Differences in Anthropogenic Impacts of Typical Mid- to High-Latitude Wetlands in the Heilongjiang Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Pre-Processing
2.3. Method
3. Results
3.1. Temporal Changes in the Area of Typical Wetlands
3.2. Temporal Changes and Analysis of Landscape Patterns in Typical Wetlands
3.3. Impacts of Different Human Activities on Wetland Landscape Patterns
4. Discussion
4.1. Analysis of the Impact
4.2. Quantitative Comparison
4.3. Prospects and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, B.X.; Kjaerulf, F.; Turner, S.; Cohen, L.; Donnelly, P.D.; Muggah, R.; Davis, R.; Realini, A.; Kieselbach, B.; MacGregor, L.S.; et al. Transforming our world: Implementing the 2030 agenda through sustainable development goal indicators. J. Public Health Policy 2016, 37, 13–31. [Google Scholar] [CrossRef]
- Altor, A.E.; Mitsch, W.J. Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol. Eng. 2006, 28, 224–234. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Nielsen, D.A.; Kelleway, J.J.; Atwood, T.B.; Seymour, J.R.; Petrou, K.; Connolly, R.M.; Thomson, A.C.; Trevathan-Tackett, S.M.; Ralph, P.J. Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ. 2017, 15, 206–213. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bergamaschi, P.; Houweling, S.; Segers, A.; Krol, M.; Frankenberg, C.; Scheepmaker, R.A.; Dlugokencky, E.; Wofsy, S.C.; Kort, E.A.; Sweeney, C.; et al. Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res. Atmos. 2013, 118, 7350–7369. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the rise again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, G.; Mao, M.; Duan, X.; Hu, J.; Zhang, Y.; Xie, Y.; Qiu, X.; Gong, W.; Liu, T.; et al. Remote sensing and environmental assessment of wetland ecological degradation in the Small Sanjiang Plain, Northeast China. Front. Ecol. Evol. 2023, 11, 1125775. [Google Scholar] [CrossRef]
- Chang, X.; Yu, L.; Li, G.; Li, X.; Bao, L. Wetland vegetation cover changes and its response to climate changes across Heilongjiang-Amur River Basin. Front. Plant Sci. 2023, 14, 1169898. [Google Scholar] [CrossRef]
- Song, C.; He, H.S.; Liu, K.; Du, H.; Krohn, J. Impact of historical pattern of human activities and natural environment on wetland in Heilongjiang River Basin. Front. Environ. Sci. Eng. 2023, 17, 151. [Google Scholar] [CrossRef]
- Na, X.D.; Zang, S.Y.; Zhang, N.N.; Cui, J. Impact of land use and land cover dynamics on Zhalong wetland reserve ecosystem, Heilongjiang Province, China. Int. J. Environ. Sci. Technol. 2015, 12, 445–454. [Google Scholar] [CrossRef]
- Wang, S. Impacts and countermeasures of climate change on wetland ecohydrology taking the Nenjiang River Basin wetland as an example. Ground Water 2014, 36, 197–199. [Google Scholar]
- Chen, H.; Meng, F.; Yu, Z.; Tan, Y. Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China. Land Use Policy 2022, 115, 106007. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, A.; Zhang, Y.; Chen, Y.; Zeng, T. Analysis of Disturbance Factors in Zhalong Wetland Landscape Dynamics. IOP Conf. Ser. Mater. Sci. Eng. 2020, 730, 012065. [Google Scholar] [CrossRef]
- Wang, H.; Song, C.; Song, K. Regional ecological risk assessment of wetlands in the Sanjiang Plain with respect to human disturbance. Sustainability 2020, 12, 1974. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Liu, X.; Ding, Z.; Lu, M. Human activities introduced degenerations of Wetlands (1975–2013) across the Sanjiang Plain north of the Wandashan Mountain, China. Land 2021, 10, 1361. [Google Scholar] [CrossRef]
