The Impact of Public Policy Measures during the COVID-19 Pandemic on the Characteristics of Urban Wastewater in the Republic of Serbia
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Wastewater Quantity
3.2. Wastewater Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Listings of WHO’s Response to COVID-19. 2020. Available online: https://www.who.int/news/item/29-06-2020-covidtimeline (accessed on 4 November 2022).
- Balanzá–Martínez, V.; Atienza–Carbonell, B.; Kapczinski, F.; De Boni, R.B. Lifestyle behaviours during the COVID-19—Time to connect. Acta Psychiatr. Scand. 2020, 141, 399–400. [Google Scholar] [CrossRef]
- Sheehan, M.M.; Pfoh, E.; Speaker, S.; Rothberg, M. Changes in social behavior over time during the COVID-19 pandemic. Cureus 2020, 23, e10754. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Aydın, S.; Nakiyingi, B.A.; Esmen, C.; Güneysu, S.; Ejjada, M. Environmental impact of coronavirus (COVID-19) from Turkish perceptive. Environ. Dev. Sustain. 2020, 23, 7573–7580. [Google Scholar] [CrossRef]
- Elsaid, K.; Olabi, V.; Sayed, E.; Wilberforce, T.; Abdelkareem, M. Effects of COVID-19 on the environment: An overview on air, water, wastewater, and solid waste. J. Environ. Manag. 2021, 292, 112694. [Google Scholar] [CrossRef]
- Paleologos, E.K.; O’Kelly, B.C.; Tang, C.-S.; Cornell, K.; Rodríguez-Chueca, J.; Abuel-Naga, H.; Koda, E.; Farid, A.; Vaverková, M.D.; Kostarelos, K.; et al. Post COVID-19 water and waste water management to protect public health and geoenvironment. Environ. Geotech. 2021, 8, 193–207. [Google Scholar] [CrossRef]
- Balacco, G.; Totaro, V.; Iacobellis, V.; Manni, A.; Spagnoletta, M.; Piccinni, A.F. Influence of COVID-19 spread on water drinking demand: The case of Puglia Region (Southern Italy). Sustain. Times 2020, 12, 5919. [Google Scholar] [CrossRef]
- Kalbusch, A.; Henning, E.; Brikalski, M.P.; Luca, F.V.; de Konrath, A.C. Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption. Resour. Conserv. Recycl. 2020, 163, 105098. [Google Scholar] [CrossRef]
- Spearing, L.A.; Thelemaque, N.; Kaminsky, J.A.; Katz, L.E.; Kinney, K.A.; Kirisits, M.J.; Sela, L.; Faust, K.M. Implications of social distancing policies on drinking water infrastructure: An overview of the challenges to and responses of U. S. Utilities during the COVID-19 pandemic. ACS EST Water 2020, 1, 888–899. [Google Scholar] [CrossRef]
- European Environment Agency. Air Pollution Goes Down as Europe Takes Hard Measures to Combat Coronavirus. 2020. Available online: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as (accessed on 25 March 2020).
- European Environment Agency. EU Achieves 20-20-20 Climate Targets, 55% Emissions Cut by 2030 Reachable with More Efforts and Policies. 2021. Available online: https://www.eea.europa.eu/highlights/eu-achieves-20-20-20 (accessed on 4 November 2021).
- European Environment Agency. COVID-19 in Europe: Increased Pollution from Masks, Gloves and Other Single-Use Plastics. 2021. Available online: https://www.eea.europa.eu/highlights/covid19-in-europe-increased-pollution (accessed on 6 July 2021).
