Structural Evolution and Community Detection of China Rail Transit Route Network
Abstract
:1. Introduction
2. Literature Review
3. Research Methods
3.1. Research Object and Data Collection
3.2. Research Methods and Related Indexes
3.2.1. Network Construction Method
3.2.2. Related Network Structure Indexes
3.2.3. Network Community Division
3.2.4. Standard Deviation Ellipse
3.2.5. Network Robustness
4. Research Results
4.1. Evolution of China’s Rail Transit Route Composition Structure
4.2. Evolution of Network Structural Characteristics of CRTRN
4.3. The Central Station of CRTRN Has Gradually Become Prominent
4.4. The Network Betweenness Values Is Gradually Reduced, and the Distribution of Routes Is More Balanced
4.5. The Structure of CRTRN in 2022 Become Relatively Loose and Disorderly
4.6. The Network Protection Should More Focusing on the Nodes with Higher Degree Values
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gkiotsalitis, K.; Cats, O. Public transport planning adaption under the COVID-19 pandemic crisis: Literature review of research needs and directions. Transp. Rev. 2020, 41, 374–392. [Google Scholar] [CrossRef]
- Xiao-lei, R.; Chao, Y.; Gang, Y.; Xiao-Lei, R.U.; Chao, Y.A.N.G.; Gang, Y.A.N.; Xiao-Lei, M. Control strategy for urban public transit in response to large-scale emergent epidemic. China J. Highw. Transp. 2020, 33, 11. [Google Scholar]
- Fan, J.; Kato, H.; Yang, Z.; Li, Y. Effects From Expanding High-Speed Railway Network on Regional Accessibility and Economic Productivity in China. Transp. Res. Rec. J. Transp. Res. Board 2021, 2676, 145–160. [Google Scholar] [CrossRef]
- Gao, D.; Li, S. Spatiotemporal impact of railway network in the Qinghai-Tibet Plateau on accessibility and economic linkages during 1984–2030. J. Transp. Geogr. 2022, 100. [Google Scholar] [CrossRef]
- Martí-Henneberg, J. The influence of the railway network on territorial integration in Europe (1870–1950). J. Transp. Geogr. 2017, 62, 160–171. [Google Scholar] [CrossRef]
- Stanev, K.; Alvarez-Palau, E.J.; Martí-Henneberg, J. Railway Development and the Economic and Political Integration of the Balkans, c. 1850–2000. Eur. Stud. 2017, 69, 1601–1625. [Google Scholar] [CrossRef]
- Alvarez, E.; Franch, X.; Martí-Henneberg, J. Evolution of the Territorial Coverage of the Railway Network and its Influence on Population Growth: The Case of England and Wales, 1871–1931. Hist. Methods A J. Quant. Interdiscip. Hist. 2013, 46, 175–191. [Google Scholar] [CrossRef]
- Akgüngör, S.; Aldemir, C.; Kuştepeli, Y.; Gülcan, Y.; Tecim, V. The Effect of Railway Expansion on Population in Turkey, 1856–2000. J. Interdiscip. Hist. 2011, 42, 135–157. [Google Scholar] [CrossRef]
- Wei, S.; Jiao, J.; Wang, L.; Xu, J. Evolving Characteristics of High-Speed Railway Network Structure in Yangtze River Delta, China: The Perspective of Passenger Flows. Appl. Spat. Anal. Policy 2020, 13, 925–943. [Google Scholar] [CrossRef]
- Yan, S.; Delmelle, E.; Duncan, M. The impact of a new light rail system on single-family property values in Charlotte, North Carolina. J. Transp. Land Use 2012, 5, 60–67. [Google Scholar]
- Efthymiou, D.; Antoniou, C. How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece. Transp. Res. Part A Policy Pr. 2013, 52, 1–22. [Google Scholar] [CrossRef]
- Haoran, Y.; Cong, W.; Youyang, Y. The Spatial Structure Evolution of China’s High-Speed Rail Network and Its Impacts on Real Estate Investment. Appl. Spat. Anal. Policy 2021, 15, 49–69. [Google Scholar] [CrossRef]
