The Evaluation and Analysis of Spatial and Temporal Evolution of Urban Resilience in the Yangtze River Economic Belt
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Data Source
2.3. Research Methods
2.3.1. Construction of the Urban Resilience Evaluation System
2.3.2. Data Standardization
2.3.3. Entropy Method
2.3.4. Coefficient of Variation
2.3.5. Hurst Exponent
2.3.6. Obstacle Diagnosis Model
3. Results
3.1. Spatio-Temporal Evolution of Urban Resilience in the YREB
3.1.1. Temporal Evolution of Urban Resilience
3.1.2. Spatial Evolution of Urban Resilience
3.2. The Trend of Urban Resilience
3.3. Analysis of Obstacle Factors
3.3.1. Obstacle Factors at the Criterion Layer
3.3.2. Obstacle Factors at the Indicator Layer
4. Discussion
4.1. Spatial and Temporal Differentiation of Urban Resilience in the YREB
4.2. Suggestions for Improving Urban Resilience in the YREB
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 2016, 21, 41. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Resilience and complexity: A bibliometric review and prospects for industrial ecology. J. Ind. Ecol. 2015, 19, 236–251. [Google Scholar] [CrossRef]
- Shi, Y.; Zhai, G.; Xu, L.; Zhou, S.; Lu, Y.; Liu, H.; Huang, W. Assessment methods of urban system resilience: From the perspective of complex adaptive system theory. Cities 2021, 112, 103141. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Pan, H.; Zhong, S. What determines city’s resilience against epidemic outbreak: Evidence from China’s COVID-19 experience. Sustain. Cities Soc. 2021, 70, 102892. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.J.G.; Gonçalves, L.A.P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Rose, A. Defining and measuring economic resilience to disasters. Disaster Prev. Manag. Int. J. 2004, 13, 307–314. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Ilıcak, Ö.; Feyzioğlu, O. A review of urban resilience literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am. J. Community Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- O’Connell, D.; Walker, B.; Abel, N.; Grigg, N. The Resilience, Adaptation and Transformation Assessment Framework: From Theory to Application; CSIRO: Camberra, Australia, 2015. [Google Scholar]
- Wu, Q.; Han, J.; Lei, C.; Ding, W.; Li, B.; Zhang, L. The challenges and countermeasures in emergency management after the establishment of the ministry of emergency management of China: A case study. Int. J. Disaster Risk Reduct. 2021, 55, 102075. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Z. Analysis on the structure and economic resilience capacity of China’s regional economic network. Appl. Econ. 2024, 56, 3920–3938. [Google Scholar] [CrossRef]
- Ban, Y.; Wang, Y.; Chen, X.; Wei, L. Synergistic Patterns of Urban Economic Efficiency and the Economic Resilience of the Harbin–Changchun Urban Agglomeration in China. Sustainability 2022, 15, 102. [Google Scholar] [CrossRef]
- Lv, J.; Zeng, H.; Liu, Z. The impact of green innovation capacity on urban economic resilience: Evidence from China’s Yangtze River Delta region. Sustainability 2023, 15, 15235. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Meng, Z.; He, M.; Li, X.; Li, H.; Tan, Y.; Li, Z.; Wei, Y. Spatio-temporal analysis and driving forces of urban ecosystem resilience based on land use: A case study in the Great Bay Area. Ecol. Indic. 2024, 159, 111769. [Google Scholar] [CrossRef]