- Bakchan, A.; Roy, A.; Faust, K.M. Impacts of COVID-19 social distancing policies on water demand: A population dynamics perspective. J. Environ. Manag. 2022, 302, 113949. [Google Scholar] [CrossRef]
- Bakchan, A.; Roy, A.; Fasut, K. Leveraging water-wastewater data interdependencies to understand infrastructure systemsʹ behaviors during COVID-19 pandemic. J. Clean. Prod. 2022, 367, 132962. [Google Scholar] [CrossRef]
- Fernandez, F.J.; Seco, A.; Ferrer, J.; Rodrigo, M.A. Use of neurofuzzy networks to improve wastewater flow-rate fore-casting. Environ. Model. Softw. 2009, 24, 686–693. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Snowling, S.; Siam, A.; El-Dakhakhni, W. Predictive models for wastewater flow forecasting based on time series analysis and artificial neural network. Water Sci. Technol. 2019, 80, 243–253. [Google Scholar] [CrossRef]
- Venugopal, A.; Ganesan, H.; Raja, S.S.S.; Govindasamy, V.; Arunachalam, M.; Narayanasamy, A.; Sivaprakash, P.; Rahman, P.K.S.M.; Gopalakrishnan, A.V.; Siama, Z.; et al. Novel wastewater surveillance strategy for early detection of coronavirus disease 2019 hotspots. Environ. Sci. Health 2020, 17, 8–13. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef]
- Wurtzer, S.; Marechal, V.; Mouchel, J.M.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, J.L.; Moulin, L. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. Euro Surveill. 2020, 25, 2000776. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and vitality of SARS-CoV-2virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Randazzo, W.; Cuevas-Ferrando, E.; Sanjuan, R.; Domingo-Calap, P.; Sanchez, G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int. J. Hyg. Environ. Health 2020, 230, 113621. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. Thefirst proof of the capability of wastewater surveillance for COVID-19 in India through the detection of the genetic material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Kocamemi, B.A.; Kurt, H.; Hacioglu, S.; Yarali, C.; Saatci, A.M.; Pakdemirli, B. First data-set on SARS-CoV-2 detection for Istanbul wastewaters in Turkey. medRxiv 2020. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveil-lance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef] [PubMed]
- Hellmer, M.; Paxeus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergstrom, T.; Norder, H. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl. Environ. Microbiol. 2020, 80, 6771–6781. [Google Scholar] [CrossRef]
- Balboa, S.; Mauricio-Iglesias, M.; Rodriguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. medRxiv 2020. [Google Scholar] [CrossRef]
- Lodder, W.; de Roda Husman, A.M. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, I.; Galani, A.; Rousis, N.; Aalizadeh, R.; Dimopoulos, M.; Thomaidis, N. Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Sci. Total Environ. 2021, 799, 149230. [Google Scholar] [CrossRef]
- Teymoorian, T.; Teymourian, T.; Kowsari, E.; Ramakrishna, S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. J. Water Process Eng. 2021, 42, 102193. [Google Scholar] [CrossRef]
- Chu, W.; Fang, C.; Deng, Y.; Xu, Z. Intensified disinfection amid COVID-19 pandemic poses potential risks to water quality and safety. Environ. Sci. Technol. 2020, 55, 4084–4086. [Google Scholar] [CrossRef]
- Jammalamadaka, S.R.; Taufer, E.; Terdik, G.H. On multivariate skewness and kurtosis. Sankhya A 2021, 83, 607–644. [Google Scholar] [CrossRef]
- Bono, R.; Arnau, J.; Alarcón, R.; Blanca, M.J. Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry 2020, 12, 19. [Google Scholar] [CrossRef]
- Rohila, S.K. COVID-19 Outbreak: More Hand Washing Can Increase India’s Water Woes. Available online: https://www.downtoearth.org.in/blog/water/covid-19-outbreakmore-hand-washing-can-increase-india-s-water-woes-69900 (accessed on 7 February 2021).
- Yazdian, H.; Jamshidi, S. Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions. J. Environ. Health Sci. Eng. 2021, 19, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Kataki, S.; Chatterjee, S.; Vairale, M.G.; Sharma, S.; Dwivedi, S.K. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resour. Conserv. Recycl. 2021, 164, 105156. [Google Scholar] [CrossRef] [PubMed]
- SumeteoInfo. Data Is Collected with the Help of the Nexus Automatic Meteorological Station. Available online: https://sumeteo.info/wxrainseason.php (accessed on 5 December 2022).
