The Impact of Industrial Robots on the Sustainable Development of Zombie Firms in China
Abstract
:1. Introduction
2. Empirical Facts and Theoretical Model
2.1. Empirical Facts
2.2. Theoretical Model
3. Empirical Specification
3.1. Data Source
3.2. Model Specification
3.3. Variable Definitions
4. Empirical Results and Analysis
4.1. Baseline Results
4.2. Mechanism
4.2.1. Capital Yield Rate
4.2.2. Labor Productivity
4.2.3. TFP
4.3. Heterogeneous Responses
4.3.1. Different Regions
4.3.2. Different Capital-Intensity Levels
4.3.3. Different Pollution Levels
5. Robustness Checks
5.1. Replacement of the Dependent Variable
5.2. Exclusion of the Automotive Industry Sample
5.3. Endogeneity Treatment
5.4. Add Control Variables
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graetz, G.; Michaels, G. Robots at Work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef]
- Koch, M.; Manuylov, I.; Smolka, M. Robots and Firms. Econ. J. 2021, 131, 2553–2584. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Industry 4.0 and opportunities for energy sustainability. J. Clean. Prod. 2021, 295, 126427. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Kromann, L.; Malchow-Møller, N.; Skaksen, J.R.; Sørensen, A. Automation and productivity—A cross-country, cross-industry comparison. Ind. Corp. Chang. 2020, 29, 265–287. [Google Scholar] [CrossRef]
- Bidwell, M.J. What Happened to Long-term Employment? The Role of Worker Power and Environmental Turbulence in Explaining Declines in Worker Tenure. Organ. Sci. 2013, 24, 1061–1082. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The Future of Employment: How Susceptible Are Jobs to Computerisation? Technol. Forecast. Soc. Change 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Dauth, W.; Findeisen, S.; Südekum, J.; Wößner, N. German Robots—The Impact of Industrial Robots on Workers. 2017. Available online: https://ssrn.com/abstract=3039031 (accessed on 1 September 2017).
- Acemoglu, D.; Restrepo, P. The Race between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Autor, D.H. Why are There Still so Many Jobs? The History and Future of Workplace Automation. J. Econ. Perspect. 2015, 29, 3–30. [Google Scholar] [CrossRef]
- Alexopoulos, M.; Cohen, J. The Medium is The Measure: Technical Change and Employment, 1909–1949. Rev. Econ. Stat. 2016, 98, 792–810. [Google Scholar] [CrossRef]
- Dauth, W.; Findeisen, S.; Suedekum, J.; Woessner, N. The Adjustment of Labor Markets to Robots. J. Eur. Econ. Assoc. 2021, 19, 3104–3153. [Google Scholar] [CrossRef]
- Autor, D.; Chin, C.; Salomons, A.M.; Seegmiller, B. New Frontiers: The Origins and Content of New Work, 1940–2018; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2022; p. 30389. [Google Scholar]
- Benzel, S.G.; Kotlikoff, L.J.; Lagarda, G.; Sachs, J.D. Robots Are Us: Some Economics of Human Replacement; Boston University Department of Economics Working Papers Series; National Bureau of Economic Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Brougham, D.; Haar, J. Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ Perceptions of Our Future Workplace. J. Manag. Organ. 2018, 24, 239–257. [Google Scholar] [CrossRef]
