Intelligent Development, Knowledge Breadth, and High-Tech Enterprise Innovation: The Moderating Role of Knowledge Absorptive Capacity
Abstract
1. Introduction
2. Theoretical Basis and Research Hypothesis
2.1. Intelligent Development and High-Tech Enterprise Innovation
2.2. The Mediating Role of Knowledge Breadth
2.3. The Moderating Role of Knowledge Absorptive Capacity
3. Research Design
3.1. Data Collection
3.2. Variable Measurement
3.2.1. Explanatory Variable: Intelligent Development (Intel)
3.2.2. Explained Variable: High-Tech Enterprise Innovation (Invo)
3.2.3. Mediator Variable: Knowledge Breadth (Width)
3.2.4. Moderating Variable: Knowledge Absorptive Capacity (Kac)
3.2.5. Control Variables
3.3. Model Setup
4. Empirical Results
4.1. Correlation Analysis
4.2. Direct Effect Test
4.3. Mediation Effect Test
4.4. Moderation Effect Test
4.5. Robustness Tests
4.5.1. Endogeneity Test
4.5.2. Other Robustness Tests
Variable | Instrumental Variable | Replacing Explanatory Variable | Replacing Explained Variable | Alternative Measurement Model | |
---|---|---|---|---|---|
First-Stage | Second-Stage | ||||
Intel | Invo | Invo | Invo | Invo | |
(1) | (2) | (3) | (4) | (5) | |
Lewbel IV | 0.312 *** (102.64) | ||||
Intel | 0.147 *** (7.42) | 0.109 *** (3.73) | 0.096 *** (5.51) | 0.178 *** (10.33) | |
Size | 0.637 *** (7.30) | 0.813 *** (45.59) | 0.678 *** (25.56) | 0.667 *** (26.22) | 0.825 *** (44.61) |
Age | −0.002 (−1.37) | −0.0009 (−0.03) | 0.007 (1.27) | 0.005 (0.90) | −0.0003 (−0.12) |
Soe | 0.008 (0.43) | 0.221 *** (5.49) | 0.184 *** (2.89) | 0.107 * (1.76) | 0.219 *** (5.25) |
Lev | 0.118 ** (−2.25) | −0.224 ** (−2.10) | −0.102 (−0.83) | −0.115 (−0.99) | −0.239 ** (−2.15) |
Capital | 0.004 (0.58) | −0.122 *** (−8.69) | −0.092 *** (−5.65) | −0.107 *** (−6.95) | −0.127 *** (−8.66) |
Growth | 0.003 (0.13) | 0.220 *** (4.13) | 0.062 (1.55) | 0.075 ** (1.98) | 0.233 *** (4.20) |
Top1 | 0.001 *** (2.64) | −0.007 *** (−5.85) | −0.004 *** (−2.05) | −0.003 ** (−2.02) | −0.007 *** (−5.88) |
year | Control | Control | Control | Control | Control |
Ind | Control | Control | Control | Control | Control |
_cons | −0.047 (−0.25) | −14.888 *** (−39.32) | −12.005 *** (−20.87) | −11.532 *** (−20.93) | −15.197 *** (−38.59) |
R2 | 0.813 | 0.500 | 0.154 | 0.229 | 0.191 |
5. Conclusions and Implications
5.1. Theoretical Contributions
5.2. Management Implications
5.3. Research Limitations and Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumpeter, J.A. Capitalism, Socialism, and Democracy; Harper and Brothers: New York, NY, USA, 1942. [Google Scholar]
- Schilling, M.A. Strategic Management of Technological Innovation; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial intelligence and corporate innovation: A review and research agenda. Technol. Forecast. Soc. 2023, 188, 122264. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation 2023, 122, 102623. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Brem, A.; Giones, F.; Werle, M. The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation. IEEE Trans. Eng. Manag. 2023, 70, 770–776. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, Y.-L. How does industrial intelligence reshape the employment structure of Chinese labor force. China Ind. Econ. 2019, 5, 61–79. [Google Scholar]
- Ying, L.; Liu, X.; Li, M.; Sun, L.; Xiu, P.; Yang, J. How does intelligent manufacturing affects enterprise innovation? The mediating role of organisational learning. Enterp. Inf. Syst. 2022, 16, 630–667. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. 2022, 178, 121569. [Google Scholar] [CrossRef]
- Verganti, R.; Vendraminelli, L.; Iansiti, M. Innovation and design in the age of artificial intelligence. J. Prod. Innov. Manag. 2020, 37, 212–227. [Google Scholar] [CrossRef]
- Yang, J.; Ying, L.; Gao, M. The influence of intelligent manufacturing on financial performance and innovation performance: The case of China. Enterp. Inf. Syst. 2020, 14, 812–832. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Wang, C. A comparative study of the effects of different factors on firm technological innovation performance in different high-tech industries. Chin. Manag. Stud. 2019, 13, 2–25. [Google Scholar] [CrossRef]