- Song, C.; Li, X.; He, H.; Sunde, M. Centennial Analysis of Human Activity Intensity and Associated Historical Events in the Heilongjiang River Sino-Russo Watershed. Chin. Geogr. Sci. 2024, 34, 280–293. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Wang, J.; Liu, W.; Chen, X. Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022. Sci. Data 2024, 11, 310. [Google Scholar] [CrossRef]
- Ji, J.; Wang, S.; Zhou, Y.; Liu, W.; Wang, L. Spatiotemporal change and landscape pattern variation of eco-environmental quality in Jing-Jin-Ji urban agglomeration from 2001 to 2015. IEEE Access 2020, 8, 125534–125548. [Google Scholar] [CrossRef]
- Liu, H.Y.; Lu, X.; Zhang, S. Progress on the study of process of wetland landscape changes and cumulative environmental effects. Prog. Geogr. 2003, 22, 60–70. [Google Scholar]
- Xiao, J.S.; Qiao, B.; Chen, G.Q.; Shi, F.F.; Cao, X.Y.; Zhu, C.X. Land use change and evolution of ecosystem service value in Maduo County of source region of the Yellow River. Acta Ecol. Sin. 2020, 40, 510–521. [Google Scholar]
- Xiong, Y.; Mo, S.; Wu, H.; Qu, X.; Liu, Y.; Zhou, L. Influence of human activities and climate change on wetland landscape pattern—A review. Sci. Total. Environ. 2023, 879, 163112. [Google Scholar] [CrossRef]
- Sun, J.; Liu, G.; Yuan, X. Alternative stable state and its evaluation in wetland reconstruction based on landscape design. Sci. Total Environ. 2023, 857, 159642. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Y.; Cai, B.; Da, L. Analysis on the dynamic changes of landscape patterns of Longfeng wetland nature reserve in 1979–2008. In Proceedings of the World Automation Congress 2012, Puerto Vallarta, Mexico, 24–28 June 2012; Volume 16, pp. 1–5. [Google Scholar]
- Zhang, Z.; Fluet-Chouinard, E.; Jensen, K.; McDonald, K.; Hugelius, G.; Gumbricht, T.; Carroll, M.; Prigent, C.; Bartsch, A.; Poulter, B. Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 2021, 13, 2001–2023. [Google Scholar] [CrossRef]
- Dou, X.; Guo, H.; Zhang, L.; Liang, D.; Zhu, Q.; Liu, X.; Zhou, H.; Lv, Z.; Liu, Y.; Gou, Y.; et al. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. Sci. Total. Environ. 2023, 899, 166239. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Z.M.; Mao, D.H.; Ren, C.Y.; Han, J.X. Remote sensing classification of Wetlands using Object-oriented method and Multi-season HJ-1 Images—A case study in the Sanjiang plain North of the Wandashan Mountain. Wetl. Sci. 2012, 10, 429–438. [Google Scholar]
- T Findlay, C.S.; Bourdages, J. Response time of wetland biodiversity to road construction on adjacent lands. Conserv. Biol. 2000, 14, 86–94. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Liu, J.; Li, X.; Pan, H.; Jia, M. Tracking historical wetland changes in the china side of the Amur River Basin based on landsat imagery and training samples migration. Remote Sens. 2021, 13, 2161. [Google Scholar] [CrossRef]
- Yuan, Z.A.; Liu, X.x.; Du, H.r.; Zhang, M.H. Can artificial ecological islands alter the biodiversity of macroinvertebrate? A case study in Fujin National Wetland Park, the Sanjiang Plain, China. Ecol.Evol. 2021, 11, 14988–15003. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Wang, Z.; Yang, B.; Li, Y. Study of artificial water replenishment for wetland restoration. Water Environ. J. 2022, 36, 105–114. [Google Scholar] [CrossRef]
- Newton, A.; Icely, J.; Cristina, S.; Perillo, G.M.E.; Turner, R.E.; Ashan, D.; Cragg, S.; Luo, Y.; Tu, C.; Li, Y.; et al. Anthropogenic, direct pressures on coastal wetlands. Front. Ecol. Evol. 2020, 8, 144. [Google Scholar] [CrossRef]