- Tchobanoglous, G.; Stensel, H.; Tsuchihashi, R.; Burton, F. Wastewater Engineering, Treatment, and Resource Recovery, 5th ed.; Metcalf & Eddy Inc., McGraw-Hill Publishers: New York, NY, USA, 2014. [Google Scholar]
- Mousazadeh, M.; Paital, B.; Naghdali, Z.; Mortezania, Z.; Hashemi, M.; Karamati Niaragh, E.; Aghababaei, M.; Ghorbankhani, M.; Lichtfouse, E.; Sillanpää, M.; et al. Positive environmental effects of the coronavirus 2020 episode: A review. Environ. Dev. Sustain. 2021, 4, 12738–12760. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fazlzadehdavil, M.; Hazrati, S.; Sharafi, K.; Khodadadi, T.; Safari, Y. A survey on nitrogen and phosphorus compound variation processes in wastewater stabilisation ponds. Pol. J. Environ. Stud. 2014, 23, 831–834. [Google Scholar]
- Raptopoulou, C.; Palasantza, P.A.; Mitrakas, M.; Kalaitzidou, K.; Tolkou, A.; Zouboulis, A. Statistical variation of nutrient concentrations and biological removal efficiency of a wastewater treatment plant. Water Util. J. 2016, 14, 5–17. [Google Scholar]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: Consideration of environmental implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef]
- Anayah, F.; Al-Khatib, I.A.; Hejaz, B. Assessment of water and sanitation systems at Palestinian healthcare facilities: Pre-and post-COVID-19. Environ. Monit. Assess. 2021, 193, 41. [Google Scholar] [CrossRef]
- Alade, A.; Jameel, A.; Muyubi, S.; Abdul Karim, M.; Alam, Z. Removal of oil and grease as emerging pollutants of concern (EPC) in wastewater stream. IIUM Eng. J. 2011, 12, 161–169. [Google Scholar]
- Ahmed, M.E.; Al-Haddad, A.; Bualbanat, A. Possible impacts of COVID-19 pandemic on domestic wastewater characteristics in Kuwait. J. Environ. Eng. Landsc. Manag. 2022, 30, 393–411. [Google Scholar] [CrossRef]
- Curtis, K.; Keeling, D.; Yetka, K.; Larson, A.; Gonzalez, R. Wastewater SARS-CoV-2 concentration and loading variability from grab and 24-hour composite samples. medRxiv 2020. [Google Scholar] [CrossRef]
Settlement | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|
150,000 PE | 3,300,492 | 3,426,820 | 3,159,493 | 3,256,810 | 3,358,010 | 3,626,640 | 3,582,630 |
100,000 PE | 1,522,175 | 2,514,407 | 2,602,763 | 2,710,380 | 2,337,561 | 2,897,052 | 2,842,068 |
15,000 PE | 179,655 | 183,485 | 238,881 | 244,920 | 271,904 | 297,823 | 322,113 |
5000 PE | 102,243 | 106,875 | 105,568 | 105,568 | 104,440 | 109,903 | 107,542 |
Parameter, Unit | Mean | Variance | Kurtosis | Skewness | Mean | Variance | Kurtosis | Skewness |
---|---|---|---|---|---|---|---|---|
Settlement 5000 PE | Settlement 15,000 PE | |||||||
pH | 8.20 | 0.26 | 4.84 | −1.26 | 7.74 | 0.95 | 16.57 | −3.71 |
Cond, µS/cm | 2862.33 | 10,387,069.12 | 39.78 | 5.93 | 1599.71 | 64,883.75 | −0.33 | −0.12 |
SS, mL/L | 0.31 | 0.42 | 31.55 | 5.34 | 3.86 | 159.75 | 27.23 | 5.11 |
TSS, mg/L | 311.26 | 234,900.16 | 43.28 | 6.23 | 316.62 | 143,401.82 | 3.64 | 1.82 |
