Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies
Abstract
:1. Introduction
2. Extreme Weather and Its Impact on Power System Operation
3. Vulnerabilities of the Power System
4. Power System Operation Optimization Due to Extreme Weather Conditions
5. Methodology
6. Bibliometric Analysis
7. Practical Implications for Stakeholders
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Zhang, H.; Li, G.; Bie, Z. Three-module Power System Resilience Assessment Framework under Different Types of Disasters. DEStech Trans. Environ. Energy Earth Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, N.; Abdelmalak, M.; Benidris, M.; Kamruzzaman, M. Power System Resilience: Current Practices, Challenges, and Future Directions. IEEE Access 2020, 8, 18–064. [Google Scholar] [CrossRef]
- Stasinos, E.I.E.; Hatziargyriou, N.D.; Trakas, D.N. Microgrids for power system resilience enhancement. iEnergy 2022, 1, 158–169. [Google Scholar] [CrossRef]
- Panteli, M.; Hatziargyriou, N.D.; Mancarella, P.; Trakas, D.N. Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies. Proc. IEEE 2017, 105, 1202–1213. [Google Scholar] [CrossRef]
- Raoufi, H.; Vahidinasab, V.; Mehran, K. Power Systems Resilience Metrics: A Comprehensive Review of Challenges and Outlook. Sustainability 2020, 12, 9698. [Google Scholar] [CrossRef]
- Wang, F.; Yan, J.; Yan, Z.; Xu, J.; Chen, D. Physical-cyber-human framework-based resilience evaluation toward urban power system: Case study from China. Risk Anal. Off. Publ. Soc. Risk Anal. 2022, 43, 800–819. [Google Scholar] [CrossRef]
- Arghandeh, R.; Meier, A.; Mehrmanesh, L.; Mili, L. On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 2016, 58, 1060–1069. [Google Scholar] [CrossRef]
- Raoufi, H.; Vahidinasab, V. Power system resilience assessment considering critical infrastructure resilience approaches and government pol- icymaker criteria. IET Gener. Transm. Distrib. 2021, 15, 2819–2834. [Google Scholar] [CrossRef]
- Abantao, G.A.; Ibañez, J.A.; Bundoc, P.E.D.C.; Blas, L.L.F.; Penisa, X.N.; Esparcia, E.A., Jr.; Castro, M.T.; Buendia, R.V.E.; Pilario, K.E.S.; Tio, A.E.D.; et al. Reconceptualizing Reliability Indices as Metrics to Quantify Power Distribution System Resilience. Energies 2024, 17, 1909. [Google Scholar] [CrossRef]
- Panteli, M.; Dawson, R.; Wilkinson, S.; Pickering, C.; Mancarella, P. Power System Resilience to Weather: Fragility Modeling, Probabilistic Impact Assessment, and Adaptation Measures. IEEE Trans. Power Syst. 2017, 32, 3747–3757. [Google Scholar] [CrossRef]
- Kostenko, G.; Zaporozhets, A. Enhancing of the power system resilience through the application of micro power systems (microgrid) with renewable distributed generation. Syst. Res. Energy 2023, 2023, 25–38. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Samadi, M.; Lotfi, H.; Hajiabadi, M.E. Improving the resilience of the distribution system using the automation of network switches. J. Eng. 2023, 2023, e12238. [Google Scholar] [CrossRef]
- Xu, L. Resilience of renewable power systems under climate risks. Nat. Rev. Electr. Eng. 2024, 1, 53–66. [Google Scholar] [CrossRef]
- Bragatto, T. Assessment and Possible Solution to Increase Resilience: Flooding Threats in Terni Distribution Grid. Energies 2019, 12, 744. [Google Scholar] [CrossRef]
- Mwifunyi, R.J.; Mnyanghwalo, D.C.; Kawambwa, S.J. Enhancing Service Restoration in Tanzanian Power Grid using Internet of Things Sensors and Renewable Energy Sources. Tanzan. J. Sci. 2023, 49, 664–676. [Google Scholar] [CrossRef]
- Mishra, S.; Anderson, K.; Miller, B.; Boyer, K.; Warren, A. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Appl. Energy 2020, 264, 114–726. [Google Scholar] [CrossRef]