- Aghion, P.; Antonin, C.; Bunel, S. Artificial Intelligence, Growth and Employment: The Role of Policy. Econ. Stat. Econ. Stat. 2020, 149, 149–164. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Xie, M.; Ding, L.; Xia, Y.; Guo, J.; Pan, J.; Wang, H. Does Artificial Intelligence Affect the Pattern of Skill Demand? Evidence from Chinese Manufacturing Firms. Econ. Model. 2021, 96, 295–309. [Google Scholar] [CrossRef]
- Peek, J.; Rosengren, E.S. Unnatural Selection: Perverse Incentives and the Misallocation of Credit in Japan. Am. Econ. Rev. 2005, 95, 1144–1166. [Google Scholar] [CrossRef]
- McGowan, M.A.; Andrews, D.; Millot, V. The Walking Dead? Zombie Firms and Productivity Performance in OECD Countries; OECD Economics Department Working Papers 1372; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Hoshi, T.; Kashyap, A.K. Will the US Bank Recapitalization Succeed? Eight Lessons from Japan. J. Financ. Econ. 2010, 97, 398–417. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, Y.; Liu, G.; Wang, D.; Zhang, X. How Does Government Intervention Affect the Formation of Zombie Firms? Econ. Model. 2021, 94, 768–779. [Google Scholar] [CrossRef]
- Kwon, H.; Narita, F.; Narita, M. Resource Reallocation and Zombie Lending in Japan in the 1990s. Rev. Econ. Dyn. 2015, 18, 709–732. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, Y.; Woo, W.T. Zombie Firms and the Crowding-out of Private Investment in China. Asian Econ. Pap. 2016, 15, 32–55. [Google Scholar] [CrossRef]
- Lin, Y.; Srinivasan, A.; Yamada, T. The Effect of Government Bank Lending: Evidence from the Financial Crisis in Japan; Social Science Electronic Publishing: Rochester, NY, USA, 2015. [Google Scholar]
- Imai, K. A Panel Study of Zombie SMEs in Japan: Identification, Borrowing and Investment Behavior. J. Jpn. Int. Econ. 2016, 39, 91–107. [Google Scholar] [CrossRef]
- Hoshi, T.; Kim, Y. Macroprudential Policy and Zombie Lending in Korea; ABFER Working Paper No. 2251. 2012. Available online: https://abfer.org/media/abfer-events-2013/annual-conference/international-macroeconomics/track-1-macroprudential-policy-and-zombie-lending-in-korea.pdf (accessed on 15 October 2012).
- Shen, G.; Chen, B. Zombie Firms and Over—Capacity in Chinese Manufacturing. China Econ. Rev. 2017, 44, 327–342. [Google Scholar] [CrossRef]
- Bruche, M.; Llobet, G. Preventing Zombie Lending. Rev. Financ. Stud. 2014, 27, 923–956. [Google Scholar] [CrossRef]
- Dai, Y.; Li, C.; Liu, D.; Lu, J. Throwing Good Money after Bad: Zombie Lending and the Supply Chain Contagion of Firm Exit. J. Econ. Behav. Organ. 2021, 189, 379–402. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Caballero, R.J.; Hoshi, T.; Kashyap, A.K. Zombie Lending and Depressed Restructuring in Japan. Am. Econ. Rev. 2008, 98, 1943–1977. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakamura, J. Why Did ‘Zombie’ Firms Recover in Japan? World Econ. 2011, 34, 1124–1137. [Google Scholar] [CrossRef]
- Ackerberg, D.A.; Caves, K.; Frazer, G. Identification Properties of Recent Production Function Estimators. Econometrica 2015, 83, 2411–2451. [Google Scholar] [CrossRef]
Industry | Robot-Usage Density (Units/10,000 People) | Robot-Usage Density (Units/10,000 People) | Increase in Robot-Usage Density (Units/10,000 People) |
---|---|---|---|
2011 Year | 2018 Year | 2011–2018 | |
Automotive manufacturing | 62.95 | 600.95 | 538.01 |