- Williams-Mounsey, J.; Grayson, R.; Crowle, A.; Holden, J. A review of the effects of vehicular access roads on peatland ecohydrological processes. Earth-Sci. Rev. 2021, 214, 103528. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Uvo, C.B.; Moghadam, N.T.; Noori, R.; Abolfathi, S. Environmental risk assessment of wetland ecosystems using Bayesian belief networks. Hydrology 2023, 10, 16. [Google Scholar] [CrossRef]
- Todd, M.J.; Muneepeerakul, R.; Pumo, D.; Azaele, S.; Miralles-Wilhelm, F.; Rinaldo, A.; Rodriguez-Iturbe, I. Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Adv. Water Resour. 2010, 33, 1279–1289. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, L.; Lu, X.; Liu, Y. A dynamic change map of marshes in the Small Sanjiang Plain, Heilongjiang, China, from 1955 to 2005. Wetl. Ecol. Manag. 2015, 23, 419–437. [Google Scholar] [CrossRef]
- Chen, J.; Luo, M.; Ma, R.; Zhou, H.; Zou, S.; Gan, Y. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, South China. J. Contam. Hydrol. 2020, 234, 103700. [Google Scholar] [CrossRef] [PubMed]
- Răducă, C.; Boengiu, S.; Mititelu-Ionuș, O.; Enache, C. Correlation of the relief conditions, hydrographic network features and human interventions within the Blahniţa river basin (southwestern Romania). Carpathian J. Earth Environ. Sci. 2021, 16, 117–127. [Google Scholar] [CrossRef]
- da Silva, F.L.; Stefani, M.S.; Smith, W.; Schiavone, D.C.; da Cunha-Santino, M.B.; Bianchini, I., Jr. An applied ecological approach for the assessment of anthropogenic disturbances in urban wetlands and the contributor river. Ecol. Complex. 2020, 43, 100852. [Google Scholar] [CrossRef]
- Han, D.; Gao, C.; Li, Y.; Liu, H.; Cong, J.; Yu, X.; Wang, G. Potential in paleoclimate reconstruction of modern pollen assemblages from natural and human-induced vegetation along the Heilongjiang River basin, NE China. Sci. Total Environ. 2020, 745, 141121. [Google Scholar] [CrossRef]
Index | Formula | Description |
---|---|---|
Landscape Shape Index (LSI) | where E is the total length of all patch boundaries in the landscape and A is the total landscape area. As LSI tends to 1, it means that the shape tends to be more square. | |
Patch Area_MN | Mean value of area per patch. | |
Aggregation Index (AI) | The interconnectivity between the various landscape types. A lower value indicates a more discrete landscape. | |
Contrast-Weighted Edge Density (CWED) | where is the total length of edges between patch types I and j, and is the contrast weight between patch types i and j. | |
Core Area | —— | The area of core region. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dou, X.; Zhang, L.; Liang, D.; Zhu, Q.; Lv, Z.; Liu, Y.; Du, X. Differences in Anthropogenic Impacts of Typical Mid- to High-Latitude Wetlands in the Heilongjiang Basin. Sustainability 2024, 16, 9020. https://doi.org/10.3390/su16209020
Liu J, Dou X, Zhang L, Liang D, Zhu Q, Lv Z, Liu Y, Du X. Differences in Anthropogenic Impacts of Typical Mid- to High-Latitude Wetlands in the Heilongjiang Basin. Sustainability. 2024; 16(20):9020. https://doi.org/10.3390/su16209020
Chicago/Turabian StyleLiu, Jinlong, Xinyu Dou, Lu Zhang, Dong Liang, Qi Zhu, Zhuoran Lv, Yiming Liu, and Xiaobing Du. 2024. "Differences in Anthropogenic Impacts of Typical Mid- to High-Latitude Wetlands in the Heilongjiang Basin" Sustainability 16, no. 20: 9020. https://doi.org/10.3390/su16209020
APA StyleLiu, J., Dou, X., Zhang, L., Liang, D., Zhu, Q., Lv, Z., Liu, Y., & Du, X. (2024). Differences in Anthropogenic Impacts of Typical Mid- to High-Latitude Wetlands in the Heilongjiang Basin. Sustainability, 16(20), 9020. https://doi.org/10.3390/su16209020