- Xu, C.; Huo, X.; Hong, Y.; Yu, C.; de Jong, M.; Cheng, B. How urban greening policy affects urban ecological resilience: Quasi-natural experimental evidence from three megacity clusters in China. J. Clean. Prod. 2024, 452, 142233. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Y.; Wang, E.; Wang, Y.; Zhang, J. Measuring urban infrastructure resilience via pressure-state-response framework in four Chinese municipalities. Appl. Sci. 2022, 12, 2819. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Qalati, S.A.; Qureshi, N.A. Urban resilience and transportation infrastructure level in the yangtze river delta. Front. Environ. Sci. 2022, 10, 893964. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Kumari, S.; Song, Z. Research on the spatial spillover effect of transportation infrastructure on urban resilience in three major urban agglomerations in China. Sustainability 2023, 15, 5543. [Google Scholar] [CrossRef]
- Ye, X.; Du, J.; Han, Y.; Newman, G.; Retchless, D.; Zou, L.; Ham, Y.; Cai, Z. Developing human-centered urban digital twins for community infrastructure resilience: A research agenda. J. Plan. Lit. 2023, 38, 187–199. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Zhang, Y. An urban system perspective on urban flood resilience using SEM: Evidence from Nanjing city, China. Nat. Hazards 2021, 109, 2575–2599. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jiang, R.; Wu, H.; Xie, J.; Zhao, Y.; Song, Y.; Li, F. A system dynamics model of urban rainstorm and flood resilience to achieve the sustainable development goals. Sustain. Cities Soc. 2023, 96, 104631. [Google Scholar] [CrossRef]
- Carvalho, D.; Martins, H.; Marta-Almeida, M.; Rocha, A.; Borrego, C. Urban resilience to future urban heat waves under a climate change scenario: A case study for Porto urban area (Portugal). Urban Clim. 2017, 19, 1–27. [Google Scholar] [CrossRef]
- Xi, Z.; Li, C.; Zhou, L.; Yang, H.; Burghardt, R. Built environment influences on urban climate resilience: Evidence from extreme heat events in Macau. Sci. Total Environ. 2023, 859, 160270. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Zhuang, M.; Ding, S. The impact of climate change on urban resilience in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2022, 827, 154157. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Chen, T.; Wang, L. Heat stress resilience assessment of urban form from physical space dimension: A case study of Guangdong-Hong Kong-Macao Greater Bay Area. Urban Clim. 2024, 55, 101905. [Google Scholar] [CrossRef]
- Zhai, C.; Zhao, Y.; Wen, W.P.; Qin, H.; Xie, L. A novel urban seismic resilience assessment method considering the weighting of post-earthquake loss and recovery time. Int. J. Disaster Risk Reduct. 2023, 84, 103453. [Google Scholar] [CrossRef]
- Zhao, T.; Tang, Y.; Li, Q.; Wang, J. Enhancing urban system resilience to earthquake disasters: Impact of interdependence and resource allocation. Int. J. Crit. Infrastruct. Prot. 2024, 45, 100673. [Google Scholar] [CrossRef]
- Gao, L.; Wang, M.; Liu, A.; Gong, H. Comprehensive evaluation of urban road network resilience facing earthquakes. Math. Probl. Eng. 2021, 2021, 6659114. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, J.; Li, S.; Nie, J.; Chen, H.; Han, G. Socioeconomic impacts on damage risk from typhoons in mega-urban regions in China: A case study using Typhoons Mangkhut and Lekima. Int. J. Disaster Risk Reduct. 2024, 101, 104210. [Google Scholar] [CrossRef]
- Liu, W.Y.; Liu, C.R.; Lin, C.C. Enhancing urban climate resilience: A holistic evaluation of urban forest disservices in the aftermath of typhoons. Urban Clim. 2024, 54, 101857. [Google Scholar] [CrossRef]
- Ding, S.; Xu, L.; Liu, S.; Yang, X.; Wang, L.; Perez-Sindin, X.S.; Prishchepov, A.V. Understanding the spatial disparity in socio-economic recovery of coastal communities following typhoon disasters. Sci. Total Environ. 2024, 919, 170831. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Hernantes, J.; Maraña, P.; Gimenez, R.; Sarriegi, J.M.; Labaka, L. Towards resilient cities: A maturity model for operationalizing resilience. Cities 2019, 84, 96–103. [Google Scholar] [CrossRef]