- Huang, T.; Xi, J.-C.; Ge, Q.-S. Spatial Differentiation and Integration Optimization of an Urban Agglomeration Tourism System under the Influence of High-Speed Railway Network Evolution. Appl. Spat. Anal. Policy 2017, 12, 349–376. [Google Scholar] [CrossRef]
- Albalate, D.; Fageda, X. High speed rail and tourism: Empirical evidence from Spain. Transp. Res. Part A Policy Pr. 2016, 85, 174–185. [Google Scholar] [CrossRef]
- D’Acierno, L.; Botte, M. A Passenger-Oriented Optimization Model for Implementing Energy-Saving Strategies in Railway Contexts. Energies 2018, 11, 2946. [Google Scholar] [CrossRef]
- Botte, M.; D’Acierno, L. Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms. Urban Rail Transit 2018, 4, 163–197. [Google Scholar] [CrossRef]
- Wang, J.; Jin, F.; Mo, H.; Wang, F. Spatiotemporal evolution of China’s railway network in the 20th century: An accessibility approach. Transp. Res. Part A Policy Pr. 2009, 43, 765–778. [Google Scholar] [CrossRef]
- Wu, W.; Liang, Y.; Wu, D. Evaluating the Impact of China’s Rail Network Expansions on Local Accessibility: A Market Potential Approach. Sustainability 2016, 8, 512. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Zhang, Y.; Luo, X.; Ma, C. Connectivity and Accessibility of the Railway Network in China: Guidance for Spatial Balanced Development. Sustainability 2019, 11, 7099. [Google Scholar] [CrossRef]
- Hu, X.; Huang, J.; Shi, F. Circuity in China’s high-speed-rail network. J. Transp. Geogr. 2019, 80, 102504. [Google Scholar] [CrossRef]
- Li, M.; Guo, R.; Li, Y.; He, B.; Fan, Y. The Distribution Pattern of the Railway Network in China at the County Level. ISPRS Int. J. Geo-Inf. 2019, 8, 336. [Google Scholar] [CrossRef]
- Morillas-Torné, M. Creation of a Geo-Spatial Database to Analyse Railways in Europe (1830–2010). A Historical GIS Approach. J. Geogr. Inf. Syst. 2012, 4, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Thevenin, T.; Schwartz, R.; Sapet, L. Mapping the Distortions in Time and Space: The French Railway Network 1830–1930. Hist. Methods A J. Quant. Interdiscip. Hist. 2013, 46, 134–143. [Google Scholar] [CrossRef]
- Li, H.; Guo, H. Spatial spillovers of pollution via high-speed rail network in China. Transp. Policy 2021, 111, 138–152. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Y.; Wu, X.; Li, D.; Li, G. The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis. Land Use Policy 2021, 100, 104935. [Google Scholar] [CrossRef]
- Bardaka, E.; Delgado, M.S.; Florax, R.J. Causal identification of transit-induced gentrification and spatial spillover effects: The case of the Denver light rail. J. Transp. Geogr. 2018, 71, 15–31. [Google Scholar] [CrossRef]
- Cats, O. Topological evolution of a metropolitan rail transport network: The case of Stockholm. J. Transp. Geogr. 2017, 62, 172–183. [Google Scholar] [CrossRef]
- Guo, L.; Cai, X. Degree and Weighted Properties of the Directed China Railway Network. Int. J. Mod. Phys. C 2008, 19, 1909–1918. [Google Scholar] [CrossRef]
- Erath, A.; Löchl, M.; Axhausen, K.W. Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time. Networks Spat. Econ. 2008, 9, 379–400. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, G. China’s high-speed rail network construction and planning over time: A network analysis. J. Transp. Geogr. 2018, 70, 40–54. [Google Scholar]
