Multivariate Analysis of Short Day Onion (Allium cepa L.) Genotypes by Canonical Variate Analysis and Mahalanobis Distances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Evaluation
2.3. Observed Traits
2.3.1. Bulb Yield per Plot
2.3.2. Single Bulb Weight
2.3.3. Dry Matter Content
2.3.4. Soluble Solid Content
2.3.5. Storage Waste Content
2.3.6. Bulb Height, Bulb Diameter, Neck Diameter
2.3.7. Index Shape
2.4. Statistical Analysis
3. Results
3.1. MANOVA and ANOVA Results
3.2. Correlation Analysis
3.3. The Canonical Variate Analysis (CVA) and Mahalanobis Distances D2
3.3.1. Khuzestan
3.3.2. Isfahan
4. Discussion
5. Conclusions
- During this study, significant correlations were observed for the traits under study. The use of canonical variable analysis grouped genotypes into two clusters. Genotypes Paliz and Vania showed the lowest variability in Khuzestan, whereas Paliz and Early Super were reported in Isfahan;
- Multivariate methods were an effective tool for assessing the similarity/difference of the studied genotypes in terms of the nine quantitative traits taken together. The multivariate approach is very important when correlation of observed traits is observed;
- The tested genotypes were very diverse. The Saba and Behbahan improved population, as the most diverse genotypes, are recommended for further inclusion in future crop improvement programs, independent of location.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havey, M.J. Onion breeding. Plant Breed. Rev. 2018, 42, 39–85. [Google Scholar] [CrossRef]
- Ahmadi, K.; Ebadzade, H.; Hatami, F.; Mohamadnia Afruzi, S.; Esfandiari, E.; Taghani, R.A. Agricultural Statistics of Crops; Information and Communication Technology Center, Ministry of Jihad Agriculture: Tehran, Iran, 2021; Volume 1, pp. 1–89. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums, 2nd ed.; CAB International: London, UK, 2008; 432p. [Google Scholar]
- Lee, J.; Moon, J.S.; Kim, J.; Park, G.O.; Kwon, J.H.; Ha, I.J.; Kwon, Y.S.; Chang, Y.H. Evaluation of onion cultivars as affected by bulb maturity and bulb characteristics of intermediate-day yellow onions in South Korea. J. Hortic. Sci. Biotechnol. 2020, 95, 645–660. [Google Scholar] [CrossRef]
- Singh, S.R.; Lal, S.; Ahmed, N.; Srivastava, K.K.; Kumar, D.; Jan, N.; Amin, A.; Malik, A.R. Determination of genetic diversity in onion (Allium cepa L.) using the multivariate analysis under long day conditions. Afr. J. Biotechnol. 2013, 7, 5599–5606. [Google Scholar] [CrossRef]
- Bocianowski, J.; Majchrzak, L. Analysis of effects of cover crop and tillage method combinations on the phenotypic traits of spring wheat (Triticum aestivum L.) using multivariate methods. Appl. Ecol. Environ. Res. 2019, 17, 15267–15276. [Google Scholar] [CrossRef]
- Blanco-Pastor, J.L.; Barre, P.; Keep, T.; Ledauphin, T.; Escobar-Gutiérrez, A.; Roschanski, A.M.; Willner, E.; Dehmer, K.J.; Hegarty, M.; Muylle, H.; et al. Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass. Mol. Ecol. Resour. 2021, 21(3), 849–870. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dong, F.; Zhang, S. Adaptive spatio-temporal feature extraction and analysis for horizontal gas-water two-phase flow state prediction. Chem. Eng. Sci. 2023, 268, 118434. [Google Scholar] [CrossRef]
- Szwarc, J.; Niemann, J.; Bocianowski, J.; Jakubus, M.; Mrówczyński, M. Connection between Nutrient Content and Resistance to Selected Pests Analyzed in Brassicaceae Hybrids. Agriculture 2021, 11, 94. [Google Scholar] [CrossRef]