TDS, mg/L | 2344.77 | 12,149,832.31 | 10.31 | 3.35 | 1085.61 | 26,526.25 | 0.38 | 0.31 |
COD, mg/L | 585.33 | 123,604.29 | 7.65 | 2.15 | 432.42 | 122,476.72 | 0.42 | 0.99 |
BOD, mg/L | 353.41 | 38,233.85 | −0.70 | 0.35 | 246.65 | 42,746.57 | −0.50 | 0.82 |
TKN, mg/L | 86.99 | 1408.46 | 0.32 | 0.39 | 39.35 | 426.81 | −0.11 | 0.76 |
N-NH4, mg/L | 24.64 | 209.41 | 1.70 | 1.09 | 19.40 | 303.55 | 1.92 | 1.61 |
N-NO3, mg/L | 0.24 | 0.46 | 38.19 | 5.87 | 0.52 | 0.35 | 0.15 | 1.24 |
N-NO2, mg/L | 0.01 | 0.00 | 7.35 | 2.65 | 0.06 | 0.00 | −0.16 | 1.00 |
P-total, mg/L | 3.28 | 3.36 | 5.69 | 2.08 | 2.26 | 1.28 | 7.11 | 2.22 |
P-PO4, mg/L | 2.19 | 2.31 | 14.48 | 3.10 | 1.57 | 0.46 | 1.17 | 0.82 |
O&G, mg/L | 147.33 | 7265.59 | 2.14 | 1.16 | 98.12 | 10,905.37 | 15.82 | 3.59 |
Surfactants, mg/L | 8.49 | 32.63 | −0.15 | 0.74 | 3.96 | 12.44 | 1.27 | 1.30 |
Settlement 100,000 PE | Settlement 150,000 PE | |||||||
pH | 7.91 | 0.22 | −1.06 | 0.23 | 7.69 | 0.31 | −1.00 | 0.06 |
Cond, µS/cm | 1781.39 | 179,748.88 | 7.06 | 2.29 | 2243.33 | 1,156,129.28 | 18.42 | 3.94 |
SS, mL/L | 1.71 | 7.36 | 6.02 | 2.42 | 8.79 | 71.00 | 10.18 | 2.58 |
TSS, mg/L | 238.97 | 21,024.06 | −0.11 | 0.65 | 363.60 | 44,653.07 | 0.40 | 0.81 |
TDS, mg/L | 1020.06 | 54,579.03 | 4.55 | 1.12 | 1793.23 | 759,720.61 | 11.87 | 2.90 |
COD, mg/L | 506.54 | 91,740.16 | 15.75 | 3.16 | 1734.65 | 1,415,631.76 | 0.18 | 0.83 |
BOD, mg/L | 301.81 | 72,102.72 | 26.06 | 4.32 | 977.19 | 625,136.04 | 2.15 | 1.39 |
TKN, mg/L | 66.44 | 242.70 | 2.01 | −0.96 | 66.45 | 1059.59 | 0.18 | 0.53 |
N-NH4, mg/L | 31.55 | 345.18 | 1.12 | 1.08 | 29.16 | 391.93 | 0.16 | 0.87 |
N-NO3, mg/L | 2.78 | 40.39 | 23.41 | 4.56 | 1.55 | 3.89 | 5.01 | 1.96 |
N-NO2, mg/L | 0.07 | 0.02 | 22.51 | 4.62 | 0.04 | 0.00 | 0.91 | 1.40 |
P-total, mg/L | 3.76 | 8.75 | 6.51 | 2.32 | 4.79 | 1.88 | −0.42 | −0.01 |
P-PO4, mg/L | 2.69 | 3.00 | −0.29 | 0.82 | 1.96 | 1.13 | 7.21 | 1.99 |
O&G, mg/L | 140.91 | 13,560.71 | 8.01 | 2.57 | 119.43 | 7998.20 | 2.54 | 1.43 |
Surfactants, mg/L | 3.96 | 6.28 | 0.24 | 0.73 | 5.72 | 15.53 | 1.55 | 1.22 |
Parameter, Unit | Settlement 5000 PE | Settlement 15,000 PE | Settlement 100,000 PE | Settlement 150,000 PE |
---|---|---|---|---|
pH | −3.51 | 6.99 | −3.64 | 3.97 |
Cond, µS/cm | 79.03 | 22.67 | 5.01 | 74.91 |
SS, mL/L | −22.90 | −36.14 | 120.06 | 94.48 |
TSS, mg/L | 39.32 | 307.67 | 8.35 | −9.37 |
TDS, mg/L | 17.49 | −2.96 | 6.58 | 61.07 |
COD, mg/L | 62.90 | 124.06 | 35.31 | 12.93 |
BOD, mg/L | 41.80 | 114.06 | 2.09 | 25.05 |
TKN, mg/L | 6.44 | 80.36 | −1.25 | −7.23 |
N-NH4, mg/L | 6.20 | 43.12 | 52.74 | 50.58 |
N-NO3, mg/L | −19.23 | −14.59 | 78.18 | 11.24 |
N-NO2, mg/L | 33.58 | −32.23 | −31.76 | −14.08 |
P-total, mg/L | 14.12 | 60.03 | 91.55 | 17.90 |
P-PO4, mg/L | 6.07 | 25.10 | 45.03 | 8.15 |
O&G, mg/L | 97.7 | 218.57 | 97.33 | 103.15 |
Surfactants, mg/L | 109.92 | 194.98 | 11.53 | 19.26 |