- Kandaperumal, G.; Srivastava, A.K. Resilience of the electric distribution systems: Concepts, classification, assessment, challenges, and research needs. IET Smart Grid 2020, 3, 133–143. [Google Scholar] [CrossRef]
- Stanković, A.M. Methods for Analysis and Quantification of Power System Resilience. IEEE Trans. Power Syst. 2023, 38, 4774–4787. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. The Grid: Stronger, Bigger, Smarter?: Presenting a Conceptual Framework of Power System Resilience. IEEE Power Energy Mag. 2015, 13, 58–66. [Google Scholar] [CrossRef]
- Panteli, M.; Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [Google Scholar] [CrossRef]
- Braun, M.; Hachmann, C.; Haack, J. Blackouts, Restoration, and Islanding: A System Resilience Perspective. IEEE Power Energy Mag. 2020, 18, 54–63. [Google Scholar] [CrossRef]
- Chen, Y. Analytic network process: Academic insights and perspectives analysis. J. Clean. Prod. 2019, 235, 1276–1294. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.K.; Zhao, L.; Tseng, M.L.; Chien, C.F.; Lev, B. The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview. Omega 2019, 93, 102098. [Google Scholar] [CrossRef]
- Baghestan, A.G. A Crisis in ‘Open Access’: Should Communication Scholarly Outputs Take 77 Years to Become Open Access? Sage Open 2019, 9, 215–824. [Google Scholar] [CrossRef]
- Li, L. Lattice Boltzmann Method for Fluid-Thermal Systems: Status, Hotspots, Trends and Outlook. IEEE Access 2020, 8, 27–649. [Google Scholar] [CrossRef]
- Ebrahim, S.A.; Poshtan, J.; Ebrahim, N.A.; Jamali, S.M. Quantitative and Qualitative Analysis of Time-Series Classification Using Deep Learning. IEEE Access 2020, 8, 90–202. [Google Scholar] [CrossRef]
- Alqudah, M.; Obradovic, Z. Enhancing Weather-Related Outage Pre- diction and Precursor Discovery Through Attention-Based Multi-Level Modeling. IEEE Access 2023, 11, 94–840. [Google Scholar] [CrossRef]
- Abdelmalak, M.; Benidris, M.; Hotchkiss, E.; Cox, J.; Ericson, S. Quantitative Resilience-Based Assessment Framework Using EAGLE-I Power Outage Data. IEEE Access 2023, 11, 7682–7697. [Google Scholar] [CrossRef]
- Chen, L.; Shi, X.; Sun, J.; Peng, B. Dynamic Simulation of Power Systems Considering Transmission Lines Icing and Insulators Flashover in Extreme Weather. IEEE Access 2022, 10, 39–656. [Google Scholar] [CrossRef]
- Cerrai, D. Predicting Storm Outages Through New Representations of Weather and Vegetation. IEEE Access 2019, 7, 29–639. [Google Scholar] [CrossRef]
- Baembitov, R.; Brewster, K.A.; Kezunovic, M.; Obradovic, Z. Incorporating Wind Modeling Into Electric Grid Outage Risk Prediction and Mitigation Solution. IEEE Access 2023, 11, 4373–4380. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, F.; Liu, K.; Hou, Y.; Lei, S. Resilience Enhancement with Sequentially Proactive Operation Strategies. IEEE Trans. Power Syst. 2017, 32, 2847–2857. [Google Scholar] [CrossRef]
- Chowdhury, S.; Zhang, Y. Two-Stage Stochastic Optimal Power Flow for Microgrids with Uncertain Wildfire Effects. IEEE Access 2024, 12, 68–857. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Lin, Z.; Ye, R.; Yu, Z. An Ordered Curtailment Strategy for Offshore Wind Power Under Extreme Weather Conditions Considering the Resilience of the Grid. IEEE Access 2019, 7, 54–824. [Google Scholar] [CrossRef]
- Aljurbua, R.; Power, W.; Alharbi, A.; Alshehri, J.; Obradovic, Z. Social Media Sensors for Weather-Caused Outage Prediction Based on Spatio- Temporal Multiplex Network Representation. IEEE Access 2023, 11, 125–883. [Google Scholar] [CrossRef]