- Warzecha, T.; Skrzypek, E.; Bocianowski, J.; Sutkowska, A. Impact of Selected PSII Parameters on Barley DH Lines Biomass and Yield Elements. Agronomy 2021, 11, 1705. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Maciejewska-Rutkowska, I.; Bocianowski, J.; Korzeniewicz, R.; Lechowicz, K.; Hauke-Kowalska, M. Does the Reaction of Inflorescences and Flowers of the Invasive Prunus serotina Ehrh. to Various Herbicides Give Hope for Elimination of This Species from Polish Forests? Forests 2022, 13, 21. [Google Scholar] [CrossRef]
- Abbasi, Z.; Darabi, A.; Shahmansouri, E. Evaluation of short day onion (Allium cepa L.) genotypes for quantity and quality traits. J. Hortic. Postharvest Res. 2022, 5, 379–390. [Google Scholar] [CrossRef]
- Rafie, M.R.; Khoshgoftarmanesh, A.H.; Shariatmadari, H.; Darabi, A.; Dalir, N. Influence of foliar-applied zinc in the form of mineral and complexed with amino acids on yield and nutritional quality of onion under field conditions. Sci. Hortic. 2017, 216, 160–168. [Google Scholar] [CrossRef]
- Kahane, R.; Vaillle-Guerin, E.; Boukema, I.; Tzanoudakis, D.; Bellamy, C.; Chamaux, C.; Kik, C. Changes in non- structural carbohydrate composition duringbulbing in sweet and high-solid onions in field experiments. Environ. Exp. Bot. 2001, 45, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Mann, L.K.; Hoyle, B.J. Use of the refractometer for selection of onion bulbs high in dry matter for breeding. Proc. Am. Soc. Hortic. Sci. 1945, 46, 285–292. [Google Scholar]
- Aske, V.; Jain, P.; Lal, N.; Shiurkar, G. Effect of Micronutrients on Yield, Quality, and Storability of Onion cv. Bhima Super. Trends Biosci. 2017, 10, 1354–1358. Available online: https://www.researchgate.net/profile/Narayan-Lal/publication/314283800_Effect_of_Micronutrients_on_Yield_Quality_and_Storability_of_Onion_cv_Bhima_Super/links/58bf94caa6fdccff7b1fa27f/Effect-of-Micronutrients-on-Yield-Quality-and-Storability-of-Onion-cv-Bhima-Super.pdf (accessed on 1 January 2023).
- Association of Official Agricultural Chemists; Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA; AOAC Int.: Arlington, TX, USA, 1990; Volume 222, 58p. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Box, G.E.P. A General Distribution Theory for a Class of Likelihood Criteria. Biometrika 1949, 36, 317–346. [Google Scholar] [CrossRef]
- Warne, R.T. A primer on multivariate analysis of variance (MANOVA) for behavioral scientists. Pract. Assess. Res. Eval. 2014, 19, 1–10. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=52eff0488d0b93ea4a259815148faeb3e9646600 (accessed on 1 January 2023).
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; Wiley: New York, NY, USA, 1992; Available online: https://repository.lib.ncsu.edu/bitstream/handle/1840.4/2425/ISMS__4.pdf?sequence=1 (accessed on 1 January 2023).
- Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. Available online: https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041 (accessed on 1 January 2023).
- Rencher, A.C. Interpretation of canonical discriminant functions, canonical variates, and principal components. Am. Stat. 1992, 46, 217–225. Available online: https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475889 (accessed on 1 January 2023).
- Seidler-Łożykowska, K.; Bocianowski, J. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crops Prod. 2012, 35, 140–145. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- VSN International. GenStat for Windows, 18th ed.; VSN International: Hemel Hempstead, UK, 2015. [Google Scholar]
