyleHan, Kun, Jingyu Yang, and Chao Liu. 2025. "Analysis of the Spatiotemporal Evolution Patterns and Driving Factors of Various Planting Structures in Henan Province Based on Mixed-Pixel Decomposition Methods" Sustainability 17, no. 3: 1227. https://doi.org/10.3390/su17031227
APA StyleHan, K., Yang, J., & Liu, C. (2025). Analysis of the Spatiotemporal Evolution Patterns and Driving Factors of Various Planting Structures in Henan Province Based on Mixed-Pixel Decomposition Methods. Sustainability, 17(3), 1227. https://doi.org/10.3390/su17031227