Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt
Abstract
:1. Introduction
2. V2G Proposed Optimization Framework
2.1. Proposed Framework
2.2. Battery Degradation Cost Model
2.3. Proposed V2G Scheduling Modelling and Constraints
2.4. Solving Based on the Genetec Algorithm (GA)
3. Results and Discussion
3.1. Case 1: Continuous Parking for a 2 h Interval Time
3.2. Case 2: Stochastic Parking for a 2 h Interval Time
3.3. Case 3: Parking for a 1h Interval Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BEMS  Battery Energy Management System  $SO{C}_{i}$  Initial State of Charge 
EVCS  Electric Vehicle Charging Station  $SO{C}_{f}$  Final State of Charge 
G2V  GridtoVehicle  ${N}_{cl}$  EV Battery Life Span Charging/Discharging Cycles 
GA  Genetec Algorithm  $\alpha $, $\beta $  Coefficients of Battery Specifications 
MILP  Mixedinteger Linear Programming  $d$  Depth of Discharge 
PEVs  Plugin Electric Vehicles  ${E}_{c}^{max}$  Maximum Battery Capacity (kWh) 
SOC  State of Charge  ${\Psi}_{c}^{BC}$  Price of the Battery (EGP) 
V2B  VehicletoBuilding  $c$  Category of EV 
V2G  VehicletoGrid  $t$  Parking Interval Time 
V2V  VehicletoVehicle  ${\eta}_{D}$  Discharging Efficiency (%) 
${P}_{tc}^{G2V}$  EV Charging Power (kW)  $DOD$  Maximum Depth of the Discharge in each segment 
${\Psi}_{tc}^{TC\_G2V}$  EV Charging Tariff Cost (EGP/kWh)  ${a}_{0}$  Polynomial Coefficient of the Cycle Depth Degradation Function 
${\Psi}_{tc}^{RC\_V2G}$  EV Owner Discharging Revenue Cost (EGP/kWh)  ${P}_{tc}^{V2G}$  Discharging Power (kW) 
$\epsilon $  Switching Binary Number 1 or 0  ${T}_{Pset}$  Set of Parking Time Slots (h) 
References
 Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE 2010, 99, 168–183. [Google Scholar] [CrossRef][Green Version]
 Bibak, B.; TekinerMoğulkoç, H. A comprehensive analysis of Vehicle to Grid (V2G) systems and scholarly literature on the application of such systems. Renew. Energy Focus 2021, 36, 1–20. [Google Scholar] [CrossRef]
 Zhou, Y.; Li, X. Vehicle to grid technology: A review. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 9031–9036. [Google Scholar]
 Yu, H.; Niu, S.; Shang, Y.; Shao, Z.; Jia, Y.; Jian, L. Electric vehicles integration and vehicletogrid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications. Renew. Sustain. Energy Rev. 2022, 168, 112812. [Google Scholar] [CrossRef]
 Zhang, R.; Cheng, X.; Yang, L. Flexible energy management protocol for cooperative EVtoEV charging. IEEE Trans. Intell. Transp. Syst. 2018, 20, 172–184. [Google Scholar] [CrossRef][Green Version]
 Sovacool, B.K.; Hirsh, R.F. Beyond batteries: An examination of the benefits and barriers to plugin hybrid electric vehicles (PHEVs) and a vehicletogrid (V2G) transition. Energy Policy 2009, 37, 1095–1103. [Google Scholar] [CrossRef]
 Rezaei, P.; Frolik, J.; Hines, P.D. Packetized plugin electric vehicle charge management. IEEE Trans. Smart Grid 2014, 5, 642–650. [Google Scholar] [CrossRef]
 Hu, J.; You, S.; Lind, M.; Østergaard, J. Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Trans. Smart Grid 2013, 5, 703–711. [Google Scholar] [CrossRef][Green Version]
 Makeen, P.; Ghali, H.A.; Memon, S. A Review of Various Fast Charging Power and Thermal Protocols for Electric Vehicles Represented by LithiumIon Battery Systems. Future Transp. 2022, 2, 281–301. [Google Scholar] [CrossRef]
 Makeen, P.; Ghali, H.A.; Memon, S. Experimental and theoretical analysis of the fast charging polymer lithiumion battery based on Cuckoo Optimization Algorithm (COA). IEEE Access 2020, 8, 140486–140496. [Google Scholar] [CrossRef]
 Makeen, P.; Ghali, H.A.; Memon, S.; Duan, F. Impacts of electric vehicle fast charging under dynamic temperature and humidity: Experimental and theoretically validated model analyses. Energy 2022, 261, 125335. [Google Scholar] [CrossRef]
 Liu, S.; Etemadi, A.H. A dynamic stochastic optimization for recharging plugin electric vehicles. IEEE Trans. Smart Grid 2017, 9, 4154–4161. [Google Scholar] [CrossRef]
 Makeen, P.; Ghali, H.A.; Memon, S.; Duan, F. Smart technoeconomic operation of electric vehicle charging station in Egypt. Energy 2022, 264, 126151. [Google Scholar] [CrossRef]
 CastilloCalzadilla, T.; AlonsoVicario, A.; Borges, C.E.; Martin, C. EMobility in Positive Energy Districts. Buildings 2022, 12, 264. [Google Scholar] [CrossRef]