- Lahuta, L.B.; Ciak, M.; Rybiński, W.; Bocianowski, J.; Börner, A. Diversity of the composition and content of soluble carbohydrates in seeds of the genus Vicia (Leguminosae). Genet. Resour. Crop Evol. 2018, 65, 541–554. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Szkudlarz, P.; Bocianowski, J. Systematic importance of morphological features of pollen grains of species from Erica (Ericaceae) genus. PLoS ONE 2018, 13, e0204557. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.; Maity, T.K.; Maji, A. Genetic divergence studies for yield and quality traits in onion (Allium cepa L.). Internat. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3201–3208. [Google Scholar] [CrossRef]
- Gedam, P.A.; Thangasamy, A.; Shirsat, D.V.; Ghosh, S.; Bhagat, K.P.; Sogam, O.A.; Gupta, A.J.; Mahajan, V.; Soumia, P.S.; Salunkhe, V.N.; et al. Screening of onion (Allium cepa L.) genotypes for drought tolerance using physiological and yield based indices through multivariate analysis. Front. Plant Sci. 2021, 12, 600371. [Google Scholar] [CrossRef]
- Tesfaendrias, M.T.; McDonald, M.R.; Warland, J. Consistency of long-term marketable yield of carrot and onion cultivars in muck (organic) soil in relation to seasonal weather. Can. J. Plant Sci. 2010, 90, 755–765. [Google Scholar] [CrossRef]
- Singh, S.R.; Ahamed, N.; Srivastava, K.K.; Kumar, D.; Yousuf, S. Assessment of genetic divergence in long day onion (Allium cepa L.) through principal component and single linkage cluster analysis. J. Hortic. Sci. 2020, 15, 17–26. [Google Scholar] [CrossRef]
- Nakamura, N. Studies on the breeding of Allium cepa L., I. Estimating heritability. Jpn. J. Breed. 1959, 8, 255–260. [Google Scholar] [CrossRef]
- McCollum, G.D. Heritability and genetic correlation of some onion bulb traits: Estimates from S1 offspring-on-parent regression. J. Heredity 1966, 57, 105–110. [Google Scholar] [CrossRef]
- McCollum, G. Heritability and genetic correlations of soluble solids, bulb size and shape in white sweet Spanish onion. Can. J. Genet. Cytol. 1968, 10, 508–514. [Google Scholar] [CrossRef]
- McCollum, G. Heritability of onion bulb shape size: Estimates from half-sib families. J. Hered. 1971, 62, 101–104. [Google Scholar] [CrossRef]
- Dowker, B.; Fennell, J. Heritability of bulb shape in some north European onion varieties. Ann. Appl. Biol. 1974, 77, 61–65. [Google Scholar] [CrossRef]
- Prashanthi, M.; Lakshminarayana, D.; Mallesh, S.; Nikhil, B.S.K.; Sathish, G. Genetic diversity in onion (Allium cepa L.). Pharma Innov. J. 2021, 10, 1667–1670. [Google Scholar]
- Rashid, M.H.; Islam, A.K.M.A.; Mian, M.A.K.; Hossain, T.; Kabir, M.E. Multivariate Analysis in Onion (Allium cepa L.). Bangladesh J. Agric. Res. 2012, 37, 573–582. [Google Scholar] [CrossRef]
- Mohanty, B.K. Genetic variability, inter-relationship and path analysis in onion. J. Trop. Agric. 2006, 39, 17–20. Available online: http://www.jtropag.kau.in/index.php/ojs2/article/view/5/5 (accessed on 1 January 2023).
No | Name | Type | Bulb Color | Source Company | Crop Duration (in Days) | Crop Average Yield (t/h) | Bulb Diameter (cm) | Bulb Average Weight (g) | Pungency (Present/Absent) |
---|---|---|---|---|---|---|---|---|---|
1 | Sahar | Hybrid | Yellow | Huizer zaden | 215 | 40.64 | 5.183 | 97.84 | present |