- Tang, D.; Li, J.; Zhao, Z.; Boamah, V.; Lansana, D.D. The influence of industrial structure transformation on urban resilience based on 110 prefecture-level cities in the Yangtze River. Sustain. Cities Soc. 2023, 96, 104621. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Yin, S. Interaction mechanisms of urban ecosystem resilience based on pressure-state-response framework: A case study of the Yangtze River Delta. Ecol. Indic. 2024, 166, 112263. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, C.C.; Peng, D. Does regional integration improve economic resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Mehmood, A. Of resilient places: Planning for urban resilience. Eur. Plan. Stud. 2016, 24, 407–419. [Google Scholar] [CrossRef]
- Vallance, S.; Carlton, S. First to respond, last to leave: Communities’ roles and resilience across the ‘4Rs’. Int. J. Disaster Risk Reduct. 2015, 14, 27–36. [Google Scholar] [CrossRef]
- Ouyang, M.; Dueñas-Osorio, L.; Min, X. A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 2012, 36, 23–31. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, J.; Zhang, L. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cities Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Guo, Z.; Yao, S.; Chen, S.; Wu, W.; Liu, W. Spatial-temporal evolution of the livability levels in the Yangtze River Delta urban agglomerations and its influencing factors. Econ. Geogr. 2020, 40, 79–88. (In Chinese) [Google Scholar]
- Wu, G.; Francey, L.J.; Ruben, M.D.; Hogenesch, J.B. Normalized coefficient of variation (nCV): A method to evaluate circadian clock robustness in population scale data. Bioinformatics 2021, 37, 4581–4583. [Google Scholar] [CrossRef]
- Wu, X.; Huang, X.; Guo, S. The fractal characteristics and risk indicators of urban ecological environment vulnerability evolution. Ecol. Inform. 2025, 86, 103033. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, C.; Chen, M.; Hai, X.; Yao, H. Measurement and Spatio-temporal Differentiation of Common Prosperity Level of Chinese Farmers. Econ. Geogr. 2022, 42, 11–21. (In Chinese) [Google Scholar]
- Peng, K.; He, X.; Xu, C. Coupling coordination relationship and dynamic response between urbanization and urban resilience: Case of Yangtze river delta. Sustainability 2023, 15, 2702. [Google Scholar] [CrossRef]
- Li, S.; Su, X.; Fu, A. Impact of Economic Resilience on High-quality Development of Urban Agglomerations in the Middle Reaches of the Yangtze River. Econ. Geogr. 2022, 42, 19–24. (In Chinese) [Google Scholar]
- Ye, C.; Hu, M.; Lu, L.; Dong, Q.; Gu, M. Spatio-temporal evolution and factor explanatory power analysis of urban resilience in the Yangtze River Economic Belt. Geogr. Sustain. 2022, 3, 299–311. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Mu, H.; Miao, J.; Li, W.; Li, M. Assessment of urban resilience and subsystem coupling coordination in the Beijing-Tianjin-Hebei urban agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Xiao, Y.; Rao, X.; Chang, M.; Chen, L.; Huang, H. Assessment of urban flood resilience and obstacle factors identification: A case study of three major urban agglomerations in China. Ecol. Indic. 2025, 176, 113659. [Google Scholar] [CrossRef]
Dimension | Criterion Layer | Indicator Layer | Indicator Meaning |
---|---|---|---|
Ecological resilience | Ecological environment(C1) | Per capita area of parks and green land (X1) | It reflects the ecological quality of the city. |
Built-up area (X2) | It reflects the occupation of the natural environment by urban construction. | ||