- Pinthurat, W.; Surinkaew, T.; Kongsuk, P.; Marungsri, B. An Adaptive Data-Driven-Based Control for Voltage Control Loop of Grid-Forming Converters in Variable Inertia MGs. IEEE Access 2024, 12, 58–143. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, G.; Su, L.; Qiu, F. Resilience Enhancement of Distribution Grids Against Extreme Weather Events. IEEE Trans. Power Syst. 2018, 33, 4842–4853. [Google Scholar] [CrossRef]
- Onaolapo, A.K.; Dorrell, D.G.; Carpanen, R.P.; Ojo, E.E. A Comparative Assessment of Conventional and Artificial Neural Networks Methods for Electricity Outage Forecasting. Energies 2022, 15, 511. [Google Scholar] [CrossRef]
- Nateghi, R.; Guikema, S.D.; Wu, Y.; Bruss, C.B. Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards. Risk Anal. 2015, 36, 4–15. [Google Scholar] [CrossRef]
- Mukherjee, S.; Nateghi, R. A Data-Driven Approach to Assessing Supply Inadequacy Risks Due to Climate-Induced Shifts in Electricity Demand. Risk Anal. 2018, 39, 673–694. [Google Scholar] [CrossRef]
- Xie, B.; Wu, Z.; Li, C.; Chen, W. Topological Modeling Research on the Functional Vulnerability of Power Grid under Extreme Weather. Energies 2021, 14, 5183. [Google Scholar] [CrossRef]
- Cadini, F.; Agliardi, G.L.; Zio, E. A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Appl. Energy 2016, 185, 267–279. [Google Scholar] [CrossRef]
- Auffhammer, M.; Baylis, P.; Hausman, C.H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.R.; Craig, M.; Jaramillo, P.; Bergés, M.; Severnini, E.; Loew, A.; Zhai, H.; Cheng, Y.; Nijssen, B.; Voisin, N.; et al. Effects of Climate Change on Capacity Expansion Decisions of an Electricity Generation Fleet in the Southeast U.S. Sci. Technol. 2021, 55, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Hong, T.; Scartezzini, J.L. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Qin, B.; Fang, R.; Zhu, Y.; Wang, H.; Shi, W.; Wu, D. Underground energy storage system supported resilience enhancement for power system in high penetration of renewable energy. Front. Energy Res. 2023, 11, 1138318. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Jia, C. Electric Vehicle and Photovoltaic Power Scenario Generation under Extreme High-Temperature Weather. World Electr. Veh. J. 2024, 15, 11. [Google Scholar] [CrossRef]
- Yao, F.; Tseng, C.L.; Zhao, X.; Wang, J.; Wang, Q.; Wen, F. An Integrated Planning Strategy for a Power Network and the Charging Infrastructure of Electric Vehicles for Power System Resilience Enhancement. Energies 2019, 12, 3918. [Google Scholar] [CrossRef]
- Rocchetta, R.; Li, Y.F.; Zio, E. Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions. Reliab. Eng. Syst. Saf. 2014, 136, 47–61. [Google Scholar] [CrossRef]
- Fan, G.; Lin, X.; Chen, N.; Du, Z. Mobile power sources pre-allocation and dispatch strategy in power-transportation coupled network under extreme weather. IET Renew. Power Gener. 2023, 18, 1129–1148. [Google Scholar] [CrossRef]
- Chen, L.; Terzija, V.; Zhang, H.; Wu, Q. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events. IEEE Trans. Smart Grid 2017, 9, 5038–5046. [Google Scholar] [CrossRef]
- Junjie, R.; Zhi, Z.; Gengyin, L.; Ming, Z. Coordination of preventive and emergency dispatch in renewable energy integrated power systems under extreme weather. IET Renew. Power Gener. 2023, 18, 1164–1176. [Google Scholar] [CrossRef]
- Karangelos, E.; Wehenkel, L.; Perkin, S. Probabilistic Resilience Analysis of the Icelandic Power System under Extreme Weather. Appl. Sci. 2020, 10, 5089. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Wang, B.; Li, M.; Yu, Y. Impact of Gale Weather Events on Wind Power Generation. J. Phys. Conf. Ser. 2024, 2774, 12–13. [Google Scholar] [CrossRef]