Electrical and electronic | 4.77 | 116.12 | 111.35 |
Metal products | 6.06 | 67.13 | 61.07 |
Other manufacturing industries | 2.08 | 53.83 | 51.75 |
Plastics and chemicals | 8.71 | 33.01 | 24.30 |
Industrial machinery and equipment manufacturing | 0.66 | 27.85 | 27.19 |
Railway, shipbuilding, aerospace, and other transportation equipment manufacturing industries | 1.59 | 18.20 | 16.60 |
Food and beverage | 1.04 | 16.09 | 15.05 |
Non-Metallic mineral products | 0.55 | 8.39 | 7.84 |
Basic metals | 0.63 | 7.42 | 6.79 |
Wood and furniture | 0.00 | 4.70 | 4.70 |
Paper | 0.24 | 2.73 | 2.49 |
Textile | 0.01 | 0.65 | 0.64 |
Variable | Definitions | Obs. | Mean | Minimum | Maximum |
---|---|---|---|---|---|
Zombie | A dummy variable that equals one if the firm revives | 2032 | 0.098 | 0 | 1 |
Rd_Ch | The density of robot usage | 2032 | 2.094 | 0 | 6.684 |
Age | The enterprise age | 2032 | 2.929 | 1.386 | 3.689 |
Cfo | The cash flow ratio | 2032 | 0.586 | 0 | 8.820 |
Lev | The leverage ratio | 2032 | 0.626 | 0.016 | 63.971 |
Loc | The working capital | 2032 | 0.025 | −12.493 | 0.912 |
Reve | The operating income | 2032 | 66.935 | 0 | 1050.203 |
Allo | The financial asset allocation | 2032 | 0.205 | 0 | 0.966 |
Zb_s | The proportion of zombie firms in the industry | 2032 | 0.179 | 0 | 1 |
Pergdp | The per capita GDP at the provincial level | 2032 | 10.912 | 9.706 | 11.939 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Rd_Ch | 0.4038 * | 0.3933 * | 0.4436 * | 0.4877 ** |
(1.76) | (1.70) | (1.90) | (2.05) | |
Age | 2.0406 | 2.0535 | 2.4921 | |
(0.81) | (0.82) | (0.98) | ||
Cfo | −0.2645 | −0.2766 | −0.3009 | |
(−0.93) | (−0.94) | (−0.99) | ||
Lev | −0.4501 | −0.4556 | −0.4456 | |
(−0.88) | (−0.91) | (−0.87) | ||
Loc | −0.5744 | −0.5868 | −0.5829 | |
(−1.09) | (−1.13) | (−1.11) | ||
Reve | −0.0030 * | −0.0031 * | −0.0030 * | |
(−1.65) | (−1.70) | (−1.66) | ||
Allo | 0.2550 | 0.1978 | 0.2468 | |
(0.32) | (0.25) | (0.31) | ||
Zb_s | −1.0758 | −1.0754 | ||
(−1.47) | (−1.47) | |||
Pergdp | −2.0669 * | |||
(−1.92) | ||||
Firm FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
Observations | 1474 | 1474 | 1474 | 1474 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Rd_Ch | 0.0502 *** | 0.5156 ** | 0.1493 *** | 0.4401 * | 0.1541 *** | 0.4347 * |
(2.72) | (2.13) | (4.31) | (1.83) | (4.28) | (1.81) | |
Cap | 3.6262 *** | |||||
(3.70) | ||||||
Lab_pro | 0.3227 ** | |||||
(1.97) | ||||||
TFP | 0.3288 ** | |||||
(2.03) | ||||||
Age | 0.4162 ** | 2.3364 | 0.1090 | 2.6533 | 0.1767 | 2.6603 |
(2.23) | (0.91) | (0.31) | (1.04) | (0.48) | (1.04) | |
Cfo | −0.1387 *** | −0.3345 | 0.5766 *** | −0.5524 | 0.4986 *** | −0.5391 |
(−7.71) | (−0.99) | (17.09) | (−1.54) | (14.21) | (−1.51) | |
Lev | −0.7766 *** | 0.1499 | −0.0283 *** | −0.4677 | −0.0322 *** | −0.4117 |
(−159.82) | (0.20) | (−3.10) | (−0.72) | (−3.39) | (−0.63) | |
Loc | −0.2162 *** | −0.6397 | 0.5159 *** | −0.7019 | 0.5616 *** | −0.6533 |
(−14.36) | (−1.00) | (18.26) | (−1.12) | (19.12) | (−1.05) | |
Reve | 0.0004 *** | −0.0036 * | 0.0015 *** | −0.0035 * | 0.0019 *** | −0.0037 * |
(3.28) | (−1.92) | (5.87) | (−1.87) | (7.15) | (−1.94) | |
Allo | −0.2311 *** | −0.1275 | −0.3312 *** | 0.2330 | −0.5574 *** | 0.2897 |