- Cao, W.; Feng, X.; Zhang, H. The structural and spatial properties of the high-speed railway network in China: A complex network perspective. J. Rail Transp. Plan. Manag. 2018, 9, 46–56. [Google Scholar] [CrossRef]
- Wang, W.; Cai, K.; Du, W.; Wu, X.; Tong, L.; Zhu, X.; Cao, X. Analysis of the Chinese railway system as a complex network. Chaos Solitons Fractals 2019, 130, 109408. [Google Scholar] [CrossRef]
- Ding, R.; Ujang, N.; Bin Hamid, H.; Manan, M.S.A.; Li, R.; Albadareen, S.S.M.; Nochian, A.; Wu, J. Application of Complex Networks Theory in Urban Traffic Network Researches. Netw. Spat. Econ. 2019, 19, 1281–1317. [Google Scholar] [CrossRef]
- Zheng, W.; Du, N.; Wang, X. Understanding the City-transport System of Urban Agglomeration through Improved Space Syntax Analysis. Int. Reg. Sci. Rev. 2021, 45, 161–187. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, F.; Wang, S.; Dai, Y.; Wang, Y. Structural vulnerability and intervention of high speed railway networks. Phys. A Stat. Mech. Appl. 2016, 462, 743–751. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Y.; Jia, L.; Li, L. Reliability Optimization of a Railway Network. Sustainability 2020, 12, 9805. [Google Scholar] [CrossRef]
- Gui, R.; Chen, T.; Nie, H. In-Depth Analysis of Railway and Company Evolution of Yangtze River Delta with Deep Learning. Complexity 2020, 2020, 1–25. [Google Scholar] [CrossRef]
- Gallo, M.; Luca, G.D.; D’Acierno, L.; Botte, M. Artificial neural networks for forecasting passenger flows on metro lines. Sensors 2019, 19, 3424. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, H.; Wang, W.; Song, W. Properties of Chinese railway network: Multilayer structures based on timetable data. Phys. A Stat. Mech. Appl. 2020, 560. [Google Scholar] [CrossRef]
- Hansen, I.A. Railway network timetabling and dynamic traffic management. Int. J. Civ. Eng. 2010, 8, 19–32. [Google Scholar]
- Chen, H.; Hu, Y. Finding Community Structure and Evaluating Hub Road Section in Urban Traffic Network. Procedia-Soc. Behav. Sci. 2013, 96, 1494–1501. [Google Scholar] [CrossRef]
- Chin, J.H.; Ratnavelu, K. Detecting Community Structure by Using a Constrained Label Propagation Algorithm. PLoS ONE 2016, 11, e0155320. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-J.; Wang, Y.; Wu, L.-Y.; Liu, Z.-P.; Chen, L.; Zhang, X.-S. Community structure detection based on Potts model and network’s spectral characterization. Eur. Lett. 2012, 97. [Google Scholar] [CrossRef]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.-L. Network science. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar]
- Huang, X.; Chen, D.; Ren, T.; Wang, D. A survey of community detection methods in multilayer networks. Data Min. Knowl. Discov. 2020, 35, 1–45. [Google Scholar] [CrossRef]
- Sigler, T.; Searle, G.; Martinus, K.; Tonts, M. Metropolitan land-use patterns by economic function: A spatial analysis of firm headquarters and branch office locations in Australian cities. Urban Geogr. 2015, 37, 416–435. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Y.; Gao, H.; Zhao, X.; Du, Z. Comparing Community Detection Algorithms in Transport Networks via Points of Interest. IEEE Access 2018, 6, 29729–29738. [Google Scholar] [CrossRef]
- Sarswat, A.; Jami, V.; Guddeti, R.M.R. A novel two-step approach for overlapping community detection in social networks. Soc. Netw. Anal. Min. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Lu, S.; Huang, Y.; Zhao, Z.; Yang, X. Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017. Sustainability 2018, 10, 3173. [Google Scholar] [CrossRef]