Green coverage of Built-up Area (X3) | It reflects the improvement of urban ecology. | ||
Industry waste water emission (X4) | It reflects the ecological burden of urban industrial development. | ||
Total water resources (X5) | It reflects the situation of urban water resources. | ||
Industry sulfur dioxide emission (X6) | It reflects the extent of air pollution from industrial emissions. | ||
Environmental management (C2) | Ratio of waste water treatment (X7) | It reflects the capacity of water pollution management. | |
Ratio of domestic garbage treatment (X8) | It reflects capacity in urban environmental governance. | ||
Economic resilience | Economic developmentC3) | Per capita GDP (X9) | It reflects economic development. |
Tertiary industry as percentage to GDP (X10) | It reflects the contribution of the tertiary sector in the structure of the economy. | ||
GDP growth rate (X11) | It reflects the economic development potential of cities. | ||
Economic stability (C4) | Persons employed in units at year-end (X12) | It reflects the dynamism of urban labor markets. | |
Deposits and loans of financial institutions at year-end (X13) | It reflects the financial resource reserves. | ||
Total retail sales of consumer goods (X14) | It reflects economic internal circulation. | ||
Total profits of Industrial enterprises above designated size (X15) | It reflects the industrial economy. | ||
Social resilience | Social structure (C5) | Natural growth rate of population (X16) | It reflects demographic stability. |
Urban population density (X17) | It reflects the urban spatial carrying capacity and pressure on social services. | ||
Resident life (C6) | Urban registered unemployment rate (X18) | It reflects the health of urban labor markets. | |
Number of persons joining basic medical care insurance (X19) | It reflects the integrity of the social security system. | ||
Number of subscribers of Internet services (X20) | It reflects the ability of residents to access information and resources. | ||
Educational level (C7) | Number of regular higher education institutions (X21) | It reflects the richness of educational resources. | |
Number of undergraduates in regular HEIs (X22) | It reflects the education systems. | ||
Infrastructure resilience | Transportation (C8) | Per capita road area (X23) | It reflects the carrying capacity of transportation facilities. |
Total mileage of roads (X24) | It reflects the degree of sophistication of external transportation links. | ||
Number of buses under operation (X25) | It reflects public transportation services. | ||
Energy supply (C9) | Length of urban sewage pipes (X26) | It reflects the degree of coverage of urban drainage systems. | |
Urban electricity consumption (X27) | It reflects demand for energy. | ||
Liquefied petroleum gas supply (X28) | It reflects the supply capacity of gas. | ||
Area of land used for living (X29) | It reflects the scale of urban residential land use. | ||
Institutional resilience | Administrative governance (C10) | local expenditure for science and technology (X30) | It reflects the level of government investment in scientific research. |
Local expenditure for education (X31) | It reflects the level of government investment in education resources. |
Ranking | 2002 | 2010 | 2015 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
City | Urban Resilience | City | Urban Resilience | City | Urban Resilience | City | Urban Resilience | |
1 | Shanghai | 0.3147 | Shanghai | 0.5275 | Shanghai | 0.5996 | Shanghai | 0.6539 |
2 | Nanjing | 0.1714 | Chongqing | 0.2774 | Chongqing | 0.3886 | Chongqing | 0.5469 |
3 | Wuhan | 0.1435 | Wuhan | 0.2760 | Wuhan | 0.3196 | Chengdu | 0.4703 |