 Saber, H.; Ranjbar, H.; FattaheianDehkordi, S.; MoeiniAghtaie, M.; Ehsan, M.; Shahidehpour, M. Transactive Energy Management of V2GCapable Electric Vehicles in Residential Buildings: An MILP Approach. IEEE Trans. Sustain. Energy 2022, 13, 1734–1743. [Google Scholar] [CrossRef]
 Vignali, R.; Falsone, A.; Ruiz, F.; Gruosso, G. Towards a comprehensive framework for V2G optimal operation in presence of uncertainty. Sustain. Energy Grids Netw. 2022, 31, 100740. [Google Scholar] [CrossRef]
 Wei, H.; Zhang, Y.; Wang, Y.; Hua, W.; Jing, R.; Zhou, Y. Planning integrated energy systems coupling V2G as a flexible storage. Energy 2022, 239, 122215. [Google Scholar] [CrossRef]
 Badawy, M.O.; Sozer, Y. Power flow management of a grid tied PVbattery system for electric vehicles charging. IEEE Trans. Ind. Appl. 2016, 53, 1347–1357. [Google Scholar] [CrossRef]
 Wang, Z.; Jochem, P.; Fichtner, W. A scenariobased stochastic optimization model for charging scheduling of electric vehicles under uncertainties of vehicle availability and charging demand. J. Clean. Prod. 2020, 254, 119886. [Google Scholar] [CrossRef]
 Ginigeme, K.; Wang, Z. Distributed optimal vehicletogrid approaches with consideration of battery degradation cost under realtime pricing. IEEE Access 2020, 8, 5225–5235. [Google Scholar] [CrossRef]
 Xu, B.; Zhao, J.; Zheng, T.; Litvinov, E.; Kirschen, D.S. Factoring the cycle aging cost of batteries participating in electricity markets. IEEE Trans. Power Syst. 2017, 33, 2248–2259. [Google Scholar] [CrossRef]
 Farzin, H.; FotuhiFiruzabad, M.; MoeiniAghtaie, M. A practical scheme to involve degradation cost of lithiumion batteries in vehicletogrid applications. Ieee Trans. Sustain. Energy 2016, 7, 1730–1738. [Google Scholar] [CrossRef]
 ur Rehman, U. A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation. Int. J. Electr. Power Energy Syst. 2022, 140, 108090. [Google Scholar] [CrossRef]
 Zeynali, S.; Rostami, N.; Ahmadian, A.; Elkamel, A. Stochastic energy management of an electricity retailer with a novel plugin electric vehiclebased demand response program and energy storage system: A linearized battery degradation cost model. Sustain. Cities Soc. 2021, 74, 103154. [Google Scholar] [CrossRef]
 Amamra, S.A.; Marco, J. Vehicletogrid aggregator to support power grid and reduce electric vehicle charging cost. IEEE Access 2019, 7, 178528–178538. [Google Scholar] [CrossRef]
 Zheng, Y.; Shao, Z.; Lei, X.; Shi, Y.; Jian, L. The economic analysis of electric vehicle aggregators participating in energy and regulation markets considering battery degradation. J. Energy Storage 2022, 45, 103770. [Google Scholar] [CrossRef]
 Ministry of Electricity and Energy Company in Egypt. Ministry of Electricity and Energy Company in Egypt. 2022. Available online: http://moee.gov.eg/ (accessed on 15 October 2022).
 NERA. Electric Feeding Tariff; Ministry of Electricity and Renewable Energy: Cairo, Egypt, 2022.
 Michalewicz, Z.; Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 1996, 4, 1–32. [Google Scholar] [CrossRef]
 Lü, X.; Wu, Y.; Lian, J.; Zhang, Y.; Chen, C.; Wang, P.; Meng, L. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manag. 2020, 205, 112474. [Google Scholar] [CrossRef]
 Kuendee, P.; Janjarassuk, U. A comparative study of mixedinteger linear programming and genetic algorithms for solving binary problems. In Proceedings of the 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore, 26–28 April 2018; pp. 284–288. [Google Scholar]
 Radwan, A.A.; Zaki Diab, A.A.; Elsayed, A.H.M.; Haes Alhelou, H.; Siano, P. Active distribution network modeling for enhancing sustainable power system performance; a case study in Egypt. Sustainability 2020, 12, 8991. [Google Scholar] [CrossRef]
 Tolba, M.A.; Rezk, H.; Tulsky, V.; Diab, A.A.Z.; Abdelaziz, A.Y.; Vanin, A. Impact of optimum allocation of renewable distributed generations on distribution networks based on different optimization algorithms. Energies 2018, 11, 245. [Google Scholar] [CrossRef]
Refs.  Battery Degradation Cost  V2G Revenue  Optimization Algorithm (OA)  Battery Degradation Cost without Using the OA  Battery Degradation Cost Using the OA  $\mathit{S}\mathit{O}{\mathit{C}}_{\mathit{i}}$  $\mathit{S}\mathit{O}{\mathit{C}}_{\mathit{f}}$  Number of EVs  Findings Brief 