- Al-Khatib, A.W.; Shuhaiber, A.; Mashal, I.; Al-Okaily, M. Antecedents of Industry 4.0 capabilities and technological innovation: A dynamic capabilities perspective. Eur. Bus. Rev. 2024, 36, 566–587. [Google Scholar] [CrossRef]
- Kuah, C.T. Guest editorial: Advances in intelligent techniques for knowledge management and decision making. Cybern. Syst. 2017, 48, 275–276. [Google Scholar] [CrossRef]
- George, G.; Kotha, R.; Zheng, Y. Entry into insular domains: A longitudinal study of knowledge structuration and innovation in biotechnology firms. J. Manag. Stud. 2008, 45, 1448–1474. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.-L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors. Technol. Forecast. Soc. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Han, J.; Jiang, C.; Liu, R. Does intelligent transformation trigger technology innovation in China’s NEV enterprises? Energy 2023, 270, 126823. [Google Scholar] [CrossRef]
- Jiao, H. Digital platform-based ecosystem view: A new perspective on management theory in the era of digital economy. China Ind. Econ. 2023, 7, 122–141. [Google Scholar]
- Grant, R.M. Toward a knowledge-based theory of the firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Xu, S. Balancing the two knowledge dimensions in innovation efforts: An empirical examination among pharmaceutical firms. J. Prod. Innov. Manag. 2015, 32, 610–621. [Google Scholar] [CrossRef]
- Yang, D.; Jin, L.; Sheng, S. The effect of knowledge breadth and depth on new product performance. Int. J. Mark. Res. 2017, 59, 517–536. [Google Scholar]
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Admin. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Xie, X.; Zou, H.; Qi, G. Knowledge absorptive capacity and innovation performance in high-tech companies: A multi-mediating analysis. J. Bus. Res. 2018, 88, 289–297. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, W.; Zhou, W. The multiple mediation effect of absorptive capacity on the organizational slack and innovation performance of high-tech manufacturing firms: Evidence from Chinese firms. Int. J. Prod. Econ. 2020, 229, 107754. [Google Scholar] [CrossRef]
- Christensen, C.M. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail; Harvard Business Review Press: Brighton, MA, USA, 1997. [Google Scholar]
- Mariani, M.M.; Perez-Vega, R.; Wirtz, J. AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychol. Mark. 2022, 39, 755–776. [Google Scholar] [CrossRef]
- Mariani, M.M.; Nambisan, S. Innovation analytics and digital innovation experimentation: The rise of research-driven online review platforms. Technol. Forecast. Soc. 2021, 172, 121009. [Google Scholar] [CrossRef]
- Meng, F.; Xu, Y.; Zhao, G. Research on the influence mechanism of “intelligence +” on the innovation performance of manufacturing enterprises. Sci. Res. Manag. 2022, 43, 109–118. [Google Scholar]
- Chatterjee, S.; Rana, N.P.; Dwivedi, Y.K.; Baabdullah, A.M. Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technol. Forecast. Soc. 2021, 170, 120880. [Google Scholar] [CrossRef]
- Yin, Z.-F.; Cao, A.-J.; Guo, J.-B.; Guo, D.-M. A study of the impact of artificial intelligence on employment based on patents data: Evidence from zhongguancun enterprises. China Ind. Econ. 2023, 5, 137–154. [Google Scholar]
- Gonzalez-Pinero, M.; Paez-Aviles, C.; Juanola-Feliu, E.; Samitier, J. Cross-fertilization of knowledge and technologies in collaborative research projects. J. Knowl. Manag. 2021, 25, 34–59. [Google Scholar] [CrossRef]
- Skulimowski, A.M.J.; Koehler, T. A future-oriented approach to the selection of artificial intelligence technologies for knowledge platforms. J. Assoc. Inf. Sci. Technol. 2023, 74, 905–922. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, X. Digitalization capabilities, open innovation, and firm performance: The moderating effect of appropriability regimes. Sci. Sci. Manag. S. T. 2023, 44, 132–149. [Google Scholar]