4 | Hangzhou | 0.1292 | Nanjing | 0.2264 | Chengdu | 0.2956 | Wuhan | 0.4063 |
5 | Chongqing | 0.1165 | Chengdu | 0.2221 | Nanjing | 0.2784 | Hangzhou | 0.3773 |
6 | Chengdu | 0.1145 | Hangzhou | 0.2100 | Hangzhou | 0.2623 | Suzhou | 0.3567 |
7 | Ningbo | 0.1066 | Changsha | 0.1686 | Suzhou | 0.2333 | Nanjing | 0.3356 |
8 | Changsha | 0.0949 | Suzhou | 0.1669 | Changsha | 0.2143 | Hefei | 0.3080 |
9 | Suzhou | 0.0928 | Hefei | 0.1527 | Kunming | 0.2004 | Changsha | 0.2916 |
10 | Kunming | 0.0848 | Kunming | 0.1496 | Hefei | 0.1994 | Ningbo | 0.2563 |
… | … | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … | … |
Mean | 0.0441 | 0.0690 | 0.0858 | 0.1146 |
Region | Year | Urban Resilience | Ecological Resilience | Economic Resilience | Social Resilience | Infrastructure Resilience | Institutional Resilience |
---|---|---|---|---|---|---|---|
Yangzi River Economic Belt | 2002 | 0.7587 | 0.3974 | 0.6316 | 1.3107 | 1.6833 | 3.9623 |
2010 | 0.8464 | 0.2218 | 1.0362 | 1.5024 | 1.3889 | 2.2112 | |
2015 | 0.8223 | 0.1195 | 1.1154 | 1.4328 | 1.2910 | 1.5905 | |
2022 | 0.7886 | 0.0879 | 1.0757 | 1.3729 | 0.9317 | 1.5210 | |
Lower Reaches | 2002 | 0.8403 | 0.3305 | 0.7512 | 1.2893 | 1.5972 | 3.4918 |
2010 | 0.8795 | 0.1428 | 1.0213 | 1.4097 | 1.3144 | 2.0291 | |
2015 | 0.8211 | 0.0799 | 1.0117 | 1.2141 | 1.2210 | 1.5119 | |
2022 | 0.7459 | 0.0615 | 1.0490 | 1.1214 | 0.7982 | 1.3696 | |
Middle Reaches | 2002 | 0.4993 | 0.3183 | 0.3756 | 1.3519 | 0.8585 | 1.8525 |
2010 | 0.6454 | 0.2230 | 0.6132 | 1.5766 | 0.9849 | 0.7726 | |
2015 | 0.6284 | 0.1012 | 0.6347 | 1.5500 | 0.8790 | 0.9174 | |
2022 | 0.6139 | 0.0706 | 0.5835 | 1.4645 | 0.7042 | 1.0503 | |
Upper Reaches | 2002 | 0.6146 | 0.5170 | 0.5453 | 1.2644 | 1.4094 | 1.8690 |
2010 | 0.8653 | 0.2906 | 0.9243 | 1.5959 | 1.5309 | 1.4684 | |
2015 | 0.9031 | 0.1684 | 1.3680 | 1.6668 | 1.4118 | 1.3965 | |
2022 | 0.9424 | 0.1272 | 1.2071 | 1.6356 | 1.1975 | 1.6899 |
Ranking | 2002 | 2010 | 2015 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Obstacle Factor | Obstacle Degree | Obstacle Factor | Obstacle Degree | Obstacle Factor | Obstacle Degree | OBSTACLE Factor | Obstacle Degree | |
1 | X30 | 7.12% | X30 | 7.43% | X30 | 7.58% | X30 | 7.45% |
2 | X25 | 6.58% | X25 | 6.80% | X9 | 6.99% | X9 | 7.19% |
3 | X9 | 6.38% | X9 | 6.74% | X25 | 6.88% | X25 | 7.00% |
4 | X19 | 6.28% | X19 | 6.49% | X19 | 6.75% | X19 | 6.87% |
5 | X22 | 5.82% | X22 | 5.83% | X22 | 5.97% | X16 | 6.52% |
6 | X7 | 5.81% | X2 | 5.53% | X2 | 5.71% | X22 | 5.84% |
7 | X2 | 5.28% | X16 | 5.34% | X20 | 5.41% | X2 | 5.83% |
8 | X16 | 5.02% | X20 | 5.18% | X21 | 5.20% | X20 | 5.42% |
9 | X21 | 5.01% | X21 | 5.06% | X16 | 5.08% | X21 | 5.24% |
10 | X20 | 5.00% | X5 | 4.60% | X5 | 4.73% | X5 | 4.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Wang, Y.; Che, M.; Luo, J. The Evaluation and Analysis of Spatial and Temporal Evolution of Urban Resilience in the Yangtze River Economic Belt. Sustainability 2025, 17, 7408. https://doi.org/10.3390/su17167408
Yang F, Wang Y, Che M, Luo J. The Evaluation and Analysis of Spatial and Temporal Evolution of Urban Resilience in the Yangtze River Economic Belt. Sustainability. 2025; 17(16):7408. https://doi.org/10.3390/su17167408
Chicago/Turabian StyleYang, Fan, Yuexia Wang, Meiqin Che, and Jieqiong Luo. 2025. "The Evaluation and Analysis of Spatial and Temporal Evolution of Urban Resilience in the Yangtze River Economic Belt" Sustainability 17, no. 16: 7408. https://doi.org/10.3390/su17167408
APA StyleYang, F., Wang, Y., Che, M., & Luo, J. (2025). The Evaluation and Analysis of Spatial and Temporal Evolution of Urban Resilience in the Yangtze River Economic Belt. Sustainability, 17(16), 7408. https://doi.org/10.3390/su17167408