- Galvan, G.; Agarwal, J. Community detection in action: Identification of critical elements in infrastructure networks. J. Infrastruct. Syst. 2018, 24, 04017046. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, Y. DASSCAN: A Density and Adjacency Expansion-Based Spatial Structural Community Detection Algorithm for Networks. ISPRS Int. J. Geo-Inf. 2018, 7, 159. [Google Scholar] [CrossRef]
- Feng, C.; Zhu, Q.; Yu, B.; Zhang, Y. Complexity and vulnerability of high-speed rail network in China. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 10034–10039. [Google Scholar]
- Jiao, J.; Zhang, F.; Liu, J. A spatiotemporal analysis of the robustness of high-speed rail network in China. Transp. Res. Part D Transp. Environ. 2020, 89, 102584. [Google Scholar] [CrossRef]
- Wang, L.; Duan, X. High-speed rail network development and winner and loser cities in megaregions: The case study of Yangtze River Delta, China. Cities 2018, 83, 71–82. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Sun, C.; Liu, Y. Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China. J. Transp. Geogr. 2016, 54, 161–172. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Zou, T.; Yan, H. Effects of the high speed rail network on China’s regional tourism development. Tour. Manag. Perspect. 2012, 1, 34–38. [Google Scholar] [CrossRef]
- Yang, H.; Dobruszkes, F.; Wang, J.; Dijst, M.; Witte, P. Comparing China’s urban systems in high-speed railway and airline networks. J. Transp. Geogr. 2018, 68, 233–244. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhang, T. The generation model of urban rail transit planning line network and its application in route design. Adv. Transp. Stud. 2021, 7, 91–100. [Google Scholar]
- Zhang, H.; Li, Y.; Zhang, Q.; Chen, D. Route Selection of Multimodal Transport Based on China Railway Transportation. J. Adv. Transp. 2021, 2021, 9984659. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, L.; Song, Y.; Wang, Y.; Li, Y. Understanding the formation of City-HSR network: A case study of Yangtze River Delta, China. Transp. Policy 2021, 116, 315–326. [Google Scholar] [CrossRef]
- Li, T.; Rong, L. A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China. Transp. Res. Part A Policy Pr. 2019, 132, 666–681. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, S.; Yang, X.; Zhao, Z. Exploring Railway Network Dynamics in China from 2008 to 2017. ISPRS Int. J. Geo-Inf. 2018, 7, 320. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Is the Boston subway a small-world network? Phys. A Stat. Mech. Appl. 2002, 314, 109–113. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets. Chaos: Interdiscip. J. Nonlinear Sci. 2006, 16, 015113. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.; Barabasi, A.-L.; Watts, D.J. The Structure and Dynamics of Networks, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Kernighan, B.W.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Marshall, S.; Cao, M.; Manley, E.; Chen, H. Discovering the evolution of urban structure using smart card data: The case of London. Cities 2021, 112, 103157. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, H. Analysis on Spatial-Temporal Distribution Evolution Characteristics of Regional Cold Chain Logistics Facilities: A Case Study of BJE[M]//LISS 2021; Springer: Singapore, 2022; pp. 431–441. [Google Scholar]