- Kogut, B.; Zander, U. Knowledge of the firm, combinative capabilities, and the replication of technology. Organ. Sci. 1992, 3, 383–397. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, F. How does digital M&A affect radical innovation: The analysis based on knowledge breadth and innovation efficiency. Collect. Essays Financ. Econ. 2023, 103–113. [Google Scholar]
- Cockburn, I.M.; Henderson, R.; Stern, S. The Impact of Artificial Intelligence on Innovation; National Bureau of Economic Research: Cambridge, MA, USA, 2018; Volume 24449. [Google Scholar]
- Tsui, E.; Garner, B.J.; Staab, S. The role of artificial intelligence in knowledge management. Knowl-Based. Syst. 2000, 13, 235–239. [Google Scholar] [CrossRef]
- Olan, F.; Arakpogun, E.O.; Suklan, J.; Nakpodia, F.; Damij, N.; Jayawickrama, U. Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. J. Bus. Res. 2022, 145, 605–615. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Askay, D.; Eshraghi, A.; Smith, P. Artificial intelligence and knowledge management: A partnership between human and AI. Bus. Horiz. 2023, 66, 87–99. [Google Scholar] [CrossRef]
- Traskman, T.I.; Skoog, M. Performing openness: How the interplay between knowledge sharing and digital infrastructure creates multiple accountabilities. J. Strategy Manag. 2022, 15, 194–219. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Li, C.B. How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strateg. Manag. J. 2012, 33, 1090–1102. [Google Scholar] [CrossRef]
- Roper, S.; Hewitt-Dundas, N. Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data. Res. Policy 2015, 44, 1327–1340. [Google Scholar] [CrossRef]
- Basit, S.A.; Medase, K. The diversity of knowledge sources and its impact on firm-level innovation: Evidence from Germany. Eur. J. Innov. Manag. 2019, 22, 681–714. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Leal-Rodriguez, A.L.; Roldan, J.L.; Ariza-Montes, A.; Leal-Millan, A. From potential absorptive capacity to innovation outcomes in project teams: The conditional mediating role of the realized absorptive capacity in a relational learning context. Int. J. Proj. Manag. 2014, 32, 894–907. [Google Scholar] [CrossRef]
- Yu, S.-H. Social capital, absorptive capability, and firm innovation. Technol. Forecast. Soc. 2013, 80, 1261–1270. [Google Scholar] [CrossRef]
- Abou-Foul, M.; Ruiz-Alba, J.L.; Lopez-Tenorio, P.J. The impact of artificial intelligence capabilities on servitization: The moderating role of absorptive capacity—A dynamic capabilities perspective. J. Bus. Res. 2023, 157, 113609. [Google Scholar] [CrossRef]
- McDermott, R.; Archibald, D. Harnessing your staff’s informal network. Harv. Bus. Rev. 2010, 88, 82–89. [Google Scholar] [PubMed]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. J. Manag. World 2021, 37, 130–144+10. [Google Scholar]
- Li, W.; Zheng, M. Is it substantive innovation or strategic innovation? Impact of macroeconomic policies on micro-enterprises’ innovation. Econ. Res. J. 2016, 51, 60–73. [Google Scholar]
- Li, H.; Wang, Y.; Wu, D. Research on patent quality’s impact mechanism on the competitiveness of enterprises for export: The exploration from the perspective of knowledge width. World Econ. Stud. 2021, 32–46+134. [Google Scholar]
- Huang, K.-F.; Lin, K.-H.; Wu, L.-Y.; Yu, P.-H. Absorptive capacity and autonomous R&D climate roles in firm innovation. J. Bus. Res. 2015, 68, 87–94. [Google Scholar]
- Wen, Z.; Ye, B. Analyses of mediating effects: The development of methods and models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G., Jr.; Chen, Q. Reconsidering baron and kenny: Myths and truths about mediation analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Sharma, N. The role of pure and quasi-moderators in services: An empirical investigation of ongoing customer–service-provider relationships. J. Retail. Consum. Serv. 2003, 10, 253–262. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Lewbel, A. Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and R&D. Econometrica 1997, 65, 1201–1213. [Google Scholar]