Parameter, Unit | Settlement 5000 PE | Settlement 15,000 PE | Settlement 100,000 PE | Settlement 150,000 PE |
---|---|---|---|---|
pH | 3.85 | 0.11 | −0.15 | −4.17 |
Cond, µS/cm | −107.46 | −13.50 | 13.33 | −83.27 |
SS, mL/L | −125.79 | −322.95 | −51.21 | −18.50 |
TSS, mg/L | −100.83 | −297.00 | 5.45 | −2.17 |
TDS, mg/L | −161.50 | −10.32 | 2.95 | −84.64 |
COD, mg/L | −6.50 | −198.93 | 0.77 | −10.72 |
BOD, mg/L | 10.63 | −203.67 | 34.10 | −3.70 |
TKN, mg/L | 29.76 | −82.49 | 9.24 | 34.20 |
N-NH4, mg/L | 18.76 | 12.98 | −24.94 | 12.39 |
N-NO3, mg/L | 71.75 | −33.47 | −74.96 | −103.42 |
N-NO2, mg/L | −130.63 | 4.89 | −12.79 | −92.43 |
P-total, mg/L | 14.94 | −23.10 | −62.73 | −10.87 |
P-PO4, mg/L | 16.93 | −8.89 | −50.13 | 0.53 |
O&G, mg/L | −31.07 | −80.19 | −8.04 | −27.39 |
Surfactants, mg/L | 25.64 | −15.11 | 23.35 | 25.82 |
Parameter, Unit | Settlement 5000 PE | Settlement 150,00 PE | Settlement 100,000 PE | Settlement 150,000 PE |
---|---|---|---|---|
pH | −0.86 | 6.60 | −4.03 | 1.54 |
Cond, µS/cm | 13.25 | 12.34 | 16.05 | 22.42 |
SS, mL/L | −157.93 | −128.19 | 63.88 | 43.47 |
TSS, mg/L | −8.27 | 91.00 | 35.91 | −11.72 |
TDS, mg/L | −47.92 | −8.47 | 8.68 | 39.05 |
COD, mg/L | 35.92 | 24.00 | 26.75 | 6.19 |
BOD, mg/L | 34.81 | 19.78 | 32.11 | 18.34 |
TKN, mg/L | 27.24 | 62.84 | 6.59 | 17.14 |
N-NH4, mg/L | 18.74 | 35.99 | 22.03 | 38.62 |
N-NO3, mg/L | 54.92 | −57.55 | 72.81 | −27.40 |
N-NO2, mg/L | −26.70 | −45.37 | −56.60 | −58.74 |
P-total, mg/L | 21.81 | 30.41 | 23.32 | 10.08 |
P-PO4, mg/L | 17.30 | 15.84 | 4.96 | 7.81 |
O&G, mg/L | 39.57 | 56.12 | 46.19 | 43.78 |
Surfactants, mg/L | 61.73 | 64.44 | 27.11 | 30.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pešić, V.; Bečelić-Tomin, M.; Leovac Maćerak, A.; Kulić Mandić, A.; Tomašević Pilipović, D.; Kerkez, D. The Impact of Public Policy Measures during the COVID-19 Pandemic on the Characteristics of Urban Wastewater in the Republic of Serbia. Sustainability 2023, 15, 3047. https://doi.org/10.3390/su15043047
Pešić V, Bečelić-Tomin M, Leovac Maćerak A, Kulić Mandić A, Tomašević Pilipović D, Kerkez D. The Impact of Public Policy Measures during the COVID-19 Pandemic on the Characteristics of Urban Wastewater in the Republic of Serbia. Sustainability. 2023; 15(4):3047. https://doi.org/10.3390/su15043047
Chicago/Turabian StylePešić, Vesna, Milena Bečelić-Tomin, Anita Leovac Maćerak, Aleksandra Kulić Mandić, Dragana Tomašević Pilipović, and Djurdja Kerkez. 2023. "The Impact of Public Policy Measures during the COVID-19 Pandemic on the Characteristics of Urban Wastewater in the Republic of Serbia" Sustainability 15, no. 4: 3047. https://doi.org/10.3390/su15043047
APA StylePešić, V., Bečelić-Tomin, M., Leovac Maćerak, A., Kulić Mandić, A., Tomašević Pilipović, D., & Kerkez, D. (2023). The Impact of Public Policy Measures during the COVID-19 Pandemic on the Characteristics of Urban Wastewater in the Republic of Serbia. Sustainability, 15(4), 3047. https://doi.org/10.3390/su15043047