2 | Super Perfect | Hybrid | Yellow | Sun Rise | 228 | 37.70 | 5.168 | 117.2 | present |
3 | Paliz | Hybrid | Yellow | Fine Seeds | 215 | 47.56 | 5.411 | 123.7 | present |
4 | Saba | Hybrid | Yellow | Huizer zaden | 211 | 65.38 | 5.672 | 131.0 | present |
5 | Vania | Hybrid | Yellow | Apollo Seeds | 217 | 37.71 | 5.137 | 98.87 | present |
6 | Early Super Select | Hybrid | Yellow | Agrotip | 215 | 33.42 | 5.091 | 98.27 | present |
7 | Savannah Sweet | Hybrid | Yellow | Seminis | 206 | 65.93 | 6.204 | 134.2 | present |
8 | Golden eye | Hybrid | Yellow | Seminis | 211 | 58.21 | 6.065 | 121.1 | present |
9 | Duster | Hybrid | Yellow | Seminis | 211 | 52.74 | 5.208 | 109.2 | present |
10 | SV6362 | Hybrid | Yellow | - | 209 | 61.59 | 5.971 | 143.9 | present |
11 | Amprialize | Hybrid | Yellow | Seminis | 207 | 52.23 | 5.837 | 120.2 | present |
12 | Behbahan improved population | Open pollinated | White | - | 225 | 36.63 | 5.066 | 83.62 | present |
13 | Primavera | Hybrid | Yellow | Seminis | 207 | 59.72 | 6.019 | 134.3 | present |
14 | Cirrus | Hybrid | White | Seminis | 215 | 58.66 | 6.073 | 133.2 | present |
15 | Texas Early Grano | Open pollinated | Yellow | - | 225 | 58.12 | 5.968 | 128.7 | present |
Location | Sample | EC (dS m−1) | pH | Organic C | Available P | Available K | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | % | ||||||||
Isfahan | Before planting (0–30 cm) | 5.4 | 7.2 | 0.74 | 30.2 | 350 | 12.6 | 50 | 37.4 |
Harvest time (0–30 cm) | 8.2 | 7.3 | 0.78 | 8.1 | 260 | 12.6 | 46 | 41.4 | |
Khuzestan | Before planting (0–30 cm) | 2.4 | 7.7 | 0.75 | 3.0 | 170 | 11.1 | 51 | 37.9 |
Harvest time (0–30 cm) | 2.4 | 7.7 | 0.75 | 3.0 | 170 | 12.1 | 50 | 37.9 |
Location | EC (dS m−1) | pH | CO32− | HCO3− | Cl− | SO42− | Sum of Anions | Ca2+ | Mg2+ | Na+ | Sum of Cations |
---|---|---|---|---|---|---|---|---|---|---|---|
meq L−1 | |||||||||||
Isfahan | 6 | 7 | 0 | 4.4 | 17.8 | 13.8 | 36 | 19.2 | 18.3 | 17.6 | 36.8 |
Khuzestan | 1.97 | 7.4 | 0 | 3.2 | 8.8 | 8.0 | - | 8.8 | 3.2 | 8.0 | - |
Trait | Shapiro–Wilk W Statistic |
---|---|
Bulb yield per plot | 0.9273 |
Single bulb weight | 0.9765 |
Dry matter content | 0.9841 |
Soluble solid content | 0.9474 |
Storage waste content | 0.9548 |
Bulb height | 0.9780 |
Bulb diameter | 0.9626 |
Neck diameter | 0.9576 |
Index shape | 0.9817 |
Multivariate (all traits) | 0.9556 |
Source of Variation | Location | Variety | Location × Variety | Residual |
---|---|---|---|---|
Degrees of freedom | 1 | 14 | 14 | 60 |
Yield | 42,027.29 *** | 759.32 *** | 328.74 *** | 82.52 |
Single weight | 177,273.1 *** | 1791.3 *** | 750.4 * | 382.2 |
Dry matter | 3034.545 *** | 21.278 *** | 23.555 *** | 5.753 |
Soluble | 233.3292 *** | 29.2825 *** | 1.2968 * | 0.5244 |
Storage waste | 12,795.73 *** | 162.93 ** | 92.18 | 61.62 |
Bulb height | 20,943.13 *** | 151.32 *** | 73.61 *** | 14.08 |
Bulb diameter | 43,379.7 *** | 112.32 *** | 88.84 *** | 28.17 |
Neck diameter | 69.6784 *** | 1.6336 ** | 1.4236 * | 0.6031 |
Index shape | 0.835613 *** | 0.042442 *** | 0.011964 | 0.009528 |
Trait | Khuzestan | Isfahan | ||
---|---|---|---|---|
First Canonical Variable, V1 | Second Canonical Variable, V2 | First Canonical Variable, V1 | Second Canonical Variable, V2 | |
Yield | −0.42 | 0.85 *** | 0.71 ** | 0.23 |
Single weight | −0.72 ** | 0.55 * | 0.20 | −0.14 |
Dry matter | 0.97 *** | −0.19 | 0.66 ** | 0.35 |
Soluble | 0.98 *** | −0.01 | −0.57 * | 0.78 *** |
Storage waste | 0.34 | 0.68 ** | −0.24 | −0.52 * |