- del-Corte-Lora, V.; Molina-Morales, F.X.; Vallet-Bellmunt, T.M. Mediating effect of creativity between breadth of knowledge and innovation. Technol. Anal. Strateg. 2016, 28, 768–782. [Google Scholar] [CrossRef]
Variable | Obs | M | SD | Min | Max |
---|---|---|---|---|---|
Invo | 4496 | 2.870 | 1.434 | 0 | 7.378 |
Intel | 4496 | 2.842 | 1.143 | 0 | 5.595 |
Width | 4496 | 0.835 | 0.213 | 0 | 0.984 |
Kac | 4496 | 6.058 | 1.131 | 3.738 | 9.305 |
Size | 4496 | 21.901 | 1.058 | 20.003 | 25.098 |
Age | 4496 | 17.73 | 5.672 | 4 | 63 |
Soe | 4496 | 0.209 | 0.406 | 0 | 1 |
Lev | 4496 | 0.340 | 0.174 | 0.489 | 0.744 |
Capital | 4496 | 2.188 | 1.169 | 0.696 | 7.720 |
Growth | 4496 | 0.193 | 0.291 | −0.378 | 1.552 |
Top1 | 4496 | 32.779 | 13.467 | 8.538 | 67.975 |
Variable | Intel | Invo | Width | Kac | Size | Age | Soe | Lev | Capital | Growth | Top1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Intel | 1 | ||||||||||
Invo | 0.256 *** | 1 | |||||||||
Width | 0.181 *** | 0.328 *** | 1 | ||||||||
Kac | 0.232 *** | 0.643 *** | 0.307 *** | 1 | |||||||
Size | 0.093 *** | 0.595 *** | 0.304 *** | 0.805 *** | 1 | ||||||
Age | 0.009 | 0.064 *** | 0.098 *** | 0.158 *** | 0.244 *** | 1 | |||||
Soe | −0.028 * | 0.227 *** | 0.079 *** | 0.254 *** | 0.295 *** | 0.185 *** | 1 | ||||
Lev | 0.148 *** | 0.355 *** | 0.178 *** | 0.452 *** | 0.497 *** | 0.111 *** | 0.182 *** | 1 | |||
Capital | −0.024 | −0.195 *** | −0.065 *** | −0.287 *** | −0.159 *** | −0.066 *** | −0.109 *** | −0.290 *** | 1 | ||
Growth | 0.038 *** | 0.080 *** | 0.025 * | 0.039 *** | 0.048 *** | −0.097 *** | −0.096 *** | 0.079 *** | −0.139 *** | 1 | |
Top1 | −0.037** | −0.075 *** | −0.084 *** | −0.013 | −0.031 ** | −0.053 *** | 0.051 *** | −0.081 *** | −0.088 *** | −0.003 | 1 |
Variable | Invo | Width | Invo | ||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Intel | 0.128 *** (6.54) | 0.0809 *** (4.41) | 0.0274 *** (6.42) | 0.0188 *** (4.51) | 0.0766 *** (4.20) | ||
Width | 0.359 *** (5.80) | 0.337 *** (5.48) | 0.519 *** (6.73) | ||||
Kac | 0.298 *** (9.66) | 0.305 *** (9.95) | |||||
Width×ac | 0.229 *** (3.78) | ||||||
Size | 0.671 *** (25.17) | 0.073 *** (13.35) | 0.648 *** (24.28) | 0.423 *** (11.67) | 0.414 *** (11.50) | ||
Age | 0.008 (1.32) | 0.0003 (0.36) | 0.007 (1.26) | 0.005 (0.90) | 0.005 (0.85) | ||
Soe | 0.180 *** (2.83) | −0.002 (−0.13) | 0.183 *** (2.93) | 0.184 *** (2.98) | 0.180 *** (2.97) | ||
Lev | −0.084 (−0.68) | −0.049 * (−1.76) | −0.060 (−0.49) | −0.157 (−1.29) | −0.150 (−1.24) | ||
Capital | −0.091 *** (−5.60) | 0.006 (1.56) | −0.095 *** (−5.88) | −0.061 *** (−3.74) | −0.061 *** (−3.73) | ||
Growth | 0.060 (1.49) | 0.016 * (1.66) | 0.0533 (1.33) | 0.087 ** (2.17) | 0.093 ** (2.33) | ||
Top1 | −0.004 ** (−2.00) | −0.0009 *** (−2.58) | −0.003 * (−1.92) | −0.004 ** (−2.23) | −0.004 ** (−2.18) | ||
year | control | control | control | control | control | control | control |
Ind | control | control | control | control | control | control | control |
_cons | 1.914 *** (7.41) | −11.92 *** (−20.68) | 0.674 *** (18.24) | −0.829 *** (−7.08) | −11.693 *** (−20.52) | −8.223 *** (−12.11) | −8.237 *** (−12.26) |
R2 | 0.126 | 0.155 | 0.075 | 0.100 | 0.158 | 0.164 | 0.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ba, D. Intelligent Development, Knowledge Breadth, and High-Tech Enterprise Innovation: The Moderating Role of Knowledge Absorptive Capacity. Sustainability 2024, 16, 8155. https://doi.org/10.3390/su16188155
Zhang J, Ba D. Intelligent Development, Knowledge Breadth, and High-Tech Enterprise Innovation: The Moderating Role of Knowledge Absorptive Capacity. Sustainability. 2024; 16(18):8155. https://doi.org/10.3390/su16188155
Chicago/Turabian StyleZhang, Jin, and Duoxun Ba. 2024. "Intelligent Development, Knowledge Breadth, and High-Tech Enterprise Innovation: The Moderating Role of Knowledge Absorptive Capacity" Sustainability 16, no. 18: 8155. https://doi.org/10.3390/su16188155
APA StyleZhang, J., & Ba, D. (2024). Intelligent Development, Knowledge Breadth, and High-Tech Enterprise Innovation: The Moderating Role of Knowledge Absorptive Capacity. Sustainability, 16(18), 8155. https://doi.org/10.3390/su16188155