- Alhaddad, U.; Basuhail, A.; Eassa, F.E.; Jambi, K.; Khemakhem, M. Towards Sustainable Energy Grids: A Machine Learning-Based En- semble Methods Approach for Outages Estimation in Extreme Weather Events. Sustainability 2023, 15, 12622. [Google Scholar] [CrossRef]
- Luo, G.; Liu, C.; Xu, W.; Liu, J.; Yang, Y.; Qian, F. Method of adapting to grid recovery in extreme weather conditions. J. Eng. 2017, 2017, 2236–2240. [Google Scholar] [CrossRef]
- Xie, B.; Chen, W.; Kong, L.; Tian, X. The Vulnerability of the Power Grid Structure: A System Analysis Based on Complex Network Theory. Sensors 2021, 21, 7097. [Google Scholar] [CrossRef]
- Thirumalai, M.; Yuvaraj, T.; Prabaharan, N.; Hariharan, R. Optimizing Distribution System Resilience in Extreme Weather Using Prosumer- Centric Microgrids with Integrated Distributed Energy Resources and Battery Electric Vehicles. Sustainability 2024, 16, 2379. [Google Scholar] [CrossRef]
- Zafeiropoulou, M. Forecasting Transmission and Distribution System Flexibility Needs for Severe Weather Condition Resilience and Outage Management. Appl. Sci. 2022, 12, 7334. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Li, Z.; Xue, Y.; Chang, X.; Su, J.; Jin, X.; Wang, P.; Sun, H. Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach. Appl. Energy 2025, 383, 125271. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Liu, Y.; Wu, J.; Liu, D.; Zhang, R.; Song, Y. A Stochastic Bi-Level Optimal Allocation Approach of Intelligent Buildings Considering Energy Storage Sharing Services. IEEE Trans. Consum. Electron. 2024, 70, 5142–5153. [Google Scholar] [CrossRef]
- Ebrahim, N.A. How to Write a Review Paper. Zenodo. 2013. Available online: https://zenodo.org/records/185775 (accessed on 8 December 2024).
- Haddaway, N.R.; Page, M.J.; Mcguinness, L.A.; Pritchard, C.C. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Aria, M.; Le, T.; Choe, J.; Belfiore, A.; Cuccurullo, C. openalexR: An R-Tool for Collecting Bibliometric Data from OpenAlex. R J. 2024, 15, 167–180. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.K.; Zhao, L.; Vilela, A.L.M. The evolution of Industrial Management & Data Systems over the past 25 years. Ind. Manag. Data Syst. 2019, 119, 2–34. [Google Scholar]
- Aghaei, C.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Can. Cent. Sci. Educ. 2013, 9. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 2014:2025 |
Sources (Journals, Books, etc) | 535 |
Documents | 1178 |
Annual Growth Rate % | 13.06 |
Document Average Age | 5.18 |
Average citations per doc | 15.71 |
References | 0 |
DOCUMENT CONTENTS | |
Keywords Plus (ID) | 3559 |
Author’s Keywords (DE) | 3795 |
AUTHORS | |
Authors | 3043 |
Authors of single-authored docs | 35 |
AUTHORS COLLABORATION | |
Single-authored docs | 39 |
Co-Authors per Doc | 4.61 |
International co-authorships % | 12.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofigh, M.A.; Selvaraj, J.; Rahim, N.A. Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies. Sustainability 2025, 17, 5658. https://doi.org/10.3390/su17125658
Tofigh MA, Selvaraj J, Rahim NA. Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies. Sustainability. 2025; 17(12):5658. https://doi.org/10.3390/su17125658
Chicago/Turabian StyleTofigh, Mohammad Ali, Jeyraj Selvaraj, and Nasrudin Abd Rahim. 2025. "Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies" Sustainability 17, no. 12: 5658. https://doi.org/10.3390/su17125658
APA StyleTofigh, M. A., Selvaraj, J., & Rahim, N. A. (2025). Bibliometric Analysis of Extreme Weather Research: Patterns and Partnerships in Power Grid Resilience Studies. Sustainability, 17(12), 5658. https://doi.org/10.3390/su17125658