Bulb height | −0.87 *** | 0.04 | 0.67 ** | −0.18 |
Bulb diameter | −0.43 | 0.88 *** | −0.15 | −0.19 |
Neck diameter | 0.29 | −0.13 | −0.53 * | 0.11 |
Index shape | −0.60 * | −0.68 ** | 0.70 ** | −0.03 |
Percentage variation | 55.52 | 23.67 | 55.95 | 30.81 |
Variety | Sahar | Super Perfect | Paliz | Saba | Vania | Early Super Select | Savannah Sweet | Golden Eye | Duster | SV6362 | Amprialize | Behbahan Improved Population | Primavera | Cirrus | Texas Early Grano |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sahar | 0 | 9.963 | 4.938 | 8.014 | 5.047 | 6.468 | 9.432 | 10.14 | 5.707 | 8.742 | 7.237 | 19.667 | 9.81 | 10.8 | 9.165 |
Super Perfect | 6.556 | 0 | 9.74 | 11.93 | 7.596 | 4.555 | 11.46 | 11.7 | 9.48 | 11.13 | 9.57 | 23.403 | 9.37 | 11.1 | 11.929 |
Paliz | 8.035 | 4.707 | 0 | 5.776 | 3.549 | 7.531 | 8.344 | 9.955 | 4.666 | 6.095 | 5.5 | 21.912 | 8.77 | 10 | 8.869 |
Saba | 5.922 | 9.216 | 11.06 | 0 | 7.695 | 10.79 | 8.006 | 10.51 | 4.342 | 5.45 | 7.584 | 24.409 | 7.01 | 10.6 | 9.332 |
Vania | 9.592 | 4.672 | 3.610 | 12.48 | 0 | 4.874 | 8.716 | 9.811 | 5.505 | 7.539 | 4.817 | 21.608 | 8.61 | 9.99 | 9.045 |
Early Super Select | 7.798 | 3.715 | 1.084 | 10.98 | 2.24 | 0 | 10.43 | 10.68 | 7.915 | 10.38 | 7.765 | 21.91 | 9.53 | 10.9 | 10.883 |
Savannah Sweet | 6.299 | 5.107 | 8.148 | 5.797 | 8.779 | 7.626 | 0 | 3.769 | 5.593 | 3.764 | 4.71 | 22.97 | 4.36 | 4.08 | 4.882 |
Golden eye | 6.316 | 3.446 | 3.223 | 9.644 | 3.913 | 3.11 | 6.941 | 0 | 7.189 | 6.465 | 6.314 | 20.994 | 6.36 | 3.7 | 4.309 |
Duster | 4.548 | 4.691 | 5.327 | 7.432 | 6.16 | 4.561 | 6.08 | 3.542 | 0 | 4.145 | 4.931 | 21.54 | 5.09 | 7.42 | 6.183 |
SV6362 | 8.657 | 4.375 | 2.823 | 11.95 | 2.631 | 2.165 | 8.138 | 3.992 | 5.941 | 0 | 4.653 | 22.988 | 4.87 | 5.86 | 5.668 |
Amprialize | 3.691 | 4.561 | 5.417 | 6.375 | 6.844 | 5.187 | 5.431 | 3.969 | 2.354 | 6.2 | 0 | 21.799 | 6.18 | 6.35 | 5.794 |
Behbahan improved population | 12.66 | 13.29 | 11.57 | 17.07 | 12.39 | 11.55 | 16.19 | 11.86 | 11.15 | 12.02 | 12.49 | 0 | 23.9 | 21 | 18.478 |
Primavera | 5.32 | 3.753 | 3.576 | 7.711 | 5.464 | 3.888 | 5.201 | 3.393 | 3.351 | 4.488 | 2.67 | 12.628 | 0 | 5.67 | 6.536 |
Cirrus | 7.134 | 3.615 | 3.381 | 9.727 | 3.598 | 2.66 | 6.541 | 3.169 | 3.531 | 3.381 | 4.31 | 11.357 | 3.31 | 0 | 4.045 |
Texas Early Grano | 5.272 | 4.174 | 3.94 | 8.384 | 5.863 | 4.134 | 5.597 | 4.081 | 3.685 | 4.457 | 3.688 | 11.564 | 1.93 | 3.5 | 0 |
Da = 11.752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, Z.; Darabi, A.; Bocianowski, J. Multivariate Analysis of Short Day Onion (Allium cepa L.) Genotypes by Canonical Variate Analysis and Mahalanobis Distances. Sustainability 2023, 15, 3217. https://doi.org/10.3390/su15043217
Abbasi Z, Darabi A, Bocianowski J. Multivariate Analysis of Short Day Onion (Allium cepa L.) Genotypes by Canonical Variate Analysis and Mahalanobis Distances. Sustainability. 2023; 15(4):3217. https://doi.org/10.3390/su15043217
Chicago/Turabian StyleAbbasi, Zahra, Abdosattar Darabi, and Jan Bocianowski. 2023. "Multivariate Analysis of Short Day Onion (Allium cepa L.) Genotypes by Canonical Variate Analysis and Mahalanobis Distances" Sustainability 15, no. 4: 3217. https://doi.org/10.3390/su15043217
APA StyleAbbasi, Z., Darabi, A., & Bocianowski, J. (2023). Multivariate Analysis of Short Day Onion (Allium cepa L.) Genotypes by Canonical Variate Analysis and Mahalanobis Distances. Sustainability, 15(4), 3217. https://doi.org/10.3390/su15043217