- Xia, X.; Li, H.; Kuang, X.; Strauss, J. Spatial–Temporal Features of Coordination Relationship between Regional Urbanization and Rail Transit—A Case Study of Beijing. Int. J. Environ. Res. Public Health 2021, 19, 212. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Lin, A.; He, L.; Zhou, Z.; Yuan, M. Spatiotemporal Dynamics and Driving Forces of Urban Land-Use Expansion: A Case Study of the Yangtze River Economic Belt, China. Remote Sens. 2020, 12, 287. [Google Scholar] [CrossRef]
- Song, G.; Yang, J. Measuring the spatiotemporal variation and evolution of transport network of China’s megaregions. J. Geogr. Sci. 2016, 26, 1497–1516. [Google Scholar] [CrossRef]
- Wyatt, R. GIS-based evaluation of Personal Rapid Transit (PRT) for reducing car dependence within Melbourne, Australia. Appl. GIS 2006, 2, 12.1–12.31. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Yuill, R.S. The standard deviational ellipse; an updated tool for spatial description. Geogr. Ann. Ser. B Hum. Geogr. 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Schubert, P.; Kirchner, M. Ellipse area calculations and their applicability in post urography. Gait Posture 2014, 39, 518–522. [Google Scholar] [CrossRef]
- Santos, B.F.; Antunes, A.P.; Miller, E.J. Interurban road network planning model with accessibility and robustness objectives. Transp. Plan. Technol. 2010, 33, 297–313. [Google Scholar] [CrossRef] [Green Version]
No. | Type | Station Name | Station Order | Arrive Time | Depart Time | Time Cost | The Mile Age | Price 1 | Price 2 |
---|---|---|---|---|---|---|---|---|---|
… | |||||||||
D98 | D | Jinshan bei | 9 | 20:34 | 20:36 | 22 min | 761 | 224 | 269 |
D98 | D | Shanghai Hongqiao | 10 | 20:58 | - | 0 | 809 | 238 | 286 |
G1 | D | Beijing nan | 1 | - | 9:00 | 0 | 0 | - | - |
G1 | D | Nanjing nan | 2 | 12:39 | 12:41 | 3 h 39 min | 1023 | 443.5 | 748.5 |
G1 | D | Shanghai Hongqiao | 3 | 13:48 | - | 1 h 7 min | 1318 | 553 | 933 |
G1001 | D | Wuhan | 1 | - | 7:28 | 0 | 0 | - | - |
G1001 | D | Xianning bei | 2 | 7:52 | 7:54 | 24 min | 85 | 39.5 | 64.5 |
G1001 | D | Changsha nan | 3 | 8:53 | 8:56 | 59 min | 362 | 164.5 | 264.5 |
… |
Year | N | M | Average Degree | Di | APL | Q | Network Community |
---|---|---|---|---|---|---|---|
2009 | 3031 | 38,129 | 3.364 | 61 | 10.584 | 0.864 | 30 |
2013 | 2783 | 47,898 | 3.734 | 51 | 10.088 | 0.850 | 29 |
2016 | 2740 | 60,305 | 4.164 | 40 | 8.862 | 0.842 | 26 |
2019 | 2998 | 80,503 | 4.545 | 46 | 8.615 | 0.844 | 25 |
2022 | 3065 | 83,643 | 4.731 | 50 | 8.661 | 0.848 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, R.; Fu, J.; Du, Y.; Du, L.; Zhou, T.; Zhang, Y.; Shen, S.; Zhu, Y.; Chen, S. Structural Evolution and Community Detection of China Rail Transit Route Network. Sustainability 2022, 14, 12342. https://doi.org/10.3390/su141912342
Ding R, Fu J, Du Y, Du L, Zhou T, Zhang Y, Shen S, Zhu Y, Chen S. Structural Evolution and Community Detection of China Rail Transit Route Network. Sustainability. 2022; 14(19):12342. https://doi.org/10.3390/su141912342
Chicago/Turabian StyleDing, Rui, Jun Fu, Yiming Du, Linyu Du, Tao Zhou, Yilin Zhang, Siwei Shen, Yuqi Zhu, and Shihui Chen. 2022. "Structural Evolution and Community Detection of China Rail Transit Route Network" Sustainability 14, no. 19: 12342. https://doi.org/10.3390/su141912342
APA StyleDing, R., Fu, J., Du, Y., Du, L., Zhou, T., Zhang, Y., Shen, S., Zhu, Y., & Chen, S. (2022). Structural Evolution and Community Detection of China Rail Transit Route Network. Sustainability, 14(19), 12342. https://doi.org/10.3390/su141912342