[23]  √  √  Nonlinear Programming (NLP)  0.4970 $/day  0.4347 $/day  ≈40%  80%  1050 

[24]  √  X  MixedInteger Linear Problem (MILP)  135.02 $/day  6.36 $/day  ≈25%  ≈35%  400 

[22]  √  √  MixedInteger Linear Problem (MILP)  N/A  0.834, 1.119, 2.477 and 2.146 $/kWh  70%  100%  N/A 

N/A  0.834, 0.834, 1.119 and 1.811 $/kWh  70%  100%  N/A 
 
[20]  √  √  CVX  39 $/day  23 $/day  N/A  N/A  100 

[25]  √  √  Nonlinear Programming (NLP)  0.4969 $/day  0.4348 $/day  ≈40%  80%  1000 

[26]  √  √  Generalized Reduced Gradient (GRG)  N/A  168.18 $/day  20–50%  80%  1000 

EV  Category  Rated Battery Capacity (kWh)  Battery Cost per kWh (LE/kWh) 

EV_1  Nissan Leaf (2020)  40  4837.89 
EV_2  Tesla Model S (p100d)  100  3677.58 
EV_3  Mustang MachE  68  4051.24 
Scenario 1 Time: 10:00 to 12:00  Scenario 2 Time: 10:00 to 12:00  

Number of EVs (EVs)  
EV_1  8  14 
EV_2  362  272 
EV_3  1  11 
Final SOC (%)  
EV_1  77.77%  61.31% 
EV_2  49.15%  48.84% 
EV_3  58.01%  52.36% 
Degradation Cost (EGP)  
EV_1  0.9765 EGP  1.6530 EGP 
EV_2  0.0877 EGP  0.1571 EGP 
EV_3  0.6658 EGP  1.1588 EGP 
EV owner Profit (EGP)  
EV_1  −34.2 EGP  −8.8 EGP 
EV_2  4.589 EGP  6.79 EGP 
EV_3  −14.9 EGP  4.429 EGP 
Scenario 1  Scenario 2  

Time: 10:00 to 11:00  Time: 11:00 to 12:00  Time: 10:00 to 11:00  Time: 11:00 to 12:00  
Number of EVs (EVs)  
EV_1  3  3  2  3 
EV_2  1  510  1  42 
EV_3  2  186  2  148 
Final SOC (%)  
EV_1  59.99%  61.92%  61.02%  63.6% 
EV_2  60.01%  59.85%  59.99%  59.09% 
EV_3  59.99%  58.81%  59.99%  58.06% 
Degradation Cost (EGP)  
EV_1  8.5 EGP  0.0158 EGP  9.4623 EGP  0.1258 EGP 
EV_2  3.3875 EGP  0.0359 EGP  4.0179 EGP  0.277 EGP 
EV_3  5.4939 EGP  0.2498 EGP  6.4311 EGP  0.3598 EGP 
EV owner Profit (EGP)  
EV_1  0  −2.9891 EGP  4.8152 EGP  −3.708 EGP 
EV_2  0  0.9611 EGP  0.0528 EGP  5.9294 EGP 
EV_3  0  4.5313 EGP  0.0235 EGP  7.1238 EGP 
Scenario 1  Scenario 2  

Time: 13:00 to 14:00  Time: 13:00 to 14:00  
Number of EVs (EVs)  
EV_1  1  1 
EV_2  277  52 
EV_3  3  1 
Final SOC (%)  
EV_1  60.23%  60.33% 
EV_2  48.26%  41.01% 
EV_3  60.39%  63.78% 
Degradation Cost (EGP)  
EV_1  4.6919 EGP  6.5213 EGP 
EV_2  0.3471 EGP  1.9322 EGP 
EV_3  4.9929 EGP  7.8514 EGP 
EV owner Profit (EGP)  
EV_1  0.0006 EGP  0.0036 EGP 
EV_2  9.3029 EGP  48.0133 EGP 
EV_3  0.0011 EGP  2.8661 EGP 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makeen, P.; Ghali, H.A.; Memon, S.; Duan, F. Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt. Sustainability 2023, 15, 1283. https://doi.org/10.3390/su15021283
Makeen P, Ghali HA, Memon S, Duan F. Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt. Sustainability. 2023; 15(2):1283. https://doi.org/10.3390/su15021283
Chicago/Turabian StyleMakeen, Peter, Hani A. Ghali, Saim Memon, and Fang Duan. 2023. "Insightful Electric Vehicle Utility Grid Aggregator Methodology Based on the G2V and V2G Technologies in Egypt" Sustainability 15, no. 2: 1283. https://doi.org/10.3390/su15021283