(−3.47) | (−0.16) | (−2.65) | (0.29) | (−4.29) | (0.36) | |
Zb_s | 0.0197 | −0.9627 | −0.3638 *** | −0.8623 | −0.3493 *** | −0.8540 |
(0.35) | (−1.31) | (−3.49) | (−1.17) | (−3.22) | (−1.16) | |
Pergdp | −0.1369 | −1.7421 | −0.1932 | −1.9735 * | −0.2146 | −1.9866 * |
(−1.54) | (−1.60) | (−1.16) | (−1.82) | (−1.24) | (−1.83) | |
Sobel Test | Z = 2.1917 | Z = 1.7925 | Z = 1.8313 | |||
Firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 2032 | 1474 | 2032 | 1474 | 2032 | 1474 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Rd_Ch | 0.1124 | 0.2217 | −0.2003 |
(0.39) | (0.78) | (−0.45) | |
D_r×Rd_Ch | 0.4147 ** | ||
(2.25) | |||
D_c×Rd_Ch | 0.3896 * | ||
(1.67) | |||
D_p×Rd_Ch | 0.5922 * | ||
(1.81) | |||
Controls | Yes | Yes | Yes |
Firm FE | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes |
Observations | 1474 | 1474 | 1474 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Rd_Ch | 0.4877 ** | 0.7728 *** | 0.4768 ** | 0.1341 ** | 0.5103 ** | |
(2.05) | (2.66) | (2.01) | (2.26) | (2.11) | ||
Age | 2.4921 | 1.4568 | 2.7233 | 0.3610 | 0.1327 | 2.3090 |
(0.98) | (0.49) | (1.06) | (1.59) | (0.62) | (0.90) | |
Cfo | −0.3009 | −0.2735 | −0.3330 | 0.0111 | −0.0252 | −0.3341 |
(−0.99) | (−0.95) | (−1.06) | (0.51) | (−1.23) | (−1.00) | |
Lev | −0.4456 | −1.4267 * | −0.4449 | 0.0007 | −0.0040 | 0.1625 |
(−0.87) | (−1.89) | (−0.86) | (0.11) | (−0.72) | (0.22) | |
Loc | −0.5829 | −1.8144 ** | −0.5817 | −0.0261 | −0.0167 | −0.6284 |
(−1.11) | (−2.54) | (−1.10) | (−1.44) | (−0.97) | (−0.98) | |
Reve | −0.0030 * | −0.0032 * | −0.0029 | −0.0002 | −0.0003 * | −0.0036 * |
(−1.66) | (−1.69) | (−1.62) | (−1.30) | (−1.87) | (−1.94) | |
Allo | 0.2468 | 1.5886 * | 0.2413 | −0.1277 | 0.0232 | −0.1020 |
(0.31) | (1.68) | (0.30) | (−1.58) | (0.30) | (−0.12) | |
Zb_s | −1.0754 | −0.3844 | −1.2170 | 0.2180 *** | −0.1287 * | −0.9542 |
(−1.47) | (−0.47) | (−1.63) | (3.24) | (−1.94) | (−1.29) | |
Pergdp | −2.0669 * | −1.7827 | −2.0422 * | 0.3362 *** | −0.2185 ** | −1.8968 * |
(−1.92) | (−1.55) | (−1.82) | (3.13) | (−2.10) | (−1.65) | |
Roa | 3.6132 *** | |||||
(3.69) | ||||||
Pro_indus | 0.1874 | |||||
(0.57) | ||||||
Sec_gdp | 0.0222 | |||||
(0.42) | ||||||
Instrument | 0.0218 *** | |||||
(15.90) | ||||||
Non-identifiability Test (LM Statistic) | 253.010 *** | |||||
Weak Instrument Test (F-Statistic) | 293.626 *** | |||||
Industry FE | No | No | No | No | No | Yes |
Firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1474 | 1331 | 1434 | 2032 | 2032 | 1474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Zhang, Q. The Impact of Industrial Robots on the Sustainable Development of Zombie Firms in China. Sustainability 2024, 16, 2180. https://doi.org/10.3390/su16052180
Zhou R, Zhang Q. The Impact of Industrial Robots on the Sustainable Development of Zombie Firms in China. Sustainability. 2024; 16(5):2180. https://doi.org/10.3390/su16052180
Chicago/Turabian StyleZhou, Rongyun, and Qian Zhang. 2024. "The Impact of Industrial Robots on the Sustainable Development of Zombie Firms in China" Sustainability 16, no. 5: 2180. https://doi.org/10.3390/su16052180
APA StyleZhou, R., & Zhang, Q. (2024). The Impact of Industrial Robots on the Sustainable Development of Zombie Firms in China. Sustainability, 16(5), 2180. https://doi.org/10